Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм упаковки РНК

    Получение цианплава основано на взаимодействии цианамида кальция с поваренной солью (хлористым натрием) при 1500°С. Процесс проводят в электропечах комбинированного действия. Шихта (смесь цианамида кальция с поваренной солью) поступает из бункеров в электропечь, в которой под воздействием высокой температуры плавится. Расплавленный продукт при 1300°С сливается через летку на охлаждающие вальцы, а затем в виде чешуек направляется транспортными механизмами (транспортерами, шнеками, элеваторами) на упаковку в железные бочки или контейнеры с герметичными крышками. [c.72]


    В непористых мембранах из-за отсутствия пор в плотном слое резко сокращается количество вещества, адсорбированного поверхностью, решающую роль играет растворимость газов в матрице мембраны. Процесс идет по механизму абсорбции, который условно включает стадии поверхностной сорбции и последующего растворения газа при этом возможна диссоциация молекулы газа или образование нового химического соединения. Таким образом, проникающее вещество и матрица мембраны образуют растворы, которые могут быть однофазными (в высокоэластичных полимерах) или гетерофазными (в полимерах композиционно-неоднородной структуры). Во втором случае необходимо различать дисперсную фазу и дисперсионную среду. В полимерах роль дисперсной фазы играют структурные образования, характеризующиеся периодичностью расположения макромолекул и большой плотностью упаковки. Обычно принимают, что проникающее вещество растворяется и мигрирует только в дисперсионной среде, обычно аморфной фазе, обладающей значительной долей свободного объема и большей подвижностью элементов полимерной матрицы. Мембраны, изготовленные из композиционных материалов с наполнителями или армирующими элементами, представляют собой многофазные системы. [c.71]

    У неблагородных металлов, где вслед за адсорбцией происходит также и разрыв молекулы кислорода, механизм образования окисной пленки сложнее, однако и здесь вследствие достаточно больших размеров атомного кислородного иона правильная ориентировка кислородных слоев с плотнейшей упаковкой параллельно поверхности металла должна сохраняться. [c.44]

    Исходя из сложной природы механизмов коалесценции представляется интересным связать два вида коалесценции как отношение их времен для оценки фазового разделения в зоне плотной упаковки капель дисперсной фазы в системе жидкость—жидкость. Обычно предполагается, что в дисперсном слое переменные, влияющие на коалесценцию капля—капля и капля—поверхность раздела, одни и те же для данного размера капель. На этой основе возможно дать теоретические выражения для времен контакта. Так, уравнение для времени стенания пленки в модели жесткая сфера—плоскость записывается [39] [c.292]


    Поверхность катализатора может уменьшаться в результате объемной и поверхностной диффузии геля в местах срастания первичных частиц, испарения материала одной частицы и конденсации его на другой, а также в результате увеличения числа мест контакта из-за перехода первичных частиц из относительно рыхлой к более плотной упаковке. Суммарный результат структурных изменений в катализаторе будет определяться преобладающим механизмом спекания. [c.54]

    Водяной пар действует на поверхность, а не на всю массу вещества первичных частиц. Поэтому он не может ускорить термическую диффузию в объеме частиц геля, которая определяется лишь температурой паровой обработки, В то же время при действии пара уменьшение поверхности ускоряется, поскольку облегчается перенос вещества путем поверхностной диффузии или путем испарения вещества геля в одном месте и конденсации его в другом. По поверхностно-диффузионному механизму спекание катализатора происходит следующим образом (рис. 25,6). Вещество меньшей из двух соприкасающихся первичных частиц движется по ее поверхности к месту контакта обеих частиц и переходит на большую первичную частицу. В результате этого меньшая частица в конце концов исчезает, а более крупная частица растет. Крупные термодинамически более стабильные частицы поедают мелкие. В случае движения вещества по поверхности исходное взаимное расположение первичных частиц сохраняется, т. е. упорядочения упаковки геля не происходит. Поэтому внешние геометрические размеры шарика катализатора не изменяются. Удельный объем пор катализатора также должен оставаться постоянным, так как независимо от размера первичных частиц общий объем материала шариков катализатора остается прежним. В результате уменьшения общего числа первичных единиц и увеличения их среднего размера уменьшается поверхность единицы массы мате- [c.55]

    Таким образом, механизм сводообразования имеет прочную физическую основу — перемещение частиц. Причем для образования статического свода достаточны перемещения частиц свыше 1—3 мкм. Так как объемная усадка слоя и протекающие в нем релаксационные процессы связаны с перераспределением внутренних напряжений и с перемещениями, то можно полагать, что в слоях катализатора возникают своды статического и динамического равновесия. Возникновение и существование последних при истечении из отверстий — доли секунды. Крупномасштабные своды возникают в сравнительно высоких слоях, а мелкомасштабные — как в высоких, так и в низких. Наличие как тех, так и других оказывает неблагоприятное влияние на структуру слоя, изменяя пористость в его объеме. Внутренние устройства в слоях (перегородки, насадки и т. п.) препятствуют образованию крупномасштабных сводов и существенно уменьшают ограждающее влияние стенок. Возникновению мелкомасштабных сводов способствуют способы загрузки, дающие рыхлую упаковку слоя. Способы загрузки, дающие более плотную упаковку частиц, снижают возможность их перемещений, а следовательно, исключают образование мелкомасштабных сводов или уменьшают их размеры. [c.41]

    Отсутствие циркуляции и ограниченная подпитка (рис. 7, б). Этот механизм проявляется при отсутствии циркуляции через трубный пучок. Жидкость может поступать в пучок только сверху и задерживается уходящим из него паром. Ограничение по подпитке создается, когда выходящий пар препятствует смачиванию опускным потоком жидкости всех поверхностей нагрева пучка. Этот механизм более вероятен в больших пучках с плотной упаковкой труб. В одних проходах пучка может возникнуть опускной поток, в других — подъемный, приводя к заметной внутренней циркуляции. [c.409]

    До сих пор рассматривалось такое положение, когда изолированный атом в возбужденном состоянии имеет два, три или четыре неспаренных электрона. К сожалению, нельзя проверить наши предсказания радиального или углового распределения электронов для изолированных атомов, но можно изучить молекулы, образованные этими атомами. Предполагают, что в ковалентных молекулах, в которых неспаренные электроны одного атома становятся спаренными с электронами окружащих атомов, электроны с параллельными спинами находятся как можно дальше друг от друга в соответствии с принципом Паули и принципом неразличимости. В качестве примера рассмотрим атом неона, у которого есть четыре пары электронов во внешней оболочке. Леннард-Джонс на основе принципа Паули предсказал, что наиболее вероятной конфигурацией каждой четверки электронов с параллельными спинами является тетраэдр. Далее, если пренебречь кулоновским отталкиванием, то не будет корреляции между двумя конфигурациями электронов с противоположными спинами, и их можно будет равновероятно найти в любой ориентации друг относительно друга. Однако следует напомнить, что у электронов с противоположно направленными спинами существует определенная тенденция к стягиванию, которому препятствует кулоновское отталкивание корреляция зарядов). Метода проверки такого взгляда на атом неона нет. Однако интересно отметить, что Ме, Аг, Кг и Хе имеют в твердом состоянии структуру с плотной кубической упаковкой, подобной тетраэдрическому метану, а не плотную гексагональную упаковку, найденную для гелия, хотя ранее для всех инертных газов последняя структура ожидалась в предположении, что их атомы должны быть сферическими . Теперь рассмотрим метан, в котором углерод может быть гипотетически представлен как с электронной конфигурацией неона. Когда четыре протона присоединяются к С , образуя СН4, притяжение протонов к электронам приводит к совмещению двух независимых четверок электронов, расположенных в вершинах тетраэдров. Так как молекула метана действительно тетраэдрическая, то это предсказание оправдывается, хотя механизм образования молекулы метана проверить нельзя. Суммируя все сказанное, можно считать, что наиболее вероятное расположение п электронов с одинаковыми спинами будет также и наиболее вероятным расположением п пар электронов. [c.205]


    Механизм формирования граничного слоя жидкости на контакте с твердой поверхностью. Поверхностные явления в системе жидкость-твер-дая фаза обусловлены структурой и свойствами монослоев, структурномеханическими свойствами граничных слоев жидкостей, находящихся в контакте с твердыми телами, адгезией жидкостей к твердым поверхностям и другими показателями. Адсорбция молекул жидкости на поверхности твердого тела определяет особенности структуры ГС, характер упаковки макромолекул в ГС, отсюда - молекулярную подвижность, релаксационные и другие явления. [c.30]

    Исследования ориентации и упаковки молекул ПАВ и растворителя в черной пленке весьма важны для выяснения причин устойчивости черных пленок, для понимания механизма транспорта ионов через них, взаимодействия бислоев с белками и т. д. Пока в этом направлении сделаны только первые шаги. [c.122]

    Начиная с середины XX в,, в нашей стране развернулись работы по проектированию, изготовлению и применению гидро- и пневмоприводов почти во всех отраслях народного хозяйства. Сейчас гидроприводы успешно используют в транспортных, горных, строительных, дорожных, путевых, мелиоративных и сельскохозяйственных машинах, на судах, летательных и подводных аппаратах, в станках, подъемно-транспортных механизмах и автоматических линиях на машиностроительных, металлургических, химических и других предприятиях. Пневмоприводы преимущественно применяются в производствах с повышенным уровнем запыленности, температуры и пожарной опасности (деревообрабатывающее, литейное, сварочное, кузнечно-прессовое, нефтеперерабатывающее). Эффективность пневмоприводов проявляется при автоматизации вспомогательных операций (местные перевозки, кантование, фиксация и зажим деталей, сборка узлов, упаковка готовой продукции). [c.4]

    Обсуждение механизмов влияния никеля и хрома будет проведено ниже, здесь важно отметить одну интересную особенность. Оказывается, что описанное выше поведение никеля и хрома коррелирует с величиной энергии дефектов упаковки (ЭДУ) аустенита. На рис. 12 показана диаграмма, построенная в работе [73] на основе анализа многочисленных данных о зависимости ЭДУ от состава сплава (и дополненная некоторыми более поздними результатами, например, [74]) . Очевидно наличие на диаграмме минимума ЭДУ, соответствующего содержанию —18% Сг. Проведено много исследований влияния легирующих добавок в этой области, позволяющих минимизировать ЭДУ в различных сериях сплавов, ио такие результаты не обладают большой общностью. Важность [c.67]

    Примерно те же рассуждения применимы и для объяснения четно-нечетного эффекта у карбоновых кислот, хотя конкретный механизм упаковки их молекул в кристаллах иной, а кристаллическая рещетка выглядит, пожалуй, красивее, чем углеводородная. Основная часть молекулы карбоновой кислоты-это та же зигзагообразная цепочка метиленовых групп —СН2—, так что молекулы в кристалле также образуют частокол из параллельных цепочек. Но если на одном из концов такой цепочки находится та же метильная группа —СНз, что и в предельных углеводородах, то на другой расположена карбоксильная группа —СООН. А две такие группы могут притягиваться друг к другу за счет водородных связей гораздо сильнее, чем метильные или метиленовые группы. Поэтому в кристаллах карбоновых кислот молекулы образуют парные слои, в которых они располагаются наклонно относительно плоскости, разделяющей два соседних слоя, причем угол наклона зависит от четности молекулы, т.е. от того, смотрят ли концевые группы СН3 и СООН в одну или в разные стороны относительно оси молекульь Предполагают, что именно разный угол наклона определяет неодинаковую энергию взаимодействия между слоями четных и нечетных кислот. Например, в зависимости от угла наклона цепей между этими группами возможно образование одной или двух водородных связей, как это показано на рис. 27. Липшяя водородная связь, да еще умноженная на огромное число молекул в слое, существенно упрочняет кристаллическую рещетку. [c.106]

    Существуют четкие указания на то, что in vivo (и в концентрированных гелях in vitro) цепочки нуклеосом сворачиваются в спиральные соленоидоподобные образования. Последние в свою очередь организуются в еще более сложные структуры. В метафазных клетках хроматин упакован в специфические структуры, называемые хромосомами. Детали механизма упаковки и конечная структура хромосом — это важные проблемы, которые предстоит рещать следующему поколению биофизических химиков. Необходимо подчеркнуть, что у прокариот, по-видимому, нет хроматина, однако их ДНК тоже уложена в компактные структуры, о которых также далеко не все известно. [c.213]

    Литическая репликация происходит сначала в тета-, а потом в сигма-формах. Упаковка Р1 геномов в головки ведется из конкатемерной ДНК. Реакция идет процессивно, начиная с рос-сайта (pa kage — упаковка), при этом из одного конкатемера нарезается 3—4 генома. Поскольку при каждом акте в головку упаковывается около 100 т.п.н., то последовательно упаковываемые молекулы ДНК имеют концевые повторы (избыточности) разного строения. Механизм упаковки не так строго специфичен, как у фага Л, поэтому в головку с частотой около 10 может упаковаться любой фрагмент бактериальной ДНК. Это является причиной общей трансдукции, которую осуществляет фаг Р1. [c.122]

    Длина линейной ДНК, выделяемой из частиц фага Р1, превышает размер генома на 10 т.п.н. Из-за особенностей механизма упаковки фаговой ДНК ее концы гомологичны. Благодаря Re A-зависимой рекомбинации по участкам гомологии фаговая ДНК после инфицирования клеток циркуляризуется. Равна ли длина кольцевой ДНК размеру фагового генома или превышает его  [c.127]

    Центральной проблемой морфогенеза пикорнавирусов остается механизм упаковки РНК. Данные о том, что ППК обладает N-антигенностью, ставят под сомнение гипотезу трансфигурации, а обнаружение обратимости диссоциации ППК вновь возвращает нас к мысли о том, что эти оболочки являются просто резервуарами для хранения 14 S-субъединиц. [c.240]

    Н ависимо от того, каковы молекулярные механизмы упаковки определенных областей генома эукариот в гетерохроматнн, сам феномен гетерохроматизацин следует отнести к таким регуляторным процессам, которые отличают клетки эукариот от клеток бактерий. Особенность такой уникальной формы регуляции состоит в том, что в данном случае память о функциональном статусе гена хранится в виде наследуемой структуры хроматина и не обусловлена существованием стабильной обратной связи саморегулирующихся белков-регуляторов, которые в ядре могут менять свою локализацию. Неизвестно, действуют ли механизмы такого типа лишь в случае ннактнвацнн больших областей хромосомы или же они могут работать и на уровне одного или нескольких генов. Данные, приведенные ниже, позволяют предположить, что экспрессия отдельных генов часто регулируется близлежащей контролирующей последовательностью и не зависит полностью от общего хромосомного окружения. [c.210]

    Положение о том, что лишь один атом металла принимает участие в образовании я-частицы, не означает отсутствия влияния остальных атомов поверхности. Специфичность металла проявляется в сравнительной легкости образования с- и я-частиц, а его кристаллическая упаковка влияет на природу орбиталей, предоставляемых металлом для образования я-связей. По легкости формирования я-комплексов металлы УП1 группы располагаются в ряд Р(1 Р1 > N1 > КЬ [15]. По мнению Го, Руни и Кемболла [15], образованием и разложением промежуточных я-связанных металлорганических комплексов объясняется каталитическая активность переходных металлов во многих реакциях углеводородов гидрирования, дегидрирования, дейтерообмена, изомеризации, конфигурационной изомеризации и крекинга. Приведенные ниже примеры иллюстрируют распространившуюся тенденцию объяснять механизмы самых разнообразных реакций углеводородов с помощью я-комплексов. Учитывая сказанное выше, можно думать, что в случае бензола более энергетически выгодной, а следовательно, и более вероятной является модель XX. Руни [21] изображает гидрирование бензола как процесс [c.53]

    Характер адсорбции на отдельных кристаллйграфических плоскостях. При образовании защитных пленок может иметь значение не только плотность упаковки плоскости кристалла, но и соответствие кристаллографической структуры поверхности металла и возникающей пленки. При большом несоответствии в пленке возникают механические напряжения, приводящие к ее разрушению. Иногда кристаллографическая ориентация оказывает влияние на механизмы протекания анодного и катодного процессов электрохимической коррозии металлов. [c.327]

    В механике сыпучих тел по аналогии с механикой твердых тел приняты упрощенные модели сплошной среды — упругого и пластичного тела и соответствующие им теории упругости и пластичности. Эти теории базируются па механизме передачи давлений и перемещениях. Основным требованием общей теории упругого равновесия является линейное-соотношение между напряжениями и деформациями, которые определяются законом Гука. Расчетной в такой теории является модель линейно-уиру-того тела. Для точного решения задач требуется знание только двух экспериментальных характеристик — моду.пя линейной деформации (модуля упругости) и коэффициента поперечной деформации (коэффициента Пуассона). Сыпучее тело, как и твердое, при определенных условиях обладает упругими свойствами [24], Возникновение упругих деформаций в сыпучем материале даже при его рыхлой упаковке объясняется не упругим сжатием твердых частиц, а расклинивающим (выталкивающим) эффектом в местах их контакта, т. е. упругостью большого количества звеньев скелета сыпучего тела. Экспериментами показано, что в диапазоне удельных давлений 0,3—0,5 МПа грунты ведут себя как линейпо-деформируемые тела [31, 32]. В [33] показано, [c.27]

    Greer [1—15]. Установка включает систему регулирования температуры расплавленного парафина, подаваемого на розлив (на схеме не показана), цепной конвейер / с формами из нержавеющей стали, холодильную камеру 2, электроподогреватель форм 3, устройство для дозирования парафина в формы 4, механизм для разгрузки форм 5 и конвейер 6 для транспортирования плит с целью упаковки их в картонные короба. [c.215]

    Алмаз был известен в далеком прошлом, широко применяется в настоящем, велики перспективы его использования в будущем. С развитием технЕжи, когда возникла необходимость в новых видах минерального сырья, в частности для обработки камня, металлов, твердых синтетических материалов, алмаз приобрел как бы вторую жизнь. В настоящее время существование всей обрабатывающей промышленности и машиностроения (от создания мощных агрегатов до изготовлешы тончайших механизмов и приборов) практически немыслимо без применения алмазов. Сейчас алмазы очень широко используются как абразивный материал (абразивные порошки, пасты, шлифовальные круги, алмазные пилы, стеклорезы и т.д.), что основано прежде всего на их чрезвычайно высокой твердости. В последние годы все больше привлекают внимание другие исключительные свойства алмаза его, электрические свойства при использовании в качестве полупроводников, высокое светопреломление - в оптических приборах. Находит применение его практическая амагнитность. Алмаз как кристаллическое вещество благодаря плотной упаковке атомов углерода может стать накопителем и хранителем обширной информации. [c.43]

    Концентрация расслаивания Ср тем выше, чем ближе полимеры по химической природе. Если различие в химической природе велико, то расслаивание может произойти и при концентрациях менее 1%. В то же время сильное различие по химической природе, обусловленное наличием полярных функциональных групп, может, наоборот, привести к образованию нерасслаиваюшихся смесей. Близкие по природе полимеры могут иметь столь близкие физические константы, что микрорасслаивание в растворе не переходит в макрорасслаивание и можно прийти к ошибочному выводу об однофазности смеси. Это согласуется с трудностью или даже с невозможностью образования совместных кристаллов в смеси кристаллических полимеров. Предполагается, что требования к максимально плотной упаковке особенно высоки для полимеров, склонных к образованию надмолекулярных структур в аморфном состоянии и в растворах. Поэтому при оценке совместимости и объяснении механизма расслаивания полимерных смесей,помимо энергетического фактора,особое значение приобретает разнозвенность макромолекул ВМС (структурный фактор). Каждая макромо- [c.76]

    Вследствие захвата молекул дисперсионной среды при образовании аморфных частиц и рыхлости их упаковки создаются условия,- при которых молекулы, атомы или ионы, вошедшие в состав аморфной частицы, сохраняют достаточную подвижность внутри этих частиц. Так как образовавшаяся система неравновесна, частицы будут кристаллизоваться, что приведет к уменьшению свободной энергии Системы. Благодаря возникновению кристаллических образований внутри аморфной частицы в ней создаются напряжения, и частица распадается на множество отдельных мелких, но уже кристаллических частичек. Таким образом, размер образовавшихся кристаллических частиц связан не с условием роста их из раствора, как предполагалось ранее, а с кристаллизацией при распаде первичных аморфных частиц. Весьма вероятно, что описанный механизм образования новой кристаллической фазы в коллоидных системах имеет очень широкое распространение. [c.231]

    Возможность образования и устойчивость той или иной кристаллической структуры зависят от температурных условий (и давления). Чем ниже температура, тем более вероятны плотная упаковка ионов и высокое координационное число, и. наобо()от, при высокой температуре предпочтительнее им кое координационное число. Это в значительной ме )е влияеп нп направление превращения и его механизм. Рассмотрим слсд ю щий п )имер. [c.228]

    Ммекулярный механизм транспозиции может быть различным у разных мобильных элементов, поэто.му лучше всего рассмотреть его на конкретных примерах. Достаточно изучен в этом отношении бактериофаг Ми, являющийся, по сути дела, необычным транспозо-ном. Этот умеренный бактериофаг встраивается в произвольный, участок хро.чосомы бактерии-хозяина. Если происходит индукция профага и начинается его вегетативное развитие, то он размножается, не вырезаясь из хромосомы, за счет повторных актов репликативной транспозиции. Вырезание фаговой ДНК из бактериальной происходит лишь при упаковке в фаговые частицы, когда репликация уже прошла. При репликации фага Л и транспозиция происходит с очень высокой частотой, поэтому именно эта система изучена лучше других. [c.115]

    Для контроля литья, слитков, узлов и механизмов в процессе сборки и эксплуатации, упаковки сыпучих веществ и т. п. применяют механизированные и автоматизированные установки с непосредственным наблюдением изображения, где в качестве преобразователя ионизирующих излучений используют флуоро-скопические экраны и ЭОП (рис. 156, а—г). При контроле изделий массового и крупносерийного производства механизируют все основные операции контроля крепление, сканирование, маркировку и фотографирование дефектных мест, съем и транспортирование деталей. [c.241]

    В других гелеобразующих полисахаридных системах могут быть иные (и весьма разнообразные) механизмы связывания макромолекул в узлах сетки однако характер требований к ковалентной структуре, соблюдение которых обеспечивает выполнение обусловленных гелеобразова-нием функций, оказывается сходным. Так, например, в гелях альгинатов, т. е. солей альгиновой кислоты, построенной из 1—>4-связанных остатков р-В-маннуроно-вой (23) и а-Ь-гулуроновой (24) кислот, узлы образованы кристаллитами — правильным образом упакованными участками разных молекул с регулярной структурой, подобными по упаковке кристаллическим участкам элементарных фибрилл целлюлозы. Как мы уже говорили, цепи альгиновых кислот построены по блочному принципу в них чередуются сегменты регулярной структуры из остатков одного типа с сегментами, в которых остатки обоих типов распределены более или менее случайно. Регулярные участки, подобно целлюлозе, имеют стержнеобразную конформацию и потому способны ассоциировать в кристаллиты, а для нерегулярных участков правильная упаковка невозможна, и они образуют в сетке промежутки между узлами. [c.170]

    КОНОПЛЯНОЕ МАСЛО, см. Растительные масла. КОНСЕРВАЦИбННЫЕ МАСЛА, нефтяные масла с антикорроз. присадками (1-3% по массе), предназначенные для предотвращения коррозии внутр. полостей разл. механизмов (цилиндров двигателей внутр. сгорания и компрессоров, редукторов, масляных и топливных систем, узлов подшипников и др.) при их длит, консервации. К.м. применяют также для наружной консервации металлич. изделий, защищенных от прямого контакта с атмосферой упаковкой, чехлами, кожухами и др. В качестве присадок наиб, распространены сульфонаты Ва или Са, окисленные петролатум, нитрованные нефтяные масла. Разновидность К.м.-т. наз. рабоче-консервационные масла, получаемые добавлением спец. присадок (20-25%) в рабочие, или стандартные, масла (газотурбинные, моторные, трансмиссионные) при эксплуатации механизмов. Использование этих масел обеспечивает работу, консервацию и послед, ввод в действие механизмов без расконсервации с заменой на рабочие масла только при очередной полной смене. [c.454]


Смотреть страницы где упоминается термин Механизм упаковки РНК: [c.418]    [c.216]    [c.219]    [c.210]    [c.16]    [c.82]    [c.16]    [c.119]    [c.239]    [c.117]    [c.425]    [c.74]    [c.99]    [c.215]    [c.273]    [c.508]    [c.40]   
Смотреть главы в:

Вирусология в 3-х томах Т 2 -> Механизм упаковки РНК




ПОИСК







© 2025 chem21.info Реклама на сайте