Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лимонная сть солей

    В качестве стабилизаторов рекомендованы также щавелевая, лимонная и винная кислоты и соли этих кислот (аммониевые или щелочных металлов) в количестве 0,0001—0,005 вес. %. Считают что наиболее целесообразно вводить эти соединения на стадии разделения продуктов реакции, тогда в готовом продукте остаются очень незначительные количества добавок (не более 0,005 вес. %) но достаточные для стабилизации дифенилолпропана. [c.130]


    Для регулировки pH жидкостей тела используются химические буферы. Буферный раствор содержит относительно высокую концентрацию слабой кислоты и ее соли. Например, буферная комбинация лимонной кислоты и ее соли часто используется в коммерческих пищевых продуктах. [c.459]

    Фаолит А стоек в кислотах серной (средних концентраций до 50° С), соляной (все. - коицеитраций до 100° С), уксусной, фосфорной (до 80° С), лимонной (до 70° С). Он также стоек в растворах различных солей (до 100° С), в растворах гипохлорита натрия и кальция (до 100° С), в некоторых органических соединениях (бензоле, формалине, дихлорэтане ири невысоких темиературах), в некоторых газах (хлор, сернистый газ при 90— 100°С). Фаолит нестоек в азотной кислоте, щелочах и плавиковой кислоте. Фаолит Т стоек, кроме сред, указанных для фаолита Л, в плавиковой кислоте и кремнефтористых соединениях. [c.395]

    Кислотная промывка. Для удаления из нефтепроводов нерастворимых солей железа, образовавшихся после кислотной очистки и предотвращения образования гидроокиси железа, при последующей нейтрализации сразу же после кислотной очистки через нефтепроводы прокачивали 320 м 0,1 %-го раствора лимонной кислоты. [c.158]

    В состав растворов для химического никелирования входят 20—30 г/л сернокислого или хлористого никеля, 20—30 г/л гипофосфита натрия и органические добавки (натриевые соли лимонной, уксусной, янтарной кислот, молочная кислота, аминоуксусная кислота и др.), играющие роль буферных или комплексообразующих веществ. Рекомендуемая температура растворов 85— 95 °С. [c.411]

    Электролиты, в которых оксид алюминия практически нерастворим, например растворы слабых неорганических и органических кислот (борной, винной, лимонной) или их солей. Образующиеся в этих электролитах пленки барьерного типа толщиной до 1 мкм почти не имеют пор и являются диэлектриками. Они находят применение главным образом для изготовления электролитических конденсаторов. Толщина [dnn) таких пленок пропорциональна напряжению U на электролизере dnn = aU, где а — коэффициент пропорциональности, приблизительно равный ],4-10- см/В. [c.79]

    Между сильными и слабыми электролитами существуют переходы, поскольку степень диссоциации в значительной мере зависит от концентрации. Переходную группу образуют соли тяжелых металлов, а также некоторые сильные органические кислоты лимонная, щавелевая, муравьиная. Особо слабыми электролитами являются вода, сероводородная, синильная, борная кислоты. Характер электролита зависит от его взаимодействия с растворителем. Чем больше диэлектрическая проницаемость, тем сильнее диссоциирует данная соль. Она может быть в воде сильным электролитом, а в ацетоне и в особенности в бензоле слабым. Напомним, что диэлектрические постоянные воды, ацетона и бензола соответственно равны 80, 21 и 2,3. Эта закономерность, установленная Нернстом и Томсоном в 1893 г., объясняется тем, что со-364 [c.364]


    В 10 мл горячей воды растворите 4 г лимонной кислоты и внесите в раствор 1,7 г бромата калия. После полного растворения соли Б этот раствор прилейте раствор соли церия и перемешайте. [c.315]

    Для получения лимонно-желтого сульфида смешивают сильно разбавленные растворы соли кадмия и сульфида натрия. Оранжево-желтый сульфид кадмия образуется при длительном пропускании сероводорода через взвесь гидроксида кадмия. [c.162]

    По величине высокого отрицательного потенциала алюминий должен легко окисляться как кислородом, так и ионом водорода воды. Но на воздухе вследствие образования чрезвычайно тонкой пленки оксида или гидроксида, плотно пристающей к поверхности металла, он очень стоек даже при сравнительно высокой температуре (100° С). Наоборот, чрезвычайно легко окисляется покрытый ртутью алюминий, так как он образует амальгаму, т. е. раствор алюминия в ртути, атомы же беспрепятственно окисляются кислородом и ионами водорода, так как.слой ртути не дает пленке оксида плотно пристать к поверхности металла. Кислоты типа НН1 легко растворяют алюминий, окисляя его ионом водорода. Концентрированная азотная кислота при обыкновенной температуре пассивирует его, т. е. окисляет только с поверхности, образуя оксидную пленку. Серная кислота с алюминием дает основную соль, точно так же препятствующую его дальнейшему окислению. Разбавленные органические кислоты — уксусная и лимонная, почти не действуя на холоду, окисляют его при нагревании до 100° С. Особо нужно отметить взаимодействие алюминия с раствором щелочи, протекающее очень легко  [c.437]

    Растворите в одной пробирке несколько кристалликов лимонной кислоты (48), в другой — виннокаменной кислоты (66). Нейтрализуйте (по лакмусу) кислоты 10%-ным NH OH (3), затем добавьте немного раствора хлорида кальция (37). В пробирке с виннокаменной кислотой вьшадает осадок тартрата кальция, вторую пробирку с раствором нейтрализованной лимонной кислоты кипятят 2—3 мин при кипячении выпадает осадок. Различная растворимость кальциевых солей позволяет различить виннокаменную и лимонную кислоты. Уравнения проведенных реакций запишите в тетрадь. [c.75]

    Для работы требуется-. Штатив с пробирками.— Тигель фарфоровый.— Термометр Ассмана. — Коническая колба емк. 50 мл. — Капельница с водой. — Коллекционный набор солей всех лантанидов. — Нитрат неодима, кристаллический. — Двуокись церия. — Двуокись свинца. — Сульфат калия, кристаллический. — Катионит КУ-2 или СБС в Н-форме. — Азотная кислота 1 2 и 2 и. раствор. — Соляная кислота, 2 и. раствор. — Лимонная кислота, 5% раствор. — Щавелевая кислота, 2 н. раствор. — Едкое кали, 2 н. раствор. — Карбонат натрия, 2 н. раствор.—Сульфат церия (П1), 5% раствор.—Иодат калия, 5% раствор. — Фторид калия, 5% раствор. — Перманганат калия, 0,5 и. раствор. — Сульфат аммония, 40% раствор. — Перекись водорода, 3% и 10% растворы. — Церий металлический (или мишметалл) порошком. [c.336]

    Получение гидроокиси. В две пробирки налить по 1 мл раствора соли церия (П1) и добавить в одну 3 мл раствора лимонной кислоты, а в другую — 3 мл воды. Прилить в обе пробирки по 1 мл раствора едкого кали. В какой из пробирок не образуется осадка и почему Составить уравнение реакции комплексообразования иона лантанида с лимонной кислотой. Какого цвета получился осадок в другой пробирке Уравнение реакции. Половину раствора с осадком перелить в другую пробирку и прилить немного раствора перекиси водорода. Почему осадок желтеет Составить уравнение реакции. Обратить внимание, что в другой пробирке осадок постепенно желтеет за счет окисления Се(ОН)з в Се(0Н)4-Уравнение реакции. [c.336]

    В коническую колбу налить 10 мл воды и 1 мл раствора соли церия. Перемешать раствор, отлить 2 мл его в пробирку и установить присутствие трехвалентного церия. В колбу всыпать 1 а катионита и в течение 3—5 мин взбалтывать содержимое колбы. Слить небольшой объем раствора из колбы в пробирку и установить присутствие в нем ионов церия. Слить с катионита весь раствор, промыть катионит водой и влить в него 10 мл 5% -ного раствора лимонной кислоты. Содержимое колбы изредка встряхивать. Установить, содержатся ли в растворе ионы церия. Дать объяснение всему проделанному опыту. [c.338]

    Средняя кальциевая соль лимонной кислоты малорастворима в горячей воде, но хорошо растворяется в холодной иоде, что попользуется па практике. [c.475]

    Ионообменную хроматографию используют и для разделения смесей ионов, даже таких близких по свойствам, как лантаноиды растворы солей лимонной, винной и других кислот образуют с отдельными лантаноидами комплексные анионы различной прочности, которые неодинаково сорбируются ионитами и могут быть отделены друг от друга. [c.322]

    Гидроокись галлия растворяется в растворах винной, лимонной, молочной и щавелевой кислот образуются соли, которые могут быть выделены из растворов в виде кристаллогидратов. Все они растворимы в воде, а оксалат и лактат — также и в спирте [38]. [c.233]


    Что аммиакальные соли при накаливании разлагаются, а не просто возгоняются, видно из того, что нашатырь NH 1 в парах разлагается на аммиак NH и хлористый водород H I, как это объяснено в главе 7. Отчасти это видно также из того, что раствор щавелевоаммиачвой соли разлагается, выделяя аммиак уже при — 1°. Слабые растворы аммиачных солей при кипении дают водяной пар с щелочною реакциею от присутствия свободного аммиака, выделившегося из соли. При этом, конечно, действует, вступая в двойное разложение (гидролиз), вода, как видно уже из того, что чем крепче раствор, тем всегда меньшая доля NH удаляется при кипении, а чем более в растворе воды, тем обильнее доля отделяющегося с водяным паром аммиака (Veley, 1905). При таком выделении NH мера его зависит, при прочих равных условиях, более всего от энергичности содержащейся в соли кислоты. Так, NH l и сходные с нею выделяют лишь 0,27о NH при часовом кипячении раствора, содержащего частичный вес соли на литр, тогда как NH IO теряет 2 /д, а янтарная или лимонная соли теряют более 20 /о N№ в час из частично-литрового (или нормального) раствора. Эти отношения, показывающие энергичность (жадность) кислот, сходятся с теми, какие получаются иными способами (напр., по инверсии сахара и по гидролизу уксусрометилового эфира). [c.504]

    В случаях, когда содержание СО2 в исследуемом газе менее 1%, следует пользоваться методом титрования, состоящим в том, что отмеренный объем газа пропускают через известный объем Ва(0Н)2 определенного титра. Гидрат окиси бария связывает СО2 в нерастворимую соль ВаСОз. а непрореагировавший избыток Ва(ОН)а оттитровывают раствором щавелевой или лимонной кислоты в присутствии фенолфталеина. [c.827]

    Лимонная кнслота принадлежит к наиболее распространенным кислотам растений. Она была открыта в соке незрелых лимонов, в котором она находится в очень большом количестве и из которого технически получается через трудпорастворимую кальциевую соль. Она содержится так> е н во многих других пл дa. (в смородине, брус- [c.411]

    Существует процесс защитно-декоративной обработки алюминия под названием эматалирование. Он отличается от способа оксидирования главным образом тем, что обработку ведут в менее агрессивных электролитах, содержащих щавелевую, борную, лимонную кислоты низкой концентравдш и щавелевокислые соли титана, при 40—60 °С. Получаемые пленки имеют молочный оттенок и хорошо окрашиваются. [c.456]

    Определение кобальта. Используют метод дифференциального потенциометрического титрования растнором красной кровяной соли КзРе(СЫ) . Отбирают 20—50 см исследуемо1о раствора, добавляют 100 см воды, 10 см 10 %-го NH4 I, 30 см 25 %-го аммиака и 10 см 30 %-й лимонной кислоты. В стакан с приготовленным раствором помещают два платиновых электрода, из которых один заключен в чрубку с открытым концом. Электроды подключают к милливольтметру, например типа рН-340. Титрование ведут прн перемешивании раствора магнитной мешалкой. Конец титрования определяют по скачку потенциала, Ко щентрацию (г/дм ) кобальта рассчитывают по формуле  [c.131]

    Один из наиболее важных способов классификации веществ в химии заключается в установлении у них кислотных или основных свойств. Еще в начале развития экспериментальной химии было замечено, что некоторые вещества, называемые ки лoтa /lи, имеют кислый вкус и способны растворять активные металлы, например цинк. Кроме того, под действием кислот некоторые красители растительного происхождения принимают характерную окраску например, лакмус, который получают из лишайников (сложное растение, состоящее из водорослей и грибков), при взаимодействии с кислотами приобретает красную окраску. Подобно кислотам, у оснований тоже имеется целый ряд характерных свойств, по которым можно отличить эти вещества. Но если кислоты имеют кислый вкус (кислый вкус лимонов обусловлен присутствием в их соке лимонной кислоты), то основания имеют характерный горький вкус. Кроме того, основания кажутся скользкими на ощупь. Подобно кислотам, основания также изменяют окраску лакмуса, но если кислоты делают лакмус красным, то основания делают его синим. При взаимодействии оснований со многими солями металлов в растворе из раствора выпадает осадок. [c.68]

    Прямым титрованием методом цериметрии можно определить железо (II), олово (II), сурьму (III), мышьяк (III), уран (IV) и другие восстановители, а титрованием по остатку — различные окислители диоксид марганца, диоксид свинца и т. д. Вторым рабочим раствором в цериметрии служит арсеннт натрия (мышьяковистая кислота) или соль Мора. Методами цериметрии определяют также некоторые органические соединения щавелевую, винную, лимонную, яблочную и другие кислоты, а также спирты, кетоны и т. д. [c.290]

    СНСООН Hj OOH ) (2) а выше 175° С образует итаконовую кислоту. Л. к. распространена в природе, содержится в плодах, ягодах, фруктах, особенно в цитрусовых (в лимоне 6—8%), в листьях хлопчатника и стеблях махорки, откуда ее и выделяют. Л. к. применяют в фармакологии, пищевой промышленности, в лабораторной практике, в небольшом количестве употребляют в производстве некоторых алкидных смол. Л. к. и ее соли — цитраты — широко используются в аналитической химии для маскировки, для разделения лантаноидов. [c.147]

    Подготовка опыта не сложна, но сам процесс имеет сложный характер . Бромат калия окисляет лимонную кислоту в кислой среде в присутствии соли церия в аце-тондикарбоновую кислоту  [c.60]

    Выполнение. Раствор лимонной кислоты нагреть примерно до 40— 50° С, а затем высыпать навеску бромата калия и размешать палочкой После растворения КВгОз стакан поставить на лист белой бумаги и внести приготовленную заранее навеску соли церия, а также несколько миллилитров разбавленной серной кислоты. Сразу же начинает происходить чередование цветов желтый - бес1Цветнь[й-)-желтый и т. д. Длится это всего 1—2 мин. Если чередование цветов будет происходить не четко, нужно слегка подогреть раствор. [c.61]

    Большие возможности титрования солей по вытеснению открывает применение кислых растворителей, особенно уксусной кислоты, в которой многие сопи хорошо растворимы. В уксусной кислоте большинство солей карбоновых кислот ведет себя как основания в воде. В связи с этим осуш ествпено потенциометрическое титрование по вытеснению более 400 солей щелочных и щелочноземельных металлов муравьиной, уксусной, лимонной салициловой, бензойной и других кислот. [c.459]

    Изомерное соединение, так называемая кроцео-соль, получается более сложным путем. Это лимонно-желтое кристаллическое вещество, на воздухе значительно менее устойчиво, чем флаво-соль. [c.283]

    Сурьмяноокисный электрод позволяет определять pH в интервале от 2 до 12 включительно, однако он недостаточно точен. Обычная точность его показаний 0,1 —0,2 единицы pH. Сурьмяный электрод нельзя употреблять, если в растворе имеются соли металлов, более благородных, чем сурьма, например Си, В1, НЬ, 5п, Ag и др., так как эти металлы могут контактно выделяться на поверхности сурьмы. Соли сернистой кислоты, сероводород Н2О2, СгОз и другие окислители и восстановители влияют на показания сурьмяноокисного электрода. Так же влияют некоторые органические вещества (например, лимонная кислота). [c.189]

    Ионнообменная хроматография. Метод состоит из двух последовательных операций 1) поглощение катионов из раствора в колонке, наполненной кусочками смолы, предварительно переведенной в Н" -, NHt-, Си +- или форму по мере продвижения раствора по колонке вниз катионы лантаноидов обмениваются с катионами смолы и сорбируются на поверхности по определенным зонам (в каждой из сорбционных зон содержится катион определенного лантаноида) 2) элюирование (вымывание) катионов лантаноидов растворами (элюентами) веществ, образующих комплексные соединения. При элюировании катионы лантаноидов вымываются в определенной последовательности. В качестве комплексообразующих веществ используются лимонная кислота, натриевые или аммонийные соли органических кислот — нитрилтриуксусиой (трилон А), этилендиаминтетрауксусной (трилон Б) и др. Вымывание производится элюентами с определенной концентрацией и при оптимальных значениях pH. [c.279]

    При хроматографическом разделении катионов солей тяжелых металлов в качестве элюирующего раствора часто применяют растворы оксикислот (лимонной, молочной и др.), доведенные добавками аммиака или едкой щелочи до определенного значения pH. В этих условиях ионы хроматографируемой смеси перемещаются в колонке с различной скоростью, определяемой, с одной стороны, срод- [c.120]

    Янтарная кислота [(СН2С00Н)а] присутствует в свободном виде как в растениях, так и в животных. Она содержится также в окаменевшей смоле — янтаре. Ее соли участвуют в важном метаболическом цикле лимонной кислоты (цикле Кребса)— наиболее известном биохимическом цикле, заверш аю-щем окислительное расщепление белков, липидов и сахаридов с помощью ацетилкофермента А на диоксид углерода. В этом цикле участвуют также следующие кислоты  [c.183]

    Лимонная кислота в большом количестве содержится в плодах цитрусовых, вырабатывается с помощью микроорганизмов, например Aspergillus niger, на растворе сахарозы (патоки). Она используется в пищевой промышленности (при производстве фруктовых сиропов и различных напитков) соли лимонной кислоты применяются в гематологии (препятствуют свертыванию крови) и в пищевой промышленности. [c.184]

    Лимонная кислота широко распространена в природе, особенно в фруктовых соках. Лимонный сок служит источником промышленного получения лимонной кислоты путем экстракции. Лимонная кислота может дать несколько рядов солей и сложных эфиров, отличающихся положением реагирующей карбоксильной группы. Обладает характерными свойствами а-гидроксикислот, давая комплексы с ионом железа(III), ионом меди(II) (реактив Бенедикта, разд. 7.1.4,Г), превращается в сеответст- [c.240]

    Электрохимическим окислением алюминия в слабых электролитах (водные растворы борной кислоты и ее солей, растворы солей лимонной, янтарной, виннокаменной кислот) удается получить сплошную (непористую) тонкую (не более 1 мкм) и очень плотную оксидную пленку, обладающую достаточно высоким пробивным напряжением. Электроизоляционные свойства такого оксидного слоя обусловили применение алюминия в электролитических конденсаторах, обладаюших весьма высокой емкостью при малых размерах. Диэлектрическая проницаемость оксидной пленки, служащей диэлектриком такого конденсатора, около 10. Более перспективны танталовые конденсаторы (диэлектрическая проницаемость оксида тантала ТэгОз 27). [c.229]

    Реакция с ртутью(И). Цитрат-ион (и сама лимонная кислота) при взаимодействии с катионами р1ути(П) в сернокислой среде в присутствии перманганата калия образу ет белый осадок соли ртути(П) ацетондикарбоновой кислоты  [c.476]


Смотреть страницы где упоминается термин Лимонная сть солей: [c.67]    [c.95]    [c.274]    [c.20]    [c.1204]    [c.94]    [c.389]    [c.309]    [c.485]    [c.188]    [c.262]    [c.334]    [c.590]   
Курс аналитической химии Том 1 Качественный анализ (1946) -- [ c.500 ]




ПОИСК





Смотрите так же термины и статьи:

Лимонен

Лимонит



© 2025 chem21.info Реклама на сайте