Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный вес, методы определения масс-спектрометрический

    Разработанные ранее масс-спектрометрические методы анализа нефтяных фракций дают сведения о их групповом составе и позволяют установить наиболее типичные молекулярные структуры внутри любой группы соединений, рассматриваемой как один тип. Эта задача решается снятием и анализом полученных масс-спектров, сопоставлением качественных и количественных данных масс-спектров индивидуальных соединений и узких фракций со спектрами выделенных из нефтяного продукта концентратов, содержащих в основном определенный тип соединений. Снятие и обработка масс-спектров усложняются по мере утяжеления нефтяного сырья, каким являются изучаемые в данной работе экстракты остаточной нефти. В связи со сложностью состава и широким диапазоном изменения молекулярной массы, с преобладанием высокомолекулярной части масс-спектральный анализ не позволяет так определить количественное содержание групп по определенным структурным признакам, чтобы разница масс-спектров соедине- [c.59]


    Определенные масс-спектрометрически значения потенциалов появления также вызывают сомнения. В вышеприведенном примере (5.8) не учитывалась избыточная энергия, которая может быть обусловлена несколькими факторами. По-видимому, наиболее важные из них следующие 1) молекулярная и электронная структура образующихся ионов лишь предположительна-, 2) предполагается, что энергия активации обратной реакции равна нулю, т. е. равенство ПП = ПИ + Ос-с [см. схему (5.8)] справедливо лишь при этом условии (см. рис. 4.19) 3) ион СНз+ будет регистрироваться в масс-спектрометре при условии распада иона [схема (5.8)] с некоторой измеримой скоростью, т. е. при наличии некоторой избыточной внутренней энергии. Если результаты, полученные масс-спектрометрическим методом, согласуются с данными других методов, то можно полагать, что сделанные допущения удовлетворительны. Когда такое сопоставление невозможно, необходимо помнить о допущениях и рассматривать результаты как сомнительные. Имеется достаточно много примеров такого несоответствия результатов масс-снектрометрических исследований с термохимическими данными, полученными другими методами. [c.205]

    Пользуясь рассмотренным методом, хромато-масс-спектрометрический анализ смесей алкенов можно осуществлять в три стадии 1) компоненты смеси после хроматографического разделения вводятся в масс-спектрометр через байпасную систему (установление молекулярной массы, водородной ненасыщенности, некоторых элементов структуры) 2) компоненты вводятся в масс-спектрометр после прохождения через микрореактор гидрирования нри хроматографировании в токе газа-носителя — водорода (определение углеродного скелета) 3) аналогичный анализ с хроматографированием в токе газа-носителя дейтерия (определение углеродного скелета и положения двойной связи). [c.49]

    Вопросы интерпретации масс-спектров выходят за рамки настоящего руководства и подробно изложены в специальных монографиях [65, 66]. Кратко следует отметить, что в хромато-масс-спектрометрии в настоящее время основным приемом анализа полученной информации является масс-спектрометрическая идентификация, т. е. поиск в больших массивах данных масс-спектров, лучше всего совпадающих со спектрами определяемых соединений, осуществляемый с помощью ЭВМ. Существуют способы предварительной групповой идентификации, т. е. определения на первой стадии анализа масс-спектра гомологического ряда вещества [66] с последующим уточнением его структуры с учетом известных закономерностей фрагментации данного ряда. Однако в хромато-масс-спектрометрии особый интерес представляют методы совместного использования для идентификации как газохроматографических, так и масс-спектрометрических характеристик. Действительно, все типы параметров удерживания, обсуждаемые в разделе III.2.2, могут быть определены в ходе хромато-масс-спектрометрического анализа одновременно с регистрацией масс-спектров. Если в спектре неизвестного вещества регистрируется пик молекулярных ионов, то вычисление так называемых гомологических инкрементов индексов удерживания позволяет уточнять результаты групповой идентификации, что важно для соединений разных классов, обладающих практически одинаковыми закономерностями фрагментации [64]  [c.203]


    В работе Несмеянова [66] описан ряд методов, используемых для определения состава газовой фазы 1) метод измерения скоростей движения молекул 2) метод измерения отклонения молекулярного пучка в магнитном поле 3) метод магнитного резонанса 4) спектроскопический метод 5) масс-спектрометрический метод 6) крутильный вариант эффузионного метода (торсионный метод) 7) метод измерения плотности пара 8) динамический метод. [c.91]

    Все более широкое применение масс-спектрометрия находит при определении полярных, нелетучих и (или) термически нестабильных соединений. В том случае, когда описанные выше методики дериватизации оказываются неприемлемыми, и (или) аналитическая методика не позволяет включить (часто очень сложную) стадию дериватизации, масс-спектрометрический анализ таких веществ можно осуществить только при помощи методов мягкой ионизации (разд. 9.4.2). С точки зрения проблемы выяснения структуры соединений, методы мягкой ионизации имеют тот недостаток, что, хотя молекулярную массу определить достаточно легко, в общем случае не наблюдается значимой фрагментации, позволяющей сделать какие-то выводы о структуре соединений. В этом случае, методы мягкой ионизации следует сочетать с тандемной масс-спектрометрией (разд. 9.4.2). Фрагментацию частиц с четным числом электронов, полученных методами мягкой ионизации, можно провести при помощи диссоциации, вызванной соударениями. [c.302]

    Еще более ценным источником необходимой дополнительной информации служат данные количественного (элементного) анализа, которые в сочетании с определением молекулярной массы позволяют установить брутто-формулу вещества. Классические (химические) методы установления брут-то-формулы теперь все чаще заменяются масс-спектрометрическими, основанными на точном измерении изотопных линий молекулярных ионов или очень точном измерении массовых чисел [c.21]

    Для получения молекулярной формулы из эмпирической необходимо знать молекулярную массу соединения. Определение молекулярной массы описано для газов в разделах 7.2.4 и 7.2.7, для летучих жидкостей в разд 8.3, для растворов в разделах 9.4 — 9.6. Масс-спектрометрический метод обсуждается в разделах 1.9 и 34..9.5. [c.740]

    В период между 1925 — 1930 гг. Сведберг с помощью ультрацентрифугирования произвел определение молекулярных масс различных белков. Одновременно применение других аналитических методов, как, например, электрофореза и различных видов хроматографии, привело к развитию аналитической белковой химии. В 1951 — 1956 гг. Сенгер [20, 21] установил аминокислотную последовательность инсулина. Использованные при этом методы легли в основу систематического определения первичной структуры многих белков. Созданный Эдманом в 1966 г. секвенатор и применение масс-спектрометрии в сочетании с ЭВМ как средством регистрации, обработки и оценки масс-спектрометрических данных привели к тому, что к настоящему времени опубликовано более 15 ООО работ, посвященных определению аминокислотных последовательностей, и установлены первичные структуры более чем для 1000 белков. [c.343]

    Хотя вполне вероятно, что масс-спектрометрический анализ смесей углеводородов в дальнейшем можно будет применять в сочетании с другими методами анализа, например газо-жидкостной хроматографией [44,47), этот анализ является первым важным методом идентификации молекул по осколкам, образующимся при бомбардировке электронами. Определение относительной распространенности изотопов в изотопном анализе основано на измерении интенсивности соответствующих молекулярных ионных пучков. В ходе анализа углеводородов большая часть молекул каждого из присутствующих соединений распадается при бомбардировке электронами, поэтому определение компонентов смеси основано на изучении характера распада, а не на измерении относительных количеств молекулярных ионов. [c.7]

    В разд. 13.2 будет рассмотрено определение молекулярных весов самым точным из всех методов—масс-спектрометрическим.) [c.328]

    Пути распада молекулярного иона и последующие распады осколочных ионов определяются уже строением самой молекулы органического вещества, т. е. набором и последовательностью в нем атомов, групп и связей. Характер масс-спектра достаточно точно отражает строение молекулы и может служить для определения ее структуры. Распад (так называемая фрагментация) включает в себя как гомолитические, так и гетеро-литические разрывы связей, хотя чаще наблюдаются первые. Таким образом, в отличие от других физико-химических методов исследования органических веществ, масс-спектрометрический метод основан на деструкции молекулы, точнее, возбужденного положительного иона, возникающего из молекулы органического вещества под действием удара электрона. Этим самым масс-спектрометрический метод близок к классическим методам установления строения органических веществ путем деструкции молекулы, но в данном случае весь ход деструкции регистрируется сразу и для всего сложного распада нужно менее одного миллиграмма вещества. [c.589]


    Общий недостаток метода применения тяжелых изотопов и их масс-спектрометрического определения заключается в его невысокой чувствительности, обусловленной, главным образом, относительно большим содержанием (около 1 %) природного С. По этой причине в масс-спектре любого органического соединения с десятью атомами углерода уже содержится изотопный пик , имеющий на одну единицу массы больше, чем молекулярный ион интенсивность этого пика составляет 11 % от интенсивности [М]+. В этих условиях присутствие 2 % меченого соединения с одним атомом или С, увеличивающее интенсивность пика иона [М+1]+ до 13%, заметить практически невозможно. Положение облегчается при введении нескольких меченых атомов в том же самом спектре природная интенсивность пика иона [М + 2] + составит только 1 % от интенсивности пика [М]+, так что добавление 2 % метки 2Н2 или можно обнаружить без труда. Однако и в этом случае точность определения невелика. Если такая точность удовлетворяет требованиям эксперимента, то масс-спектрометрия может служить очень удобным методом исследования. Таким образом, этот метод имеет хотя и ограниченные, но очень полезные сферы применения. Например, чувствительности метода масс-спектрометрии достаточно, чтобы вполне надежно определить число введенных в соединение меченых атомов, если полностью меченный в одном или нескольких положениях предшественник удается включить с разбавлением метки не более, чем в 50 раз, Масс-спектрометрия особенно удобна при работе с соединениями, меченными Н, когда полное дейтерирование предшественника обычно не представляет трудностей и когда желательно избежать проявления изотопных эффектов наглядным примером является широкое использование [Ме 2Нз] метионина для изучения процессов С-метилирования. [c.475]

    Метод электронно-стимулированной десорбции, во многом напоминающий метод вторичной ионно-ионной эмиссии, позволяет решать примерно те же задачи. Так, этим методом можно детально изучать адсорбированные слои, формы связей и состояние частиц на поверхности, десорбционные процессы, химические гетерогенные реакции и т. д. Кроме того, в ряде работ масс-спектрометрические измерения дополняются определениями полного ионного тока, потенциалов появления, углового и энергетического распределения вторичных ионов, что дает возможность оценивать эффективное сечение процесса десорбции ионов и некоторые другие характеристики молекулярной адсорбции и хемосорбции. [c.50]

    Использование масс-спектрометрического метода определения молекулярной формулы основывается на возможности написания точной формулы в противоположность соответствующим химическим методам элементарного анализа масс-спектрометр дает молекулярную, а не эмпирическую формулу. Кроме того, масс-спектрометрический метод обладает тем преимуществом, что возможно провести исследование любого типа молекул, независимо от наличия примесей. Действительно, при исследовании смесей при помощи масс-спектрометра можно определить молекулярную формулу более чем одного компонента. Вместе с тем нельзя утверждать, что масс-спектрометрический метод во всех случаях обладает преимуществами по сравнению с другими. К. исследованию различных веществ необходимо привлекать соответствующие методы, и для решения каждой проблемы использовать сочетание различных методов. Например, для масс-спектрометрии часто бывают полезны данные элементарного анализа, облегчающие конечный выбор правильной формулы из нескольких даже в тех случаях, когда исследованию подвергаются смеси. Наряду с элементарным анализом могут быть использованы другие методы. Так, например, присутствие карбоксильной группы можно легко установить по инфракрасным спектрам поглощения неизвестного соединения и исключить все формулы, содержащие меньше двух атомов кислорода. [c.318]

    Хотя масс-спектрометрия довольно редко применяется для количественного определения воды, этот метод может давать достаточно надежные результаты в широком интервале концентраций. Особая ценность масс-спектрометрического метода заключается в том, что он позволяет оценить содержание воды при выполнении полного анализа состава сложных смесей газообразных и жидких веществ. Для анализа достаточно иметь весьма небольшие пробы (около 0,1 мл газа при нормальных условиях или несколько микролитров жидкости). Величину пробы можно еще более снизить, если уменьшить объемы системы напуска масс-спектрометра при этом оказывается возможным анализировать газообразные пробы объемом всего 1 мкл. В масс-спектре воды, полученном при ионизации электронным ударом, преобладающим является пик иона H ЮH+ с массой 18 (молекулярный ион). Образование ионов происходит как непосредственно при электронном ударе, так и при столкновениях образовавшихся первичных ионов с нейтральными молекулами. [c.503]

    Чрезвычайно удобно находить молекулярную массу масс-спектроскопически, хотя масс-спектрометр — слишком дорогой для этого прибор (см гл 3, разд Масс-спектрометрия ) В последнее время сконструированы автоматические приборы для определения молекулярной массы, основанные на законе Генри, которые фиксируют изменение давления пара растворителя при растворении в нем навески исследуемого вещества Масс-спектрометрическим методом значение молекулярной массы определяется с точностью до 1, а в масс-спектрометрах высокого разрешения — с точностью до 0,0001. Остальные способы дают точность 5—10% [c.22]

    При исследовании углеводородного состава нефтяных фракций масс-спектрометрическим методом в расчетах используются величины интенсивности молекулярных и осколочных ионов. Применение для расчетов интенсивностей пнков молекулярных ионов обеспечивает для исследуемых соединений анализ молекулярной формулы H2,i+2, где 2 — коэффициент водородной недостаточности, равный +2 для парафинов и изменяющийся на 2 единицы для каждого нафтенового кольца и каждой двойной связи в молекуле [100]. Наряду с этим метод молекулярных ионов позволяет устанавливать распределе[1ие углеводородов каждого типа ио молекулярным весам, т. е. определять величину п [ЮО]. Аналитические расчеты при использовании пнков молекулярных ионов сравнительно просты и требуют лишь измерения интенсивности соответствующих пиков и определения чувствительности. В отличие от метода молекулярных ионов , метод, использующий осколочные ионы, позволяет получать сведения [c.155]

    Несмотря на аппаратурную сложность масс-спектрометрического метода, с его помощью получают разнообразную информацию о кинетике элементарных реакций. Весьма успешно можно использовать простую систему неколлимированного пересекающегося молекулярного пучка, позволяют,ую. производить определение продуктов первичных реакций фактически при отсут- [c.320]

    Определение относительной распространенности изотопов в образцах водородсодержащих соединений часто проводится иными, не масс-спектрометрическими методами. Разница в химических и физических свойствах, вызываемая замещением атомов водорода дейтерием, настолько велика (в сравнении с другими изотопными замещениями), что могут быть применены методы, чувствительность которых обычно недостаточна для измерения распространенностей других изотопов. Для проведения анализа часто применяется собственно водород, а также соединения, в которых большая часть молекулы представлена атомами водорода, как, например, ВНд, NH3, НаО, СН4. При определении дейтерия, основанном на измерении теплопроводности, используются как Н2, так и ВН3. Этим методом [1857] для концентраций дейтерия в пределах до 2,5% достигается точность определения порядка ЫО %. К недостаткам метода следует отнести зависимость измерения от молекулярного веса всех типов молекул газа, присутствующих в смеси анализируемый газ должен быть свободен от примесей. Для определения содержания дейтерия очень часто применяется метод измерения плотности воды [272, 1824, 1825]. Смеси дейтерированной и обычной воды образуют идеальные растворы с точки зрения их плотности [1974], однако измерения осложняются вариациями в распространенностях и 0. Этот факт требует приготовления эталонного образца воды, свободной от дейтерия. При использовании образцов с весом менее 0,1 г была достигнута точность 0,01%. Описаны также и другие методы [642, 1678], в которых проводилось определение дейтерия. [c.83]

    Разработаны методики масс-спектрометрического анализа сульфидов и сернисто-ароматических концентратов, базирующиеся на новом расширенном наборе аналитических характеристик, которые имеют сравнительно небольшую зависимость от структурных параметров [191]. Так, в характеристические суммы, кроме осколочных ионов с нечетными массами, были включены ионы с четными массами, которые следовало бы учитывать, поскольку их немало. Кроме того, набор аналитических характеристик был дополнен группами серусодержащих ионов вторичного распада и углеводородных ионов. На основании распределения интенсивностей пиков молекулярных и осколочных ионов возможно определение среднего числа заместителей и распределение алкильных цепей по числу атомов углерода для каждого типа соединений в смеси [192]. Особенно важную роль среди физико-химических методов анализа играет в настоящее время масс-спектрометрия высокого разрешения. Она позволяет разделить пики углеводородных и гетеро-атомных ионов и тем самым, во-первых, увеличить число определяемых типов соединений, во-вторых, значительно уменьшить взаимные наложения пиков разных типов соединений в смеси. [c.53]

    Применяя молекулярную перегонку, хроматографию и экстрактивную кристаллизацию, мазут разделяли на несколько концентратов (н-алкановый, изоалкан-циклановый, моноциклическая ароматика и полициклическая ароматика), средние молекулярные веса которых изменялись от 225 до более 600. Был определен (главным образом масс-спектрометрическим методом) состав этих концентратов. Аналогичному анализу подвергали также продукты, получаемые на малой опытной установке каталитическим крекингом в псевдоожиженном слое пз этих концентратов и не разделенных фракций. Как правило, результаты исследований подтвердили выводы, сделанные ранее на основании опытов, проведенных иа индивидуальных углеводородах. Кроме того, как будет подробнее показано дальше, некоторых из полученных данных позволили частично выяснить один из вопросов, еще не получивших до сего времени удовлетворительного объяснения, — механизм образования полициклических ароматических углеводородов, которые по предположению в результате дальнейших реакций могут превратиться в кокс. [c.141]

    Молекулярную массу можно определить по повышению температуры кипения растворов. Такой метод называется эбуллиоскопическим. О масс-спектрометрическом методе определения молекулярных масс см. с. 64. [c.23]

    В 1950-х годах для определения молекулярного веса стала применяться хорошо освоенная химиками УФ-спектроскопия. Молекулярный вес вычисляется при этом из эмпирического соотношения-между ним и коэ(] фициентом поглощения избранной длины волны в области максимального поглощения. Масс-спектрометрический метод определения молекулярного веса по сути является микро-методом. Молекулярный вес исследуемого вещества практически  [c.311]

    Серуоодержащие соединения нефти являются ценным потенциальным сырьем для нефтехимии. Сложность состава и большое разнообразие этих соединений в нефти требует достаточно надежных методов детального анализа их состава и строения. Одним из наиболее эффективных методов анализа этих соединений является молекулярная масс-спектрометрия. Ранее были разработаны методы масс-спектрометрического анализа смесей сернистых соединений различного состава [1, 2], использовавшиеся для исследования сернистых и сернистю-ароматических концентратов, выделенных из различных нефтей и нефтепродуктов. Однако сложность и разнообразие состава таких концентратов требуют расширения аналитических возможностей этого метода. Желательным является увеличение точности метода при анализе смесей, содержащих кроме сернистых соединений, примеси углеводородов, большая детализация в определении структуры сернистых соединений в узких фракциях. [c.200]

    Частным случаем масс-спектрометрического метода определения структурно-группового состава фракций нефти является метод молекулярных ионов [181]. Определяемое из масс-спектра точное численное значение молекулярной массы и возможное определение элементного состава (в случае серу-и азотсодержащих соединений) позволяет определить брутто-формулу соединения (в смеси), из которой следует определенное значение фактора непре-дельностн, т. е. общее число циклов и кратных связей. Это, в свою очередь, позволяет, например, определить суммарную длину алкильных цепей в циклических соединениях. [c.133]

    С помощью масс-спектрометрии как аналитического метода решают громадное число качественных и количественных задач. Качественные исследования заключаются в определении структуры неизвестного соединения, в частности, природных веществ, метаболитов лекарственных препаратов и других ксенобиотиков, синтетических соединений. Масс-спектрометрический анализ дает важную информацию для определения молекулярной массы, молекулярной формулы или элементного состава и структуры молекул. Масс-спектрометрия является наиболее чувствительным спектроскопическим методом молекулярного анализа по сравнению с другими рассмотренными методами, такими, как ЯМР- и ИК-спектроскопия. Для количественного анализа масс-спектрометрию используют при разработке арбитражных методов и методов сравнения, при количественном определении, например, полихлордибензодиоксинов (ПХДД) и наркотических препаратов. Масс-спектрометрия сегодня развивается очень быстро, охватывая все более широкие области применения, например анализ биомакромолекул (разд. 9.4.4). [c.255]

    Определение молекулярного веса криоскоптеским методом описано в разд. 10.23, а масс-спектрометрическим методом — наиболее точным из всех известных методов — в разд. 13.2. [c.71]

    Метод масс-спектрометрии играет большую роль в определении строения полисахаридов. Его используют не только для идентификации производных, полученных при анализе методом метилирования (см. разд. 26.3.2.1), но и для анализа олигосахаридов непосредственно после перевода их в одно из вышеупомянутых летучих производных [23—25, 44—47] (см. разд. 26.3.2.6). Этим методом может быть определена молекулярная масса небольших олигосахаридов, а также последовательность моносахаридных остатков и положение гликозидных связей, хотя для этого обычно необходимы сведения о природе входящих в состав олигосахарида углеводов [48,49]. Прямая масс-спектрометрическая идентификация олигосахаридов, содержащих более четырех моносахаридных остатков, затруднена, однако была изучена фрагментация полностью ацетилированных гликозидов пентасахаридов [50], а сравнительно недавно описан метод определения О-фруктозных звеньев в полностью метилированных олигосахаридах, который дает информацию о соотношении пиранозных и фуранозных форм и положении гликозидных связей [51]. [c.225]

    Здесь будут рассмотрены пять методов определения молекулярной массы метод Раста (определение депрессии температуры замерзания), парофазная осмометрия, масс-спектрометрия, определение эквивалента нейтрализации и числа омыления. Метод Раста требует крайне простого оборудования. Кроме того, он часто оказывается полезен для тех веществ, молекулярную массу которых невозможно измерить масс-спектрометрически. Результаты, получаемые по методу Раста, в большинстве случаев оказываются лишь приближенными, поэтому описание техники проведения измерений по этому способу здесь не приводится . Осмометрия в паровой фазе и масс-спектрометрия требуют применения очень сложных приборов. Наиболее точные значения молекулярной массы, а часто молекулярная формула и структура вещества, могут быть получены с помощью масс-спектрометрии. Однако молекулярные массы веществ, термически нестойких, имеющих слишком малую упругость пара или не образующих стабильных молекулярных ионов, нельзя измерить с помощью масс-спектрометрии и приходится прибегать к другим методам измерения. С помощью методов титрования определяют эквиваленты нейтрализации (для числот и аминов) и числа омыления (для сложных эфиров). Од-яако эти методы обязательно требуют информации о числе и характере функциональных групп, присутствующих в молекуле данного неизвестного соединения. Поэтому эти методы обсуждаются в соответствующих разделах гл. 6. Осмометрия в паровой фазе нр [c.89]

    Одно нз преимуществ масс-спектрометрнческого метода заключается в возможности аналнзнровать пептиды, не содержащие свободной а-аминогруппы, и устанавливать химическую природу блокирующего остатка. При использовании электронной ионизации метод пригоден для анализа сравнительно коротких (4 — 6 остатков) пептидов. Границы возможностей масс-спектрометрии в изучении структуры пептидов резко расширились с введением более современных методов ионизации. Применив для этой цели бомбардировку ускоренными атомами, Г. Моррис показал, что можно получать масс-спектры пептидов, молекулярная масса которых достигает 3000, причем для определения структуры достаточно I — 5 нмоль вещества, т. е. в таком случае по чувствительности масс-спектрометрический метод не уступает другим методам. [c.73]

    В последние годы все более широкое распространение приобретает масс-спектрометрте-ский метод определения термохимических величин. Описание этого метода можно найти, например, в монографиях Бернарда [90] и Коттрелла [255]. В результате масс-спектромет-рических исследований измеряются потенциалы появления и ионизации, а также интенсивности токов образующихся ионов. Если в результате электронного удара происходит разрыв связи в молекуле, то найденные экспериментально потенциалы появления и ионизации позволяют вычислить энергию диссоциации этой связи. При этом необходимо знать энергию электронного возбуждения и кинетическую энергию осколков молекулы. Во многих случаях, однако, отнесение измеренного потенциала появления иона к конкретному процессу вызывает затруднения. Для вычисления энергии диссоциации связи необходимо также знать температуру, при которой происходит диссоциативная ионизация. Как показали Тальрозе и Франкевич [407], в ионизационной камере масс-спектрометра с источником типа Нира между стенками камеры и газом достигается температурное равновесие. Учитывая это обстоятельство, при пересчете результатов масс-спектрометрических работ, в которых температура молекулярного пучка специально не оговорена, в Справочнике принималось, что процессы диссоциативной ионизации протекали при температуре ионного источника. Температура стенок ионного источника приближенно принималась равной 500° К- [c.157]

    Следует отметить, что при количественном определении примесей масс-спектрометрическим методом требуется уделять особое внимание напускной системе и методу точного измерения давления. Это необходимо потому, что введение внутреннего стандарта не всегда бывает возможным, а изменение давления может привести к большим ошибкам. По этой причине также необходимо иметь молекулярный поток газа из напускной системы в ионоисточник, так как в этом случае нет разделения газовой смеси по плотности. Напускная система и метод получения молекулярного потока, применяемые нами, описаны ниже. [c.97]

    Суворов [65] предлагает несколько ин>то классификацию методов 1) статические методы, когда изучаемая система находится в замкнутом объеме при определенной температуре 2) квазистатические методы, когда изучаемая система сообщается с внешней средой, но предусмотрены меры, ограничивающие диффузию пара из системы (сюда входит и метод точек кипения) 3) динамические методы (метод струи) 4) кинетические методы, когда сведения о давлении пара получают на основе представлений кинетической теории газов (методы Лэнгмюра, эффузии Кнудсена, торсионный, эффузионно-торсионный) 5) методы переноса 6) масс-спектрометрические методы 7) метод анализа пара в молекулярном пучке . 8) методы изотопного обмена 9) спектральные методы. [c.62]

    Метод определения упругости паров при низких температурах использовали Тикнер и Лоссинг [2023, 2025]. Они проводили измерения для метана, этана, пропана, бутана, изобутана, пропилена и бутена-1. При этих измерениях образец находился в резервуаре, соединенном с ионизационной камерой через молекулярный натекатель, чтобы обеспечить пропорциональность между давлением в резервуаре и в ионизационной камере. Для создания давления около 40 (X образец поступал в основной резервуар из небольшого дополнительного, где он находится в равновесии со своим паром. Тикнер и Лоссинг [2023[ нашли при исследовании пропана, что для давления ниже 1 мм рт. ст. все ранее опубликованные значения были выше тех, которые получены масс-спектрометрическим путем, и это отклонение возрастало с уменьшением упругости пара. Они приписали это наличию примесей, более летучих, чем пропан, и вызывавших ошибку при других методах измерения. [c.489]

    За время, прошедшее с момента выхода в свет книги Введение в масс-спектрометрию органических соединений , возросла роль масс-спектрометрического метода в исследованиях, проводимых в различных областях органической химии. В настоящее время свыше 3/4 масс-спектрометров, выпускаемых во всем мире, используются химиками-органиками. Выявились новые тенденции в развитии молекулярной масс-спектрометрии, характеризующиеся комплексным использованием высокоэффективных методов разделения и машинной обработкой результатов измерений. Сочетание хроматографии с масс-спектрометрией высокого разрешения и электронновычислительной техникой привело, по существу, к созданию нового метода, обеспечивающего получение исчерпывающей информации об исследуемых объектах. В настоящей монографии мы попытались отразить этот новый подход к изучению строения органических соединений, определению состава их смесей. В отечественном приборостроении эти тенденции нашли [c.3]

    Мак-Лафферти указывает, что наибольшим препятствием к однозначному определению молекулярной структуры масс-спектрометрическим методом служит возможность перегруппировки в процессе ионизации. Он различает два типа перегруппировок — случайные и специфические. Процесс ионизации был рассмотрен с позиций теории переходного состояния. При этом Филд и Франклин указывали, что энергия акгивации разложения или перегруппировки Л1олекулярного иона мала по сравнению с энергией активации разложения или перегруппировки нейтральной молекулы и что скорость перегруппировки зависит от энергии и энтропии активированного комплекса. Случайные перегруппировки происходят, если несколько возможных направлений реакции равноценны по энергии и энтропии, так что образуется несколько перегруппировочных ионов, обычно в небольших количествах. Если благоприятно одно какое-либо направление, как правило, протекает специфическая перегруппировка, и в спектре преобладает перегруппированный ион. Присутствие в молекуле функциональных групп способствует специфической перегруппировке. Для соединений фтора наблюда- [c.276]

    Масс-спектрометрический метод (или метод электронного удара) определения ионизационного потенциала молекулы не может быть применен к перфторпарафинам вследствие неустойчивости молекулярных ионов. Метод электронного удара зависит от точного нахождения точки, в которой энергия ионизирующего электронного луча как раз достаточна для отрыва электрона от молекулы. Этого добиваются, понижая ионизирующее напряжение до тех пор, пока ионный ток не сделается пренебрежимо малым. Шкалу напряжений прибора всегда калибруют при помощи газа, потенциал ионизации которого заранее точно определен спектроскопическим методом. Чаще всего для этой цели пользуются криптоном и аргоном. Оценку потенциала ионизанли производят, измеряя интервал напряжений между исчезновением ионного тока, вызванного ионизирующим газом, и исчезновением тока, обусловленного исследуемыми молекулами. [c.279]

    Сделаны попытки определения интенсивности молекулярного потока из камеры Кнудсена помимо масс-спектрометрического, вторым независимым методом. Так, устанавливали охлаждаемый коллектор, где количество конденсата определяли взвешиванием, химическим или активационным анализом, а также по изменению частоты кварцевого генератора, пластина которого служила в качестве коллектора 173]. Мак Криэри и Торн [119] сконструировали комбинированную установку, в которой эффузионная камера [c.68]


Смотреть страницы где упоминается термин Молекулярный вес, методы определения масс-спектрометрический: [c.8]    [c.50]    [c.41]    [c.121]    [c.176]    [c.483]    [c.491]    [c.661]    [c.58]   
Установление структуры органических соединений физическими и химическими методами том 1 (1967) -- [ c.47 , c.312 , c.313 , c.314 ]

Установление структуры органических соединений физическими и химическими методами Книга1 (1967) -- [ c.47 , c.312 , c.313 , c.314 ]




ПОИСК





Смотрите так же термины и статьи:

Масс-спектрометрическое определение

Масса определение

Метод определения молекулярной массы

Молекулярная масса

Молекулярная масса определение

Молекулярная масса, методы

Молекулярная метод Метод молекулярных

Молекулярный вес (молекулярная масса))

Молекулярный вес, определение



© 2024 chem21.info Реклама на сайте