Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы и аппараты осушки газов

    Глава 2. Процессы и аппараты осушки газов. .... [c.3]

    ПРОЦЕССЫ И АППАРАТЫ ОСУШКИ ГАЗОВ [c.55]

    При падении пластового давления в процессе разработки месторождений повышается влажность газа, поступающего на осушку. Для обеспечения требуемой глубины осушки газа на действующих установках приходится прибегать к регулированию технологического режима работы аппаратов. К наиболее легко управляемым параметрам (в определенных пределах) относятся скорость циркуляции и концентрация гликолей. [c.144]


    Сущность процесса осушки газа жидкими поглотителями заключается в следующем (рис. 70). При контакте абсорбента с газом в цилиндрическом аппарате — абсорбере, в который снизу подается газ, а сверху жидкость — абсорбент, пары воды поглощаются абсорбентом. Внутри абсорбера помещены перегородки (тарелки) для улучшения контакта между абсорбентом и газом. Процесс ведется при температуре около 20 С и давлении 20—60 ат. Сверху абсорбера выходит осушенный газ, а снизу — обводненный абсорбент. Обводненный абсорбент поступает в другой аппарат — десорбер для отгонки воды. Этот процесс проводят при повышенных температурах, но не выше 170° С для диэтиленгликоля и 191° С для триэтиленгликоля, так как выше этих температур гликоли разлагаются. [c.157]

    Наибольшее практическое применение получили периодические адсорбционные процессы в аппаратах с неподвижным слоем адсорбента. Для обеспечения непрерывности осушки газа предусматриваются три или два адсорбера. В первом случае в одном адсорбере проводят адсорбцию, в другом — десорбцию поглош,енного из газа вещества, в третьем — охлаждение адсорбента. При совмещении в одном аппарате циклов регенерации (десорбции) и охлаждения адсорбента устанавливают два адсорбера. [c.287]

    Регенерация гликоля. Для получения концентрированных растворов гликоля, применяемых для осушки газа, необходимо рассчитать процесс регенерации. Любой аппарат для регенерации гликоля по существу является отпарной колонной. Пары, выходящие из кипятильника этой колонны, состоят практически только из воды. Жидкость, находящаяся выше точки ввода сырья, всегда является водой. Чтобы не было потерь гликоля, величина конденсации паров в этой части колонны должна быть достаточно высокой. [c.234]

    В предлагаемом справочном пособии даются достаточно подробные расчеты основных процессов и,аппаратов для очистки, осушки газов и их разделения на узкие фракции или практически чистые компоненты. [c.4]

    Определен ИВ конечных параметров охлаждаемого газа. При проектировании теплообменников смешения, предназначенных для охлаждения не насыщенных паром газов, в том числе пенных теплообменников, необходимо знать параметры выходящего из аппарата газа, определяющие теплосодержание конечного газа — его температуру г и влагосодержание (или относительную влажность ф ). При осуществлении таких технологических процессов, как регенерация, очистка газов кондиционированием, сжижение воздуха, требуется производить увлажнение или осушку газов, для чего также необходимо знать величину конечного влагосодержания газа. [c.106]


    Для осушки газа и извлечения из него тяжелых углеводородов в газовой промышленности широко применяется абсорбционный процесс. Основными аппаратами абсорбционных установок являются колонные аппараты - абсорберы и десорберы, оборудованные круглыми и желобчатыми тарелками. [c.17]

    Фирма Притчард для эффективного использования гигроскопических свойств высококонцентрированных растворов гликолей и уменьшения их потерь с сухим газом разработала схемы одно- и двухступенчатой осушки газа, одна из которых приведена на рис. П1.13. Особенность схемы — наличие в абсорбере двух секций массообмена верхней и нижней. Конструктивно они одинаковы, но на верхнюю тарелку верхней секции — второй по ходу газа — подается более концентрированный гликоль, чем на верхнюю тарелку нижней секции абсорбера. Концентрация гликоля, поступающего в секции, равна соответственно 99,95 и более 99,0% масс. Газ, поступающий в низ абсорбера 1, осушается частично в первой секции и до более низкой точки росы — во второй секции. При этом точка росы газа на выходе из абсорбера может достигать —84,4 °С. Регенерация гликоля в данном случае имеет свои особенности воду из насыщенного осушителя отпаривают в двух аппаратах — в десорбере 5 концентрация гликоля увеличивается до 99%, масс, а в десорбере 5 — до 99,95% масс, за счет подачи отдувочного газа (предварительно нагретого до температуры низа десорбера). Применение двухступенчатой схемы регенерации обеспечивает экономию топлива и снижение расхода отдувочного газа, особенно при осушке газа с высоким влагосодержанием. В процессе фирмы Притчард для предотвращения уноса ТЭГ с осушенным газом предусматривается промывка газа пентаном в верхней части абсорбера (это ограничивает возможности процесса). [c.128]

    В процессе адсорбционной осушки все поглощенные из газа компоненты адсорбируются с различной скоростью. Поэтому в слое адсорбента имеется одновременно несколько адсорбционных зон, которые формируются в начале цикла и перемещаются в адсорбционном слое. Из, всех поглощаемых компонентов в первую очередь поглощаются пары воды. При этом образуется соответствующий адсорбционный фронт, который перемещается в направлении движения газа. В момент, когда этот фронт достигнет последнего по ходу газа слоя адсорбента, содержание влаги в осушенном газе внезапно начинает увеличиваться, что свидетельствует о насыщении адсорбента парами воды и необходимости прекращения процесса адсорбции в этом аппарате. При проскоке влаги сырой газ направляют в другой адсорбер, где до этого регенерировали осушитель. [c.130]

    В процессах переработки пефти вода является нежелательной примесью в углеводородных газах. Осушка газов от влаги требуется в тех случаях, когда газ далее подвергается низкотемпературной ректификации или направляется непосредственно на каталитическую переработку. Удаление влаги необходимо и для предотвращения образования при повышенных давлениях и низкой температуре кристаллогидратов, которые могут забивать коммуникации и аппараты при перекачивании газа. Кристаллогидраты нестабильны и при изменении температуры или давления легко разлагаются на газ и воду. Тяжелые углеводороды образуют кристаллогидраты легче, чем низкомолекулярные так, кристаллогидраты метана образуются при 12,5 °С и 10,0 МПа, а при той же температуре этан образует кристаллогидраты при давлении 2,5 МПа. Кристаллогидраты могут существовать в газе только при наличии избыточной влаги. Таким образом, содержание влаги в газе должно соответствовать [c.65]

    Колонный аппарат для процессов массообмена между газом п жидкостью предназначен для проведения абсорбционных процессов осушки и очистки природного газа (рис. 2.15). [c.47]

    Неочищенный газ подается в сепаратор 5, где отделяются вода и конденсат, затем газ направляется в два адсорбера - А-1 и А-3 (рис. У-7, а), в которых проходит адсорбция влаги сероводорода и тяжелых углеводородов. Очищенный газ через фильтр 72 уходит в газопровод. Часть очищенного газа (5... 15%) направляется в адсорбер А-2 для охлаждения регенерированного цеолита, затем поступает через фильтр б и теплообменник 9 в печь 8. Горячий газ направляется в адсорбер А-4 для регенерации адсорбента. При регенерации из цеолита извлекаются пары воды, сероводород и другие газы. Из адсорбера газ поступает через фильтр 7, теплообменник 9 и холодильник 10 в сепаратор в котором из газа отделяются вода и тяжелые углеводороды. Из сепаратора газ направляется на аминовую очистку от сероводорода. После насыщения цеолита в адсорбере 3 поток неочищенного газа переводится в аппарат 2 и работа установки продолжается согласно циклограмме. Преимущество цеолитовой очистки - одновременно очистка и глубокая осушка газа, процесс исключает возможность попадания каких-либо реагентов в газопровод. Как недостаток следует отметить необходимость установки аминовой очистки газа регенерации от сероводорода. [c.197]


    В ряде производств основного органического синтеза необходима тщательная осушка газов. Это прежде всего относится к различным процессам, осуществляемым при низких температурах (абсорбция, конденсация, ректификация смесей газов). Осушка в этих случаях необходима для предотвращения вымерзания влаги на внутренних поверхностях аппаратов, что может быть причиной нарушения нормальной работы оборудования и даже аварий. Присутствие паров воды в газе недопустимо также при некоторых синтезах, например при работе с комплексными катализаторами, алкилхлорсиланами и т. д. [c.301]

    В данном расчете процесса стадия очистки газа опущена, а потому схема производства серной кислоты, представленная на рис. 27, начинается с осушки очищенного газа концентрированной серной кислотой. После осушки газ направляется в контактный аппарат, образующаяся трехокись (SO3) погло- [c.106]

    На основании опыта эксплуатации установок осушки газа на газо-и нефтеперерабатывающих заводах, газовых и нефтяных промыслах приведены методы расчета абсорбционных и адсорбционных процессов осушки и аппаратов, данные о работе технологического оборудования. Показаны преимущества и недостатки различных технологических схем и конструкций аппаратов, рекомендованы оптимальные режимы процессов. Описаны новые схемы осушки сероводородсодержащих газов, лабораторный контроль процессов осушки, мероприятия по охране окружающей среды. [c.2]

    Для снижения эксплуатационных затрат при глубокой осушке газа был предложен процесс двухступенчатой абсорбции (рис. 4.2). Осушка осуществляется в абсорбере 2, в который раствор гликоля разной концентрации вводится в две точки по высоте аппарата — на 3 и 10-ю тарелки. При использовании триэтиленгликоля в качестве осушителя на 3-ю тарелку абсорбера подается основное количество частично регенерированного триэтиленгликоля концентрации 98,0% (масс.). Этот раствор извлекает из газа большую часть влаги. На 10-ю тарелку подается остальной гликоль, концентрации 99,9 % (масс.) и выше, с помощью которого газ осушается окончательно. [c.44]

    Технологический расчет абсорбера барботажного типа установки осушки газа включает определенные числа тарелок, количества поглотительного раствора, его исходной и конечной концентраций, диаметра аппарата и выбор конструкции тарелок. Степень осушки газа, температура и давление процесса обычно устанавливаются условиями работы газопровода. [c.75]

    На установках адсорбционной осушки газа основным аппаратом является адсорбер. Его работа состоит из трех периодов осушки газа, регенерации и охлаждения адсорбента. Для осуществления непрерывного процесса необходимо, чтобы на установке было как минимум два аппарата в одном проводится осушка газа, в другом — тепловая регенерация адсорбента и затем его охлаждение. Схема такой установки с двумя адсорберами представлена на рис. 9.1. [c.132]

    При осушке газа жидкими сорбентами при положительных температурах контакта достигается точка росы газа только до — 15° С. Этот вид осушки отличается следуюш ими преимуществами по сравнению с осушкой твердыми сорбентами а) стоимость оборудования и эксплуатационные расходы на единицу перерабатываемого газа ниже б) жидкими сорбентами можно осушать газ, содержащий вредные примеси, отравляющие алюмогель или другой адсорбент, и совместить в одном аппарате осушку и очистку газа от вредных примесей в) непрерывность процесса позволяет исключить потери холода в результате периодического разогрева и охлаждения оборудования и дает возможность легко и полностью автоматизировать весь процесс г) все оборудование установки, за исключением поглотительной колонны, может работать при низком давлении. [c.152]

    Характерной особенностью схемы сухой очистки (СО) является исключение из процесса традиционной очистки газа в промывных башнях и осушки его в сушильных башнях. Но в связи с этим появляется опасность засорения контактной массы пылью, если по той или иной причине выйдет из строя электрофильтр. Кроме того, газ после электрофильтра недостаточно подогрет для зажигания контактной массы. По этим причинам внутренний теплообменник целесообразно располагать в аппарате с большим уклоном. Газ, пройдя такой теплообменник, нагреется до нужной температуры и пройдет снизу последовательно через кипящие слои. Пыль, поступающая вместе с газом, будет оседать в нижней части аппарата. [c.122]

    Пример 9-8. Определить длину зоны массопередачи неподвижного слоя цеолита типа NaA (4 = 0,002 м) и рабочую высоту колонного аппарата для процесса глубокой осушки газов (Спр = = 2,94 -10 кг/м ) при следующих условиях высота неподвижного слоя 0,26 м, Со = 0,01 кг/м , скорость паровоздушного потока, отнесенная к полному сечению аппарата, 0,5 м/с, Тнас = 190 мин, Тпр = 110 мин .  [c.400]

    Насадочные колонны широко применяют для проведения процессов абсорбции, десорбции, ректификации, а также для очистки, охлаждения, увлажнения, осушки газов на многих химических предприятиях. Объединенные для проведения технологического процесса в систему из последовательно соединенных колонн эти аппараты являются обычно основным оборудованием при производстве кислот, минеральных удобрений и других продуктве. [c.5]

    Входные линии установок по подготовке газа обычно подвергаются защите ингибитором, применяемым для защиты оборудования добычи газа, и дополнительный ввод ингибитора здесь предусматривается только при выявлении активизации коррозионных процессов. Как правило, ингибиторный раствор постоянно вводят в технологическую линию установок по подготовке газа после сепараторов первой ступени и периодически — в выходные линии. Кроме того, на установках по подготовке газа практикуется применение других специфических методов ингибиторной защиты. Это периодическая (1—2 раза в полугодие) закачка в аппараты и емкости после их отглушения и снятия давления концентрированного ингибиторного раствора, выдержка его в течение не более 1 ч для создания устойчивой защитной пленки и последующего слива. Возможно применение в местах усиленной коррозии, обычно в застойных зонах, обработки в период планово-предупредительных ремонтов концентрированными ингибиторами с пониженными технологическими (низкой растворимостью в водных углеводородных растворах и повышенной вязкостью) и повышенными защитными свойствами или обычно применяемыми ингибиторами в комплексе с загустителями, При осушке газа диэтиленгликолем возможно использование периодического (ежедневного) в небольших количествах (до 10 л) ввода концентрированного ингибитора в котел регенерации. Для предотвращения растрескивания при очистке газа рекомендуется периодический ввод ингибитора в оборудование, контактирующее с регенерированными растворами этаноламинов. [c.180]

    На рис. П1.48 приведена принципиальная технологическая схема абсорбционного процесса, предназначенного для извлечения из нефтяных и природных газов пропана и более тяжелых углеводородов. Согласно схеме исходный газ после предварительной очистки от капельной (свободной) жидкости и механических примесей компримируется, осушается до необходимой точки росы и подается под нижнюю тарелку абсорбера 1 (узлы сепарации, компримирования и осушки на схеме не показаны), на верхнюю тарелку подают регенерированный абсорбент. В этом аппарате из газа извлекают целевые компоненты (Сз+иысшие) и некоторое количество нежелательных углеводородов (метан, этан). [c.203]

    КАПЛЕУЛАВЛИВАНИЕ, выделение из газожидкостных потоков капель жидкости размером более 10 мкм. Капли образуются при форсуночном, ударном и высокоскоростном аэродинамич. распылении жидкостей, вследствие брызгоуноса, возникающего при разрыве пузырей в процессе dapбoтaжa газов через слой жидкости или затопленной насадки в пылегазоулавливающих, выпарных, ректификац., теплообменных и др. аппаратах. Осуществляется с целью предотвращения уноса жидкости в элементах хим.-технол. оборудования, защиты трубопроводов, аппаратов и тягодутьевых устр-в от коррозии, эрозии и зарастания, получения продуктов без примесей, обеспечения полноты осушки газа, повышения экономичности и производительности аппаратов. [c.241]

    Десублимация. В данном процессе конденсированная (твердая) фаза не может стекать с пов-сти твердого тела и толщина ее слоя непрерывно возрастает. Поэтому процесс нестационарный и скорость его постепенно снижается. При проведении К. в глубоком вакууме (средняя длина своб. пробега молекул соизмерима с характерным размером аппарата), напр,, при разделении паровых или очистке парогазовых смесей необходимо учитывать изменения механизма и закономерностей тепло- и массопереноса. Это приводит к изменению условий К. чистых паров и паров, содержащих примеси неконденсирующихся газов. См. также Газов осушка, Газов разделение. Дистилляция, Субли лация, Теплообмен. [c.450]

    Обращает на себя внимание не только оригинальность новых решений, их новизна, а во многих случаях и ирин-циннальная новизна, но и охват практически всех аспектов промысловой газовой технологии, включающей типовые процессы, такие, наиример, как технология и оборудование подготовки сероводородсодержащих газов, осушки природных газов, процессов разделения природных газов, разделения миогокомиопеитпых жидких смесей углеводородов, получения холода, пспользовання струйных аппаратов для сжатия газа и создания вакуума п многого другого. [c.6]

    Несмотря на то что широко распространенные метод и аппаратура для сушки хлора в колоннах с насадкой, орошаемых серной кислотой, показали себя достаточно надежными и удобными в работе, не прекра-ш аются поиски новых аппаратурных решений. Одним из таких направлений является проведенце процесса сушки хлора распыленной серной кислотой. Распыление кислоты может осуш,ествляться механически с помош ью специальных устройств для распыления кислоты, путем ударного слияния потоков [90] или в результате, эффективного смешения потоков газообразного хлора и серной кислоты, поступаюш ей на осушку газа в аппаратах типа эжекторов [91]. В обои х случаях сильно сокраш ается объем аппаратуры для сушки. Особенно компактны аппараты типа эжектора. Однако в них сопротивление прохождению газообразного хлора значительно выше, чем при сушке в аппаратах типа колонн. Насколько дгирокр эти способы осушки найдут применение в хлорной промышленности, будет зависеть от успешного решения вопросов надежности. и экономичйдйти работы Новой аппаратуры. [c.236]

    Описание процесса. Схема типичной установки регенерации растворителя представлена на рис. 12.17. Как и на установках осушки газа, обычно используют два адсорбера, из которых один включен в процесс, в то время как второй находится на регенерации. Регенерацию проводят, пропуская через слой восходящий поток водяного пара низкого давления. Водяной пар выполняет при атом несколько функций а) нагревает слой, снижая его равновесную адсорбционную емкость по отношению к парам адсорбата б) подводит скрытую теплоту испарения десорбируемого растворителя в) играет роль отдувочного агента, тем самым снижая парциальное давление паров растворителя в газовой фазе. Водяной пар вместе с парами десорбированного растворителя выводится из аппарата и направляется в конденсатор. После конденсации растворитель выделяют в чистОхМ виде. [c.298]

    Процесс массообмена между газом и жидкостью в абсорберах осунхки и очистки газа характеризуется высоким давлением (4—12 МПа), наличием в промысловых установках достаточной энергии газа, требованием к минимальному уносу дорогостоящего абсорбента (до 10—15 г на 1000 м газа), большими расходами газа (до 5 — 10 млн. м газа в сутки на аппарат), малыми расходами по жидкости (15 — 25 кг на 1000 м газа) в абсорберах осушки и большими [c.31]

    Одним из методов извлечения углеводородов, образующих газовый конденсат, и паров воды из добываемого природного газа является поглощение их жидким абсорбентом, вводимым в поток газа, поступающего в аппараты промыслового оборудования по физической переработке углеводородного сырья. В разделе 2.2 рассмотрены устройства и способы организации процессов абсорбционного извлечения тяжелых углеводородов и осушки газа. Отмечено, что суще-ствз ет два принципиально различных способа ввод абсорбента непосредственно в поток газа в условиях прямотока, когда газ и абсорбент движутся в одном направлении, и ввод абсорбента против потока газа — противоток. [c.508]

    В последнее время в колонных абсорберах для осушки газа от влаги стали применяться высокоскоростные прямоточные центробежные сепарационно-кон-тактные элементы с тангенциальным вводом газа и рециркуляцией абсорбента (см. рис. 2.17). Эти элементы устанавливаются на горизонтальных тарелках в вертикальных противоточных аппаратах. Подаваемый сверху абсорбент (высококонцентрированный водный раствор ДЭГа) перетекает сверху вниз с тарелки на тарелку. Слой абсорбента на каждой тарелке поддерживается на некоторой высоте, которая, вообще говоря, может быть различной для разных тарелок. Абсорбент через специальную трубку попадает в сепарационно-контактный элемент и истекает из трубки в набегающий закрученный поток газа. В результате жидкость дробится, образующиеся мелкие капли подхватываются потоком и отбрасываются на стенку элемента. В результате в элементе одновременно происходят два процесса массообмен капель с газом и сепарация капель от газа. [c.529]

    Рассмотрим теперь процесс осушки в противоточном вертикальном абсорбере, схематично изображенном на рис. 20.7. Снизу в аппарат поступает газ с массовой концентрацией влаги рос (кг/м при нормальных условиях), сверху — раствор с массовой долей ДЭГа ао. Соответствующие концентрации на каждой [c.532]

    Эффективность процесса, т. е. глубина осушки газа, определяется в основном двумя факторами давлением насыщенных водяных паров над раствором гликоля и достигаемой в процессе осушки степенью приближения к фазовому равновесию. Понижение давления насыщенных водяных паров над абсорбентом обеспечивается применением более концентрированных растворов гликолей или снижением температуры контакта, а степень приближения к фазовому равновесию — увеличением числа тарелок или повышением удельного расхода абсорбента (что вытекает из физической сущности процесса и справедливо для всех вариантов технологических схем и конструкций аппаратов). Практика показала, что с увеличением числа колпачковых тарелок с И до 16 в абсорбере установки комплексной подготовки газа на месторожде1ШИ Медвежье точка росы га а понизилась с —18 до —23 °С. Режим работы абсорбера был следующим давление газа 8 МПа, концентрация диэтиленгликоля 98,8 % (масс.), удельный расход диэтиленгликоля [c.81]


Смотреть страницы где упоминается термин Процессы и аппараты осушки газов: [c.35]    [c.145]    [c.191]    [c.274]    [c.33]    [c.99]    [c.241]    [c.14]    [c.54]    [c.222]    [c.359]   
Смотреть главы в:

Расчеты основных процессов и аппаратов переработки углеводородных газов -> Процессы и аппараты осушки газов




ПОИСК





Смотрите так же термины и статьи:

Осушка

Осушка газов

Процесс осушки



© 2025 chem21.info Реклама на сайте