Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поле сил в порах

    Грязь на полу порой порождает не меньше проблем, чем пятна на одежде и обуви, а уборка отнимает много времени и сил. Как привести пол в порядок самым эффективным и экономным образом и, главное, надолго Издавна самым лучшим считается паркетный пол из дуба. Дубовый паркет — принадлежность не только дворцов и правительственных зданий, но и многих жилых домов, как старинных, так и совсем новых. Совсем неплохим бывает и паркет из других, менее ценных пород дерева. [c.101]


    В а. с. 1051026 предложен кирпич с капиллярами, заполненными магнитной жидкостью под действием магнитного поля жидкость поднимается, создавая разрежение в вакуумном захвате. Такой кирпич — почти машина... Вообще, на уровне кирпич с заполненными жидкостью капиллярами можно остановиться надолго. Количество изобретательских возможностей здесь очень велико. Жидкость способна испаряться, создавая мощный охлаждающий эффект. Сепарироваться, фильтроваться, перемещаться... Поры и капилляры могут быть [c.115]

    Для системы из N частиц будем иметь ЗЛ таких уравнений. В принципе можно решить эти уравнения, и тогда в каждом уравнении окажутся по две произвольные константы интегрирования. Для всей системы будет таких констант интегрирования, и, чтобы исключить эти константы, необходимо иметь независимых исходных величин. Это могут быть, например, координаты (З У) каждой точки в два различных момента времени . Ясно, что механическое поведение системы не определяется однозначно до тех пор, пока нет достаточных экспериментальных сведений для определения 6 N констант. Состояние такой системы будет полностью определено только тогда, когда такая внутренняя информация дается наряду с внешним описанием системы (т. е. массами частиц, положением и величиной силовых полей, положением границ, стенок и т. д.). В простейшем случае, представляющем интерес с физической точки зрения, скажем для моля гелия , мы должны [c.113]

    Теория, которую мы развили относительно кинетической природы неравновесных систем, имеет два существенных недостатка. Первый недостаток заключается в том, что нам пришлось использовать равновесные функции распределения для упрощения математических расчетов. Это затруднение было в значительной степени снято методом, развитым Чепменом, Энскогом и другими, в котором ряд последовательных приближений позволяет получить неравновесные функции распределения, более соответствующие физической системе. Второй более важный недостаток до сих пор удовлетворительно не устранен он заключается в использовании искусственных моделей для представления о молекулах. Строго говоря, весь процесс столкновения молекул определяется силовым полем, окружающим каждую молекулу. Представляя силовое поле молекул искусственной моделью, мы обходим непреодолимые математические трудности, возникающие при строгом рассмотрении. Однако в результате вводится целый ряд новых параметров молекул, которые оказываются неопределимыми, исходя из простых свойств молекул. В случае жесткой сферической модели мы ввели молекулярный [c.172]


    Одним из примеров образования двойного электрического слоя является электризация жидкостей и сыпучих материалов при их транспортировании по трубопроводам. Накопление электрических зарядов и увеличение разности потенциалов происходит до тех пор, пока напряженность поля не достигнет критической величины. Тогда происходит пробой воздуха. Критическая напряженность поля, при которой наступает пробой, составляет примерно 30 кВ/см. Под воздействием разрядов статического электричества может загореться любая горючая смесь, образующаяся в производственных процессах. [c.339]

    Наличие жидкостной пленки на элементах насадки (до тех пор, пока она не забита отложениями и ее расположение не нарушено из-за термической деформации, раскрашивания и т. д.) заметно не влияет на распределение газа (но не на потери напора), тогда как в полых колоннах, заполненных крупными каплями, можно ожидать воздействия падающей жидкости на равномерность распределения газа. Однако этот вопрос экспериментально не изучен. [c.16]

    Смещение электронов, атомов, ориентация молекулы в электрическом поле называется поляризацией. Величина поляризации П зави-спт от способности молекул к поляризации. Способность молекул к поляризации характеризуется поляризуемостью. Поляризация молекул складывается из электронной Пэ , атомной П г и ориентационной Пор поляризаций [c.82]

    Равновесие менисков в пористом теле описывается обычно уравнением Кельвина, связывающим радиус кривизны менисков с давлением пара над их поверхностью. При этом не учитывается, однако, поле поверхностных сил, приводящее к изменению формы мениска, что меняет и его капиллярное давление. Точная запись условий равновесия менисков с пленками для пор в виде плоской щели имеет вид [48]  [c.18]

    Сложная и нерегулярная структура пространства пор обусловливает преимущественно стохастический характер локальных скалярных и векторных полей концентраций, давлений, скоростей и т. д. Локальные величины в пространстве пор подчиняются обычным гомогенным уравнениям переноса, дополненным граничными условиями, при этом они флюктуируют на масштабах порядка масштабов микронеоднородностей среды. Измеряемыми обычно являются макропеременные, получаемые усреднением по пространству элементарного физического объема (э.ф.о.) пористой среды 8т. Под э.ф.о. пористой среды понимается часть пористой среды, размер которой, с одной стороны, много меньше размера исследуемого тела, а с другой стороны, настолько велик, что в нем содержится достаточно большое число структурных элементов, позволяющее применять различные методы осреднения случайных величин. В каждой точке э.ф.о. могут быть определены локальные или микроскопические характеристики как самой среды, так и протекающего в ней физико-химического процесса, например радиус поры, к которой принадлежит данная точка, или концентрация компонентов химической реакции. Микро-характеристики можно усреднить по всем порам, входящим [c.138]

    Соотношения размеров поры и молекул, участвующих в каталитическом процессе (исходных веществ и в том числе нейтральных примесей и каталитических ядов, промежуточных комплексов и продуктов реакций), определяют структурную возможность осуществления данного набора каталитических реакций в порах данного размера. Перекрывание электрических полей противоположных стенок норы или изменение строения электрического поля катализатора вследствие искривления его поверхности в микропорах может существенно повлиять на величину адсорбции и энергию активации каталитических реакций. Изменение расположения и взаимного влияния активных центров на сильно искривленной поверхности катализатора изменяет его активность, селективность и стойкость к отравлению, вызывает новые побочные реакции. При этом тонкие поры, сопоставимые с размерами молекул реагирующих веществ, инертных примесей или продуктов реакций, могут уже в самом начале процесса оказаться полностью исключенными из участия в нем в результате геометрического несоответствия размеров молекул и пор. Это происходит в результате чрезвычайно сильной адсорбции веществ, которые, прочно фиксируясь в порах катализатора, будут экранировать их, играя роль порового яда . В таких случаях целесообразно говорить об эффективной микропористости катализатора. Для пор надмолекулярных размеров возможно также интенсивное взаимодействие электронных полей молекул и стенок пор, изменяющее скорости диффузии веществ в порах [53]. [c.140]

    До сих пор мы не принимали во внимание спин-орбитальное взаимодействие (член А.Ь-8). Для ионов первого ряда переходных металлов его можно учесть, добавив энергию взаимодействия X. Ь 8 к энергиям уровней в качестве возмущения их величины. Такой подход вполне приемлем, если только X. Ь 8 мало по сравнению с электрон-электронными отталкиваниями и влиянием кристаллического поля. Диагональные матричные элементы Ь 8 рассчитываются в базисе из действительных орбиталей и добавляются к энергиям как поправки. Если спин-орбитальное взаимодействие велико, подход, основанный на возмущении, неприемлем. Например, 2 и 2 (знак относится к значениям электрона) имеют одно и то же значение mJ = Ъ 2 и смещиваются под действием Ь-8. [c.140]


    Для поверхностной сорбции (адсорбции) в порах переходного типа можно ограничиться выводами потенциальной теории, согласно которой адсорбированное вещество представляет конденсированную жидкую фазу, обладающую свойствами объемной жидкой фазы. Поверхность адсорбированной пленки соответствует одному значению адсорбционного потенциала Ч , численно равного работе адсорбционных сил по перемещению единицы количества вещества из газовой объемной фазы с давлением Р к поверхности адсорбированной пленки, давление над которой принимается равным давлению насыщенного пара Ру при температуре Т. Таким образом, действие сил поля с потенциалом эквивалентно дополнительному давлению, приложенному к адсорбированной пленке АР = Ру Т)—Р. [c.47]

    Исходя из качественных представлений об энергетике взаимодействия частицы газа с силовым полем на поверхности поры, получено [17] расчетное соотношение [c.61]

    Влияние продольной диффузии (молекулярной или кнудсеновской, в зависимости от размера пор) в порах подложки тем больше, чем больше проницаемость компонентов через селективный слой мембраны и коэффициент деления потока 0. При этом увеличивается (или уменьшается, в зависимости от организации потоков) разность между концентрациями распределяемого компонента на границе селективного и пористого слоев мембраны у и содержанием этого компонента внутри полого волокна Уа. При противотоке концентрация у на границе селек- [c.181]

    Исходя из капиллярно-фильтрационной модели механизма полу-проницаемости (см. стр. 201), можно ожидать появления селективных свойств у лиофильного пористого материала со сквозными капиллярами при уменьшении его пор до размеров, не превышающих удвоенной толщины слоя связанной жидкости. [c.75]

    Теплота гидратации иона с меньшей ДЯ является определяющей,, вероятно, по следующей причине. Ее значение косвенно характеризуется числом пор, в которые могут войти ионы данного электролита. Ионы с теплотой гидратации ДЯм входят в поры, в которые не могут войти ионы с ДЯб. При этом они своим зарядом увлекают за собой противо-ионы, преодолевая их сопротивление этому процессу. Вместе с тем заряд иона с ДЯб в какой-то степени нейтрализован зарядом противоионов, окружающих его в растворе. Вероятно, поэтому он более подвержен действию поля иона с ДЯ . Внутри поры эффект частичной нейтрализации не действует, поэтому, если ион попадает в пору, то ему, по-видимому, ничего не помешает перейти через нее вместе с потоком [c.207]

    Следовательно, экспериментальные зависимости хорошо согласуются с выводами капиллярно-фильтрационной модели механизма полу-проницаемости. Следует ожидать, что данный подход с учетом взаимного влияния ионов и внешних факторов на процесс гидратации, а также с учетом влияния электролитов на толщину адсорбционных слоев растворителя даст возможность разработать количественную теорию обессоливания растворов обратным осмосом. Однако решение этой задачи невозможно без точного определения размеров пор и их распределения, толщины слоя связанной жидкости на внутренней поверхности пор при течении жидкости под действием градиента давлений. Уместно отметить, что и для процесса ультрафильтрации определение толщины слоя связанной жидкости также имеет важное значение, особенно при сравнительно небольших диаметрах пор (порядка 5 30 нм, или 50—300 А). Как было показано выше (см. стр. 105), в этом случае толщина слоя связанной жидкости становится соизмеримой с радиусом пор ультрафильтров. [c.211]

    Рассматриваемые перегородки можно изготовлять в виде листов, дисков, полых цилиндров или конусов, а также тел другой формы, причем их физические свойства, химический состав, структура, пористость, прочность и размер могут быть различными в зависимости от предъявляемых к ним требованиям. Размер пор в таких перегородках равен 1—75 мкм, а пористость достигает [c.372]

    Сделанный таким образом выбор фильтровальной ткани подтверждается или корректируется на основании лабораторных испытаний с использованием, например, однолистового фильтра. Испытания на этом фильтре не дают сведений о прогрессирующем закупоривании пор и изнашивании ткани. Однако они дают указания о чистоте фильтрата, производительности и окончательной влажности осадка. Однолистовой фильтр представляет собой плоскую полую пластину, одна из сторон которой обтянута фильтровальной тканью. Этот фильтр присоединяют к источнику вакуума и погружают в суспензию (фильтрование), поддерживают в воздухе (продувка) или орошают диспергированной жидкостью (промывка). При этом ткань фильтра обращена вниз или вверх или расположена вертикально в зависимости от того, какой фильтр моделируется в данном случае. [c.378]

    До СИХ пор были рассмотрены некоторые виды распределения скоростей, заданные аналитически, и для них определены соответствующие коэффициенты поля скоростей и понижения эффективности работы аппаратов. Для реальных аппаратов эти коэффициенты можно определить графиче-ческим интегрированием экспериментальных кривых распределения скоростей [см. табл. 2.1]. [c.73]

    Вследствие увеличения продолл<мтельпости жизни газожидкостной эмульсии и пены при введении активирующих добавок углеводороды сырья перераспределяются. Это выражается в концентрировании в адсорбциоино-сольватпых слоях, обладающих поверхностно-активными свойствами серо-, азот-, кислород-и металлоорганических соединений. Последние отрицательно влияют на активность катализатора, вызывая его закоксовывание. В присутствии активирующих добавок больщая часть таких соединений удаляется с поверхности катализатора вместе с пеной. В результате на поверхность катализатора попадает сырье, в значительной степени освобожденное от нежелательных соединений. Под действием адсорбционного поля пор на поверхности катализатора реализуется фазовый переход типа пар — жидкость с образованием нового адсорбционного слоя. Экспериментальные лабораторные исследования и опытно-промышленные испытания показывают эффективность введения в систему добавок. [c.158]

    Таким образом, при регулируемом фазовом переходе в результате добавки активатора и перераспределепия компонентов сырья происходит самоочищение (поверхностями ядер ССЕ) вакуумного газойля от вредных для каталитического крекинга компонентов, которые, минуя катализатор, попадают иа блок разделения продуктов реакции. При попадании самоочищенной части вакуумного газойля (в парообразном состоянии) иа поверхность катализатора под дейстсвием сил адсорбционного поля поры реализуется фазовый переход (парообразное состоя-пие ->-жидкое состояние). В данном случае адсорбционное поле равносильно действию давления, что приводит к сближению адсорбируемых молекул на поверхности катализатора и формированию адсорбционного структурированного слоя. [c.203]

    Общие соображения показывают, что разность между температурами жидкой и твердой фаз в процессе фильтрации должна быстро исчезать из-за огромной поверхности теплообмена между флюидами и скелетом, так что температуры допустимо считать одинаковыми. Более точный ответ может дать следующая оценка. Характерный размер, поры / имеет порядок 10 м или менее, температуропроводность, насыщенной пористой среды х обычно порядка 10 м /с. Тогда выравнивание температуры между флюидом и скелетом должно происходить за время t = / /х = 10 с. Если нас интересуют фильтрационные процессы, с характерными временами такого порядка, то разницу температур флюида и скелета необходимо учитывать. В противном случае можно считать, что Т,., = Т. Мы так и будем делать, поскольку для технологических процессов разработки месторождений время 10 с ничтожно мало(.о Запишем теперь соотношение, выражающее баланс энергии дл системы жидкость - пористая среда. Пористую среду будем считат .. недеформируемой. Вследствие малости скоростей фильтрации пренебрежем изменением кинетической энергии флюида. Тогда, если 7-внутф ренняя энергия некоторого объема флюида и скелета, П-энергия флюида в поле потенциальных сил (в нашем случае-поле силы тяжести), тср/ согласно первому началу термодинамики имеем  [c.316]

    Еще более сложное, но не более строгое приближение было сделано Мельвин-Хьюзом [65], который при подсчете энергии ион-дипольйого взаимодействия учел эффект поляризации и силы отталкивания. Чтобы получить величину взаимодействия диполь — растворитель, была использ ована [66] модель Онзагера для диполя, окруженного оболочкой из молекул растворителя. Авторы воспользовались уравнением Пуассона для того, чтобы оценить влияние ионной оболочки на диполь. Полученные в этом случае ч )ормулы слишком сложны и вряд ли могут быть успешно применены для обработки экспериментальных результатов. Влияние ионной силы в реакциях между ионом и диполем может сказываться не только на специфических взаимодействиях. Для положительных ион-дипольных взаимодействий (0 > 90°) ориентация диполя приведет к тому, что поле иона будет уменьшать поля диполя. В результате следует ожидать, что ионная атмосфера оболочка), окружающая как свободный диполь, так и комплекс, образующийся при взаимодействии иона с диполем, будет гораздо сильнее стабилизировать свободный диполь. Это будет приводить к уменьшению скорости с увеличением ионной силы. В случае отрицательного взаимодействия увеличение ионной силы раствора вызывает увеличение скорости реакции. К сожалению, экспериментальных результатов, которые могли бы подтвердить эти выводы, до сих пор нет. Основная трудность здесь заключается в том, что до сих пор не было сделано ни одной попытки сравнить действие ионов и ионных пар в качестве реагентов [68]. Сложность модели сама по себе достаточно велика, и, по всей видимости, любое из соотношений, которое может быть выведено, сможет получить лишь качественное подтверждение. [c.459]

    Следует подчеркнуть, что в обсуждаемых до сих пор работах в качестве катализаторов дегидроциклизации, как правило, использовали металлы в виде черней, пленок, а также Pt и Pd, отложенные на активированном угле, SiOg или некислом АЬОз, т. е. такие катализаторы, в которых носитель либо отсутствовал, ли о по крайней мере не влиял явным образом на каталитические свойства. Очевидно, что в присутствии би- и поли-функциональных металлоксидных катализаторов реакции дегидроциклизации могут проходить несколько иначе. Кроме того, течение этих реакций может осложняться рядом побочных и вторичных процессов. Краткий обзор этих работ, посвященных исследованию реакций дегидроциклизации на би- и полифункциональных металлоксидных катализаторах, приведен в следующем разделе. [c.244]

    В пространстве между металлами, как указывалось выше, возникает электрическое поле, величина которого определяется вольта-потенциалом двух металлов. Если ионизировать газ между металлами, например, при помощи радиоактивного излучения, то ионы газа под действием поля придут в движение и будут разряжаться на пластинках, сообщая им заряд до тех пор, пока не будет компенсирована исходная разность потенциалов, т. е. вольта-потенциал. При этом вольтметр покажет разность потенциалов, равную по величине и противоположную по знаку вольта-потен-цналу. [c.535]

    В прпбо1)е изменяют угол наклона прнзмы относительно зеркала до тех пор, пока граница раздела освещенной и темной половины не будет установлена точно на перекрестие в поле зрения окуляра. На шкале рефрактометра непосредственно нанесены значения показателен преломления с точностью до Ю . На рефрактометре Аббе показатель преломления измеряется в белом свете. При появлении спектра па границе раздела необходимо изменить положение иризм компенсаторов, которые вращаются маховичком, расположенным справа от зрительной трубы. [c.90]

    Последовательность выполнения работы. 1. Открьгп, верхнюю призму с оправой. 2, Нанести каплю исследуемого вещества па пиж-нюю призму. 3. Закрыть верхнюю иризму. 4. Нанести световой пучок зеркалом на окно нижней призмы. 5. Перемещать рукоятку с окуляром до тех пор, пока визирная линия не совместится с границей полей. [c.91]

    Если спин направлен вдоль поля в низкоэнергетической и против поля в на атомах 1 и 3 по сравнению с атомом 2 должно наблюдаться увеличение спиновой плотности, направленной вдоль поля. В 1 /1 при спиновой плотности, направленной против поля, на атоме 2 должна быть большая величина отрицательной спиновой плотности, чем на атомах I и 3. Таким образом, мы не переводим каких-либо неспаренпых электронов на старую орбиталь ф , а только влияем на распределение неспаренных спинов на трех атомах, что приводит к отрицательной (противоположной приложенному полю) спиновой плотности на С . Эта отрицательная спиновая плотность затем спип-поляризуется под действием электронной пары связи С — Н [см. обсуждение уравнения (9.11)] так, что спиновая плотность оказывается на атоме водорода. Обменное взаимодействие неспаренного электрона, находящегося на (главным образом, на С и С ), с парой электронов, находящихся на ф,, снижает энергию v по сравнению с Два атома водорода, связанные с концевым атомом углерода, неэквивалентны по симметрии, но до сих пор мы не говорили ни о каких эффектах, которые могли бы сделать их неэквивалентными с точки зрения распределения спиновой плотности. Такая неэквивалентность выявится с введением обменной поляризации, затрагивающей заполненные молекулярные а-орбитали. [c.28]

    Терм основного состояния для любой "-конфигурации можно установить, разместив электроны на -орбиталях. При этом в первую очередь заполняются орбитали, имеющие большие величины т,, электроны размещаются по одному и не спариваются до тех пор, пока на каждой орбитали не будет находиться по одному электрону, т. е. все происходит согласно правилам Гунда. Величины т, для орбиталей, на которых находятся электроны, можно суммировать алгебраическим путем, чтобы получить величину L для каждого терма. В более законченной форме это звучит так квантовое число т, индивидуального электрона связано с вектором, имеющим компоненту т, к/2п , направленную вдоль приложенного поля. представляет собой сумму однозлектронных величин т[. Правила сложения векторов требуют, чтобы М1 принимало значения L, L—1,. .., — L, поэтому максимальное значение дается величиной Ь. Для обозначения величин L используются буквы 5, Р, О, Р, С, Н, I, соответствующие равному О, 1, 2, 3, 4, 5 и 6. Спиновую мультиплет-ность состояния определяют как 25 + 1 (5 по аналогии с Ь представляет собой максимально возможное Ms, где Ms = m ) Тт ) и указывают с помощью индекса вверху слева от символа терма. Мультиплетность отвечает за число возможных проекций 8 на направление магнитного поля, т.е. если 5=1, мультиплетность три говорит о том, что Ms = 1, О, [c.63]

    В зависимости от размера пор, все пористые среды принято делить на три класса микро- и макропористые тела и структуры с переходными порами. Предельный радиус мнкропор не превышает 15 Л, т. е. молекулярных размеров, поэтому практически все пространство микропор находится в поле действия поверхностных сил. Адсорбционный потенциал в микропористых телах заметно выше, чем в других пористых системах. Характерный размер макропор условно принимают более 2000 А удельная поверхность тел с подобной структурой сравнительно невелика, так что влияние адсорбционных сил на процессы, протекающие в этих средах, незначительно. Более того, при стандартных условиях ( =25°С, Р = 760 мм рт. ст.) для большинства газов в каналах макропористых тел обычно реализуется континуальное течение, исключающее процесс разделения смеси. Поэтому макропористые тела используют в мембранной технологии в качестве дренажной системы (пористой подложки). [c.39]

    Рассмотрим диффузионные процессы, осложненные появлением конденсированной фазы разделяемой смеси. В пористых сорбционно-диффузионных мембранах нельзя пренебречь энергией спязи компонентов смеси с матрицей, характеризуемой энтальпией адсорбции АЯ и потенциалом На поверхности пор мембран возникает адсорбированный слой, который, согласно потенциальной теории [1, 2] можно рассматривать как конденсированную фазу в поле сил, определяемых адсорбционным и капиллярным потенциалами. Допуская локальное равновесие между объемной и сорбированной фазами для каждого сечения капилляра, можно считать, что в сорбированной пленке вдоль оси 2 существует градиент концентрации, обусловленный неравномерностью состава в объемной газовой фазе. Миграцию компонентов смеси вследствие градиента концентрации в пленке принято называть поверхностной диффузией. [c.59]

    Эквимолекулярность при переходе ионов через мембрану объясняется, по-видимому, следующими причинами. Ионы с меньшей гидратирующей способностью в первую очередь могут проникнуть в поры мембраны. При этом они образуют электрическое поле, которое способствует прониканию в поры ионов с большей гидратирующей способностью. В свою очередь, эти ионы своим полем, противоположным по [c.192]


Смотреть страницы где упоминается термин Поле сил в порах: [c.167]    [c.124]    [c.351]    [c.231]    [c.132]    [c.107]    [c.224]    [c.119]    [c.172]    [c.427]    [c.65]    [c.229]    [c.172]    [c.57]    [c.208]    [c.217]    [c.43]    [c.265]   
Смотреть главы в:

Общая гидрология Изд.2 -> Поле сил в порах




ПОИСК





Смотрите так же термины и статьи:

Лук порей



© 2024 chem21.info Реклама на сайте