Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стационарные фазы

    Хроматографический анализ парафинов проводят при 250— 450°С. Пробу вводят в разделительную колонку, где она распределяется по стационарной фазе, находящейся на носителе, компоненты выводят из колонки газом-носителем — гелием или водородом. В качестве стационарной фазы используют асфальтены, силиконовые масла, каучуки и др. Для идентификации пиков и количественного определения содержания углеводородов в исследуемую пробу вводят индивидуальные углеводороды. На хроматографе удается определить состав парафинов до С55. [c.34]


    Экспериментальное определение коэффициента относительной летучести углеводородов при бесконечном разбавлении экстрагентом а сравнительно легко и весьма точно проводится методом газо-жидкостной хроматографии, когда экстрагент используется в качестве стационарной фазы. Для этой цели может быть использована установка, описанная в работе [10]. [c.670]

    В качестве неподвижной фазы применяют различные высокомолекулярные вещества, так как температура в распределительной колонке может быть относительно невысокой. В этом отношении метод ФЖХ имеет определенные преимущества перед газо-жидкостной хроматографией, для которой обязательным условием является термическая устойчивость стационарной фазы. [c.93]

    Коэффициент распределения представляет собой отношение кон -центрации вещества в стационарной фазе к его концентрации в подвижной фазе. [c.94]

    К настоящему времени получены константы скорости реакции 1-го порядка практически для всех классов органических соединений значения для некоторых из них приведены в табл. VI-4, а для наиболее изученных — фенолов — в табл. VI-5 и VI-6. Существенно, что эта простая модель (по которой скорость трансформации вещества линейно зависит от его концентрации) формально согласуется с экспериментальными данными, даже когда скорость трансформации органического вещества в действительности не зависит от его концентрации, а определяется скоростью развития микроорганизмов. Однако это формальное соответствие характерно только для экспоненциальной фазы роста микроорганизмов в период лаг-фазы и стационарной фазы их развития модель даже чисто формально не соответствует экспериментально наблюдаемой картине. Поэтому при обработке экспериментальных данных соответствующие этим фазам периоды трансформации веществ обычно не учитываются, и количественно оцениваются лишь не имеющие перегиба и плато участки кривых с экспоненциальным снижением концентрации веществ. Однако даже на этих участках кривых модель не адекватна, о чем свидетельствует изменение константы скорости во времени и ее зависимость от начальной концентрации вещества. Следовательно, эта модель и особенно полученные в экспериментах значения константы скорости не могут непосредственно использоваться для расчета скорости самоочищения вод в природных условиях, г [c.151]

    Все стационарные фазы нанесены на шамотную муку. [c.144]


    Коэффициенты селективности некоторых стационарных фаз для разделения гомологических рядов кислородсодержащих органических [c.5]

    Разделяемые гомологические ряды Стационарная фаза  [c.144]

    Хроматограф Цвет-1 с капиллярной колонкой, пламенно-ионизационным детектором и скваланом в качестве стационарной фазы. [c.220]

    Максимальные рабочие температуры некоторых стационарных фаз [c.5]

    В таблицах даны коэффициенты селективности и максимальные рабочие температуры некоторых стационарных фаз. [c.144]

    В таблицах приняты следующие сокращенные обозначения стационарных фаз  [c.144]

    Коэффициенты селективности некоторых стационарных фаз для разделения гомологических рядов кислородсодержащих органических соединений в интервале температур кипения 50—150° С [c.146]

    Разделяемые гомологические ряды Стационарная фаз 1  [c.147]

    Индексы удерживания азоторганических соединений растут с увеличением мо екулярного веса соединений. На величину индекса удерживания влияет степень разветвления молекулы и наличие у атома азота заместителя. Сравнивая индексы удерживания 2,6-и 3,4-диметилпиридинов, видим, что в первом случае индекс удерживания значительно меньше, это можно объяснить наличием в а-положении пиридинового кольца заместителей, которые затрудняют взаимодействие атома азота со стационарной фазой, что к ведет к уменьшению индексов удерживания (табл. 3). [c.104]

    Метод газо-адсорбционной хроматографии (ГАХ) основан на различной адсорбируемости веществ на поверхности твердых неподвижных фаз. В газо-жидкостной хроматографии (ГЖХ) разделение основано на различной растворимости анализируемых веществ в жидкой стационарной фазе, нанесенной на твердый пористый носителЕ). Возможна также комбинация подвижная жидкая фаза — твердый сорбент — жидкостная адсорбционная хроматография (ЖАХ). Вариантами ЖАХ являются тонкослойная и бумажная хроматография. Прн использовании в качестве подвижной и неподвижной фазы жидкости реализуются различные варианты жидкостной хроматографии. [c.289]

    Рассмотрим несколько практических рекомендаций, которые необходимо принимать во внимание при хроматографическом анализе. Правильный выбор стационарной фазы — основной фактор. Кроме того, на оптимальные условия анализа влияют размеры колонки, температура анализа, скорость газа-носителя, количество вводимой пробы. [c.304]

    Распределительная хроматография. В качестве сорбентов в распределительной хроматографии применяются силикагель, целлюлоза, шамотная мука и т. п., на которые нанесена жидкая стационарная фаза. В случае целлюлозы н силикагеля стационарной фазой является, как правило, адсорбированная вода. Процесс распределительной хроматографии принципиально не отличается от многократной экстракции. Элюенты и стационарные фазы должны как можно меньше растворяться друг в друге. [c.48]

    В этом случае стационарной фазой является вода, адсорбированная бумагой, или органическая жидкость, которой бумага пропитана. Иногда бумагу модифицируют, например, обрабатывают уксусным ангидридом. При этом гидроксильные группы целлюлозы [c.50]

    Сорбционные и хроматографические процессы, основанные на использовании эксклюзионных (молекулярно-ситовых) явлений — одно из важнейших современных средств фракционирования. Применение в анализе нефтяных ГАС твердых молекулярных сит (цеолитов, широкопорнстых силикагелей и стекол с узким распределением пор по размерам) ограничено из-за сильного проявления адсорбционных эффектов, которые часто действуют противоположно ситовым эффектам, что ухудшает результаты чисто эксклюзионного разделения в соответствии с размерами и формой молекул [109]. Наибольшее распространение получили методы эксклюзионного разделения па пористых, набухающих в растворителях органических полимерах (пространственно сшитых сополимерах стирола и дивинилбензола, полидекстранах и т. д.) или неорганических макропористых сорбентах с поверхностью, модифицированной прочно сорбированной или химически связанной неполярной органической стационарной фазой [117]. [c.16]

    Применение газоадсорбционной хроматографии (ГАХ) для разделения неуглеводородных соединений, как правило, затруднено из-за высокой адсорбируемости ГАС и необходимости использования недбнустимо больших температур для их десорбции. В связи с зтим в анализе компонентов нефти наиболее часто используются методы газо-жидкостной хроматографии (ГЖХ). Благодаря выпуску обширного лабора стационарных фаз, созданию высокочувствительных универсальных и специфических селективных детекторов [163], легкости варьирования условий проведения процесса эти методы позволяют четко разделять соединения различной химической природы. При этом используются самые малые различия в их свойствах, даже обусловленные оптической изомерией [164, 165]. Подбирая соответствующие стационарные фазы в газохроматографических колонках, можно реализовать любые принципы удерживания (сорбции). [c.21]


    Прн подборе стационарной фазы для хроматографического анализа решающее значение имеют ее полярность и селективность. Эти ПОНЯТИЯ еще четко не определены и трактуются различно. При подборе стационарных фаз приходится руководствоваться качественными соображениями, основанными на представлениях о характере сил взаимодействия. В последнее время при выборе стационарных фаз чаще начинает использоваться термодинамический подход. Поляр но сть стационарной фазы можно оценить ее снособ но-стью к различным вендам межмолекулярных взаимодействий лове-лич,1[не дифференциальной мольной свободной энергии растворения АС. Полярность фазы необходимо оценивать по ряду веществ,специфичных для различных типов взаимодействий. В настоящее время для оценки дисперсионного взаимодействия широко используется метиленовое звено н-алканов. Значение АО для бензола характеризует способность к образованию я-комплексов, бутанол-1—к образованию водородной связи с электронно-донорными связями стационарной фазы. Пентанон-2 — слабый донор электронов и может применяться для характеристики донорно-акцепторных комплексов. Нитропропаи-1 имеет относительно большой дипольный момент /) = 3,6 Кл-м и может выявить способиость фаз к ориентационному взаимодействию. Одновременно он может с рядом фаз давать и донорно-акцепторные комплексы. [c.303]

    К настоящему времени подобраны стационарные фазы, позволяющие разделять методом ГЖХ ГАС практически любого класса и решать самые сложные стрз ктурные проблемы, вплоть до установления оптической конфигурации молекул (например, аминокислот [164], изоирепоидных жирных кислот и их эфиров [269]. Получены необходимые для идентификации экспериментальные данные по параметрам удерживания характерных для нефтей летучих ГАС, в том числе тиолов [270], диалкилсульфидов [271], тиацикланов [272], аминов [273, 274], производных пиридина и хинолина [274—276], свободных жирных [277] и ароматических [278] кислот и их метиловых эфиров, фенолов [279, 280], кето-нов [281], спиртов [282] и т. д. Выведены корреляции между хроматографическим поведением и строением ГАС отдельных типов. Надежность идентификации чисто газохроматографическими средствами можно значительно повысить путем изучения так называемых спектров хроматографического удерживания [283]. На основе характеристик удерживания идентифицирован, например  [c.34]

    Под коэффициентом селективности а стационарной фазы понимают отношение удерживаемых объемов V (дейстнительиых, корригированных, удельных или относительных) [c.144]

    В настоящее время широко [гснользуются также капиллярные колонки. Капиллярные трубки изготовлены из металла нли стекла. Внутренний диаметр капиллярных колонок колеблется в пределах 0,25—0,5 мм, длина от 10 до 200 м. В истинных капиллярных колонках неподвижная фаза находится в виде тонкой пленки на внутренних стенках и не заполняет всего объема. Капиллярные колонки имеют эффективность до 1000 теоретических тарелок на метр длины и в комбииацгиг с масс-спектрометрами позволяют анализировать сложные и многокомпонентные смеси. Нижний температурный предел работы всех колонок ограничивается температурой плавления жидкой фазы. Верхний температурный предел работы колонок в основном ограничивается летучестью жидкой фазы и чувствительностью детектора. Вновь приготовленную колонку обычно необходимо выдержать в течение суток в потоке газа-носителя при температуре, которая на 25° выше максимальной рабочей температуры стационарной фазы. [c.299]

    Показания хроматографа не всегда точны. В зависимости от избирательности стационарной фазы изо- и циклоалканы, а также алкилзамещенные ароматические углеводороды могут образовывать свои пики между пиками н-алканов или совпадать с ними. Иногда парафин предварительно пропускают через колонку с мо-лек) лярными ситами, в которой поглощаются н-алканы, а неад-сорбировавшаяся часть парафина подается на хроматограф. Это дает возможность более точно охарактеризовать состав изо- и циклоалкановой части парафина. Применение препаративной хроматографии позволяет отказаться от перегонки фракций. При препаративной хроматографии достигается высокая степень разделения, но метод этот мало производителен. [c.34]

    На величину удерживаемого объема большое влияние оказывают стерические эффекты в молекуле хроматографируемого ве-ш,ества. Поскольку центром основности пиридинов является азот, всякое затруднение взаимодействия азота со стационарной фазой будет приводить к уменьшению удерживаемых объемов. Такие затруднения возникают при наличии заместителей в а-положении пиридинового кольца. Если в а-пнколине таких препятствий еще нет, то в 2,С-диметил и 2, 4, 6-триметилпиридинах, где заняты оба -положения, появляются стерические препятствия, приводящие к затруднению взаимодействия этих соединений с фазой и уменьшению удерживаемых объемов (рис. 2, точки 5 и 9). [c.101]

    Разработаны многоступенчатые схемы для хроматографического анализа многокомпонентных смесей [65, 66], в частности бензиновых фракций. Трехступенчатая схема [65] включает колонку I ступени с медицинским вазелиновым маслом в качестве стационарной фазы три параллельных колонки П ступени с Р, Р -дицианодиэтилсульфидом и на П1 ступени — колонку с моле- [c.117]

    Чаще пользуются исправленным удерживаемым объемом который представляет собой разность удерживаемого объема вещества и удерживаемого объема газа-иосителя. Соответственно можно определить и исправленное время удерживания /д. Оно равно —1%, где —время выхода из колонки несорбирующегося газа, обычно воздуха. Однако чаще всего приводятся относительные удерживаемые о-бъемы, 1 отп, т. е. объемы, отнесенные к исправленному удерживаемому объему какого-либо вещества, выбранного за стандартное. В качестве стандартных веществ используют н-бутан, изооктан, бензол, нафталин, метилэтилкетон и ряд других соединений. Перечисленные вещества могут применяться на разных фазах и в разных температурных интервалах. При физико-химических расчетах часто используют удельный удерживаемый объем уд, который представляет собой объем удерживания, приведенный к 0° С, начальному давлению газа и отнесенный к единице массы стационарной фазы. [c.291]

    Правильный выбор стационарной фазы зависит от природы анализируемого вещества. Обычно такие вещества, как углеводороды, хорошо анализируются на неполярных фазах и выходят из колонки в порядке возраетанпя их температур кипения. При этом взаимодействие в основном определяется дпсперсиопными силами и жидкая фаза обычно ие является селективной, если иод селективностью колонки понимать ее различие в сиособиости удерживать соедииения разных классов, кипящие при одной температуре. [c.301]

    Таким образом, энергия взаимодействия анализируемых молекул со стационарной фазой зависит от статической поляризуемости дирюльных моментов и потенциалов ионизации. Неспеци([)ические вза имодействия двух атомных молекул развиты для газовой фазы н их применение в газовой хроматографии должно основываться иа теории растворов. Энергия иесиецифических взаимодействий в газо-жидкостной хроматографии лежит в пределах 4—40 кДж/ моль. [c.302]

    С точки зрения представлений о роли межмолекулярных взаимодействий в химии нет растворителей и стационарных фаз, полностью ипертных. Считаются неполярными сквалан, апьезоны и ряд других фаз. Одиако они способны к сильным дисперсионным взаимодействиям. Поэтому к неполярным стационарным фазам следует относить фазы, которые имеют минимум всех типов межмолекулярных взаимодействий, т. е. наименьшую дифференциальную свободную энергию растворения для всех тест-веществ. Энергия всех видов межмолекулярного взаимодействия зависит от температуры, поэтому сопоставлять полярность различных фаз можно только в изотермических условиях сравнением величин А(7. [c.303]

    Для двух веществ и одной стационарной фазы Фг при данной температуре избыточная эгсергия описывается уравнениями [c.304]

    Для изучения механизма реакций перспективно также их исследование в хроматографическом режиме, когда процесс осуществляется непосредственно в условиях разделения реагентов и продуктов реакции. Возможны также кинетические исследования, когда один из компонентов реакции ири.меняется как стационарная фаза. Однако основное применение в химической кинетике газожидкостная хроматография находит как высокочувствительный и универсальный метод анализа сложных и многокомиоиентных смесей. [c.309]

    Важным свойством для бактерий является способность к спорообразованию, т.к. они наиболее устойчивы к различным изменениям окружающей среды. Бактерии рода В. megaterium спорулируют при выращивании в аэробных условиях. Интенсивное спорообразование начинается в стационарной фазе роста популяции вегетативных клеток. [c.86]

    Большое значение в ВЭЖХ имест выбор стационарной фазы. В общем случае прочность удерживания разделяемых компонентов зависит от 270 [c.270]

    Прямое кинетическое подтверждение образования промежуточных соединений и Х2 в катализе гидролиза эфиров N-aцилиpoвaнныx-L-аминокислот получено из анализа кинетики реакции на длинах волн поглощения промежуточных соединений ( 290 нм) [9]. Так, при смешивании раствора а-химртрипсина с метиловым эфиром Ы-ацетил-1-фенилаланина наблюдается быстрое (кинетически неразрешенное) спектральное изменение (по-видимому, образование первичного фермент-субстратного комплекса Х ), за которым следует медленная кинетика образования ацилфермента (рис. 64,а). В стационарной фазе реакции в условиях,, когда расходом субстрата можно пренебречь, концентрация ацилфермента сохраняется постоянной последующий расход субстрата приводит к- исчезновению в растворе промежуточных соединений (рис. 64,6) [9]. [c.198]

    Дальнейшим развитием метода Крейга является метод Мартина и Синджа, представляющий собой очень эффективный метод равномерной экстракции. Его осуществляют в вертикальной стеклянной трубке со стационарной фазой и носителем из инертного материала, пропуская через трубку сверху вниз вначале анализируемый раствор, а затем чистую подвижную фазу. Пленка подвижной фазы, образующаяся в этом случае на носителе, действует как элемент многоступенчатой распределительной батареи. Выходящую подвижную фазу собирают равными порциями и в каждой части определяют содержание разделяемых веществ. При построении зависимости содержания веществ от номера фракции получают характеристическую кривую распределения. Авторы назвали метод распределительной хроматографией. Принципы распределительной хроматографии являются основой хроматографических методов. [c.232]


Смотреть страницы где упоминается термин Стационарные фазы : [c.322]    [c.324]    [c.20]    [c.342]    [c.342]    [c.342]    [c.146]    [c.289]    [c.290]    [c.300]   
Идентификация органических соединений (1983) -- [ c.84 ]




ПОИСК







© 2025 chem21.info Реклама на сайте