Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Моторные топлива получение

    Окисление изопропилбензола (кумола). Изопропилбензол начали получать в промышленном масштабе еще в 1940 г. в качестве компонента моторного топлива. Позднее его стали применять для производства гидроперекиси кумола — промотора при получении синтетического каучука. [c.177]

    При переработке нефти в моторные топлива в качестве побочного продукта получается крекинг-газ. Попутные газы нефтепереработки ранее не использовались для производства водорода. Последнее объясняется тем, что получение водорода из этих газов, содержащих значительное количество непредельных углеводородов и серы, связано с большими трудностями. Кроме того, на нефтеперерабатывающих заводах ранее не было потребности в дополнительных ресурсах водорода. В связи с расширением масштабов применения гидрокрекинга нефтепродуктов в нефтеперерабатывающей промышленности в последнее время возникла проблема получения водорода на основе собственного сырья — попутных газов нефтепереработки. [c.38]


    Описанные в данной главе методы используются также для оценки эксплуатационных свойств моторных топлив для мало- и среднеоборотных дизелей. Ввиду относительно невысоких требований к качеству таких топлив их испытания ограничиваются определением показателей технических условий и стандартов на топлива. Поэтому пока нет необходимости в создании специальных методов в дополнение к методам, входящим в стандарт на моторные топлива. При существенном изменении сырья, например, при использовании продуктов переработки угля и сланцев, или технологии получения для оценки отдельных свойств моторных топлив (в частности, воспламеняемости, прокачиваемости, коррозионной активности, защитных свойств и др.) могут быть использованы методы, входящие в комплекс квалификационных испытаний топлив для быстроходных дизелей или топлив для судовых газотурбинных двигателей (см. гл. 6). [c.120]

    Основное назначение процесса вакуумной перегонки мазута — получение дистиллятных фракций для установок каталитического крекинга и производства масел. Остаток достаточно глубокой вакуумной перегонки — битум получается здесь не как целевой, но необходимый продукт. Ввиду значительной суммарной мощности установок вакуумной перегонки наибольшая часть дорожных битумов в ряде стран [29], в том числе в США [11], получается именно по этому процессу. В нашей стране использование вакуумной перегонки для получения битумов связывается с углублением переработки нефти при большем извлечении дистиллятов остаток перегонки будет по консистенции соответствовать некоторым сортам битумов. Если же переработка тяжелых дистиллятов в моторные топлива невозможна, то углубление вакуумной перегонки ради получения остаточных битумов нецелесообразно, так как выделен ные дистилляты приходится возвращать в остаточное котельное топливо. [c.33]

    При необходимости физическая переработка газа может быть дополнена химической переработкой, что предполагает включение в схемы завода вторичных процессов переработки газа, таких как пиролиз углеводородного сырья, дегидрирование изобутана и получение высокооктановых добавок к моторным топливам, получение серы из сероводорода и т.д. и используется с целью углубления переработки газа и удовлетворения возрастающих потребностей в этих продуктах. [c.3]

    Альтернативные моторные топлива. Непрерывный рост пот — ребности в жидких моторных топливах и ограниченность ресурсов нефти обусловливают необходимость поисков новых видов топлив, )юлучаемых из ненефтяного сырья. Одним из перспективных направлений являстся получение моторных топлив из таких альтернативных источников сырья, как уголь, сланец, тяжелые нефти и природные битумы, торф, биомасса и природный газ. С помощью ой или иной технологии они могут быть переработаны в синтетические моторные топлива типа бензина, керосина, дизельного топ —. 1ива или в кислородсодержащие углеводороды — спирты, эфиры, 1сетоны, альдегиды, которые могут стать заменителем нефтяного [c.280]


    Высоковязкое моторное топливо, полученное на базе крекинг-мазутов, удается сливать и перекачивать по трубопроводам, используя избыточное давление в цистернах (не выше 0,5 ати по инструкции) и повышенное давление в трубопроводах. Для моторных топлив, полученных из парафинистых нефтей, эта операция невозможна. Здесь при температурах застывания и ниже во всех случаях необходим подогрев. [c.174]

    Алкилирование изобутана этиленом. Алкилирование изобутана этиленом для получения неогексана представляет собой важный процесс производства высокооктанового компонента авиационного моторного топлива, имеющего летучесть, среднюю пс> величине между изопентаном и изооктаном. [c.375]

    Среди производств, основанных на химической переработке нефтяных газов, особо важное значение имеет получение высокооктановых компонентов моторного топлива. Получение этих компонентов должно рассматриваться как неразрывная часть комплексной термической и химической переработки нефти с получением высококачественного бензина главным образом для авиационных двигателей. [c.50]

    Для того чтобы избежать подобных осложнений, происходящих из-за отложения смол, существуют определенные спецификации на максимально допустимое количество нелетучих компонентов. Количество этих нелетучих веществ измеряется сравнительно простым способом, который заключается в том, что проба моторного топлива быстро испаряется при 155° С под струей воздуха, а полученный таким путем остаток взвешивается [3]. Содержание смол (фактических) выражается в миллиграммах смол на 100 мл топлива. [c.300]

    Моторные топлива могут содержать растворимые соединения меди, образующиеся либо в результате контакта нефтепродуктов со сплавами меди в процессах их получения, либо в процессах обработки нефтепродуктов с применением меди. Вредное влияние на стабильность бензина оказывает содержание 1 части меди па 100 ООО ООО частей бензина. К счастью, некоторые вещества, будучи добавлены к бензину, могут образовать с медью так называемые клешневидные соединения и тем самым сводить [c.302]

    Предложена схема двухступенчатой переработки сланцевой смолы для получения моторного топлива и химических продуктов. Гидрогенизат первой ступени, выкипающий до 325 °С, освобождается от фенолов и азотистых оснований, после чего гидрируется во второй ступени [c.40]

    Непрерывный рост потребности в жидких моторных топл№ вах и ограниченность ресурсов нефти обусловливают необходимость поисков новых видов топлив, получаемых из ненефтяного сырья. Одним из перспективных направлений является получение моторных топлив из таких альтернативных источников сырья, как уголь, сланец, тяжелые нефти и природные битумы, торф, биомасса и природный газ. С помощью той или иной технологии они могут быть переработаны в синтетические моторные топлива типа бензина, керосина, дизельного [c.213]

    Установки с движущимся твердым теплоносителем. Их применяют для высокотемпературных эндотермических процессов, когда даже жаропрочные стали недостаточно устойчивы. Эти установки широко применяют для пиролиза углеводородного сырья с целью получения водорода, этилена, бутадиена, моторного топлива и других продуктов. [c.221]

    Поэтому мы лишь кратко изложим строение отдельный компонентов высокотемпературной смолы и посмотрим, каким образом можно рассчитывать "на получение из них светлого моторного топлива. [c.396]

    В качестве примера практического использования ядерных излучений можно привести работу фирмы Галф ойл по получению гексаметил-этана (СНз)з С—С (СНз)з путем облучения заводских газов быстрыми частицами. Этот углеводород имеет высокое октановое число (130)и является прекрасным моторным топливом [84]. [c.73]

    Следовательно, для получения высококачественных моторных топлив из СУН ее необходимо подвергать глубокой гидроочистке с целью удаления до 99% азота и кислорода. Удаление гетероатомов необходимо и с точки зрения сохранения продолжительной работоспособности катализаторов последующих процессов переработки СУН в моторные топлива и химическое сырье.  [c.169]

    Реакция сульфохлорирования алканов впервые была использована в Германии в 1939—1940 гг. для получения заменителей мыла. Продукты реакции сульфохлорирования дизельной фракции моторного топлива (полученного гидрированием угля), содержащие непрореагировавшие углеводороды и продукты хлорирования, были названы мерзолами . Мерзолы действием щелочей перерабатывались в соли сульфокислот ( мерзоляты ), которые смешивались с содой или силикатами и применялись как стиральные порошки [c.60]

    Вовлечение этого бензина в авиабензины Б-91/115 и Б-95/130 нерационально, так как это вызывает чрезмерно большой расход дорогостоящих высокооктановых компонентов. Поэтому для получения моторного топлива с высоким октановым числом и сортностью данный бензин целесообразно подвергать каталитической ароматизации. [c.52]


    Учитывая, что в лигроиновых фракциях локбатанской масляной нефти содержится до 75% нафтеновых углеводородов, представляет большой интерес каталитическая дегидрогенизация указанного лигроина в целях получения высококачественного моторного топлива и газа с большим содержанием водорода (для гидрогенизации), либо индивидуальных ароматических углеводородов для химического синтеза  [c.61]

    Обычно при производстве моторного топлива в качестве сырья используют полную нафту илн только тяжелые ее фракции с температурой окончания кипенпя около 200°С. Октановое число такой нафты повышается при риформинге до 95—102 еди-инц (по исследовательскому методу). Для получения готового топлива этот высокооктановый продукт смешивают с другими продуктами нефтепереработки, диапазон температур кипения которых соответствует бензину. [c.145]

    СеНдСаНз), используемый в производстве синтетического каучука буна 3. Изопроиилбензол (кумол) используется как компонент моторного топлива. Получение бутилбензола возможно, но имеет меньшее значение, так как ресурсы бутенов более ограничены, чем пропена, и температура кипения получаемого продукта слишком высока. В табл. 65 приведены физические характеристики бензола и его гомологов. [c.370]

    В отличие от замедленного коксования термоконтактное коксование (ТКК) яв/лется непрерывным, высокопроизводительным, технологически более универ — са/ьным процессом, позволяющим перерабатывать исключительно разнообразные не1ртяные остатки, такие, как мазуты, гудроны, асфальты, природные битумы (даже угс.льные суспензии) с плотностью 0,94—1,2 г/см и коксуемостью 7 — 50 % масс. Целевым назначением процесса ТКК является получение из нефтяных остатков ди(ггиллятных продуктов, направляемых на последующую каталитическую переработку в высококачественные моторные топлива. [c.76]

    Работы В. Н. Ипатьева, И. Д. Зелинского и С. С. Г[аметкииа по катализаторам гидрирования и дегидрирования заложили основы исследований, которые привели А. А. Баландина, Б. А. Казанского и их школы к созданию методов переработки нефтяных фракций в моторные топлива, получения диенов из углеводородов С4—С5 и др. [c.61]

    Реакция сульфохлорирования алканов впервые была использована в Германии в 1939—1940 гг. для получения заменителей мыла. Продукты реакции сульфохлорирования дизельной фракции моторного топлива (полученного гидрированием угля), содержащие непрореагировавшие углеводороды и продукты хлорирования, были названы мерзолами . Мерзолы действием щелочей перерабатьша-лись в соли сульфокислот ( мерзоляты ), которые смешивались с содой или силикатами и применялись как стиральные порошки. Сульфохлориды могут быть также использованы в кожевенной и текстильной промышленности. Получаемые из сульфохлоридов действием аммиака сульфоамиды используются в промышленности как эмульгаторы, для изготовления отбеливающих средств, как поверхностно-активные вещества при обработке металлов и т. д. [c.55]

    Из цриведенных данных следует, что изосинтез может иметь еначе-ние в первую очередь как процесс получения устойчивого к детонации моторного топлива. Для химической переработки получаемые продукты большого интереса не представляют. [c.126]

    Изомеризация. Хорошо разработанный процесс представляет сОбой каталитическая изомеризация пентана. Точно так же в промышленном масштабе нашла себе применение и изомеризация гексана. Однако с точки зрения производства моторного топлива изомеризация этих углеводородов в процессе каталитического риформинга имеет небольшое значение. Это объясняется тем, что в большинстве случаев октановые числа фракций С 5—С в достаточно высоки и нет необходимости прибегать к каталитическому риформингу этих фракций. Кроме того, они не нуждаются в рифор-мииге ввиду достаточно хорошей приемистости к тетраэтилсвинцу. Однако образование ароматических углеводородов и особенно бензола из фракции С6 требует изомеризации парафиновых углеводородов этой фракции. Объектом глубокого изучения является изомеризация парафинов фракции С,. Эти исследования еще не привели к созданию промышленного процесса, хотя теоретически реакция представляет интерес для повышения октанового числа парафиновых углеводородов фракции С 7. Главное до-стоилство этой операции заключается в получении исключительно больших теоретических выходов высокооктановых изомеров. Однако на практике наличие в продукте нафтеновых и ароматических уг.певодородов, а также тенденция к диспропорционированию между высоко и низкокипящими фракциями значительно затрудняют промышленную реализацию этого процесса. По-видимому, парафиновые углеводороды фракции С. являются наиболее высококипящими из тех, которые целесообразно подвергать изомеризации, так как углеводороды фракций Сз, С и Сщ даже после низкотемвературной изомеризации до равновесного состояния над катализаторами Фриделя-Крафтса неспособны повысить октановое число фракций настолько, чтобы удовлетворить требованиям сегодняшнего дня. [c.165]

    Хотя полимеризация газообразных олефинов в жидкие углеводороды была известна еще 80 лет назад, практический интерес к этому вопросу возник лишь в течение последних 30 лет. Интенсивное научное исследование привело к разработке нескольких промышленных процессов каталитической полимеризации газообразных олефинов нормального строения в ценные жидкие углеводороды, используемые в качестве моторного топлива и для производства авиационного бензина. Последний получается комбинированием процессов полимеризации и гидрогенизации, а также алкилированием изобутана предварительно полученными полимерами. Так, например, во время второй мировой войны комбинированием полимеризации с гидриррванием или алкилированием получали октаны с разветвленными цепями, которые были важными компонентами некоторых сортов высокооктановых авиационных бензинов. [c.186]

    Основное количество метанола расходуется для производства формальдегида. Он также является промел уточным продуктом в синтезе сложных эфиров (метилметакрилат, диметилтерефталат, димсрялсульфат) и применяется как метилирующий агент (получение метиламинов, диметиланилина). Некоторое количество метанола исиользуют в качестве растворителя, но ввиду высокой токсичности его целесообразно заменять другими веществами. Кроме того, метанол рекомендован как компонент моторного топлива, применяется для получения высокооктановой добавки к топливу (метил-грег-бутнловый эфир) и рассматривается как перспективный промежуточный продукт для сннтеза углеводородных топлив, низших олефинов и других веществ (вместо их прямого синтеза из СО п Н2). [c.527]

    Несколько иная теория детонации предложена Кингом (King [183]) предполагается, что детонационное горение происходит в отсутствие пламени на поверхности маленьких частичек углерода, полученных пиролизом углеводородов топлива или смазочного масла, или в результате внезапного охлаждения пламени богатых смесей. Было показано, что введение в газообразное моторное топливо графитовой пыли вызывает детонацию. Некоторые доказательства в пользу этой версии былн получены наблюдениями Миллера [184], который показал с помощью высокоскоростной фотографии пламени в двигателях, что при начале детонации [c.412]

    В настоящее время каталитический риформинг является одним из наиболее распространенных вторичных процессов нефтепереработки и установки каталитического риформинга почти обязательное звено нефтеперерабатывающих и нефтехимических производств. По данным [15] в промышленно развитых странах в 1984 году доля каталитического риформинга к прямой перегонке нефти на нефтеперерабатывающих заводах Японии составила 10,2 %, в Великобритании — 16,0 %, в ФРГ — 16,3 %, в Канаде — 18,3 %, в США — 22,5 %. Это обусловлено как постоянно возрастающим спросом на высокооктановые моторные топлива, так и увеличивающимся потреблением ароматики в качестве сырья в нефтехимической, фармацевтической, лакокрасочной и других отраслях промышленности. Бензол, толуол, ксилолы, другие индивидуальные ароматические углеводороды являются ценным сырьем для получения капролактама, полиуретанов, пластмасс, смол, моющих средств, красителей, лекарственных веществ, растворителей в производстве лаков, красок и других веществ. [c.3]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]

    Каменноугольная смола заключает от 5 до 10% нафталина. При гидрировании его можно рассчитывать на получение гидрюров, способных быть моторным топливом. [c.404]

    Хлористый метил применяется в больших количествах в качестве хладагента и растворителя при производстве бутидкау-чука. Он используется также для производства силиконов и метил-целлюлозы. На реакции метилирования хлористым метилом три-метилэтилена основано получение компонента моторного топлива 2,3,3-триметилбутена (триптена). Хлористые алкилы могут быть использованы также в различных процессах алкилпрования для получения моющих средств и присадок к смазочным маслам. [c.124]

    Гидроформинг. В основе процесса гидроформинга лежат реакции дегидрирования и деметилирования. Процесс применялся еще до второй мировой войны для получения моторного топлива, добавок к авиационному бензину и нроизводства толуола. Процесс дает продукт со средними октановыми числами и эффективен только для переработки высококипящих фракций углеводородов (Сэ и выше). Гидроформинг проводится в присутствии алюмомо-либденового катализатора при температуре 500—550°, давлении 10—20 ат и высоком содержании водорода. В связи с отложением на катализаторе углеродистых соединений активность его быстро снижается. Это вызывает необмдимость периодического ведения процесса с переключением аппаратов на реакцию и регенерацию. Продукты гидроформинга на ректификационных колоннах разделяются на газовую часть, состоящую из водорода, метана и небольшого количества этана и пропана, и жидкую часть, разделяемую в свою очередь на бензин и ароматические углеводороды. [c.155]

    Аналитически исследовано разделение тонкодисперсных суспензий (присадки к моторным топливам) с использованием вспомогательного вещества (перлита), предварительно наносимого на перегородку и добавляемого в суспензию [338]. В анализе принято разделение суспензии с образованием осадка, причем в качестве основных операций рассмотрены фильтрование, промывка и обезвоживание предварительное нанесение вспомогательного вещества объединено с вспомогательными операциями. Оптимизация процесса основана на отыскании минимума стоимости получения фильтрата в зависимости от эксплуатационных затрат и стоимости вспомогательного вещества. Дан график (рис. VIII-7) в координатах Тосн — С, где С — стоимость получения 1 м фильтрата. Из графика видно, что вправо от минимума кривая имеет относительно небольшой подъем это позволяет вести процесс при Тосн несколько большем ton без существенного повышения стоимости получения 1 м фильтрата. В связи с этим исследованием надлежит отметить, что использованные в нем закономерности обезвоживания осадка продувкой воздухом найдены для осадков, состоящих из частиц более крупных, чем частицы перлита (с. 271). [c.308]

    Каталитические процессы широко распространены в природе и эффективно используются в различных отраслях промышленности, науки и техники. Так, в химической промышленности посредством гетерогенных каталитических процессов получают десятки миллионов тонн аммиака из азота воздуха и водорода, азотной кислоты путем окисления аммиака, триоксида серы окислением ЗОг воздухом и др. В нефтехимической промышленности более половины добываемой нефти посредством каталитических процессов крекинга, рифор-минга и т. п. перерабатывается в более ценные продукты — высококачественное моторное топливо, различного вида мономеры для получения полимерных волокон и пластмасс. К многотонкажным каталитическим процессам относятся процессы получения водорода путем конверсии диоксида углерода и метана, синтез спиртов, формальдегида и многие другие. Можно утверждать, что для любой реакции может быть создан катализатор. Теория катализа должна раскрывать закономерности элементарного каталитического акта, зависимость каталитической активности от строения и свойств катализатора и реагирующих молекул и тем самым создать необходимые предпосылки для предсказания строения и свойств катализатора для конкретной реакции, указать пути его получения. К описанию скорости каталитического процесса можно подходить, используя основные положения формальной кинетики и метод переходного состояния. При этом целесообразно сперва выделить общие закономерности катализа, присущие всем видам каталитических процессов, а затем рз смотреть некоторые специфические особенности отдельных групп каталитических процессов. [c.617]

    В то время СО и Н2 производили из угля, поэтому полученная смесь углеводородов была названа когазином (от Kohle —Gas — Benzin), а ее бензиновая фракция — синтином (синтетический бензин). В Германии до 1945 г. этот синтез моторного топлива по Фишеру и Тропшу получил значительное развитие, но сейчас во всем мире имеются лишь один-два завода в ЮАР, производящие углеводородное топливо из угля. Однако ведутся усиленные поиски более совершенной технологии, и в связи с нехваткой нефти вполне вероятно возрождение данного процесса. [c.526]

    В условиях снижения объемов добычи нефти важнейшим направлением решения проблемы обеспечения всевозрастающей потребности народного хозяйства в моторных топливах является углубление ее переработки. Осуществление технологии глубокой переработки нефти с получением моторных топлив в количествах, превышающих потенциальное их содержание в исходной нефти, связано с вовлечением в химическую переработку нефтяных остатков, прежде всего мазутов, процессами, рассмотренными в табл. 3.1. Оптимальная схема и набор процессов переработки мазута определяются конкретными условиями, такими, как качество исходной нефти, ассортимент требующихся нефтепродуктов, эконох<ическая целесообразность, наличие резервов мощностей аппаратостроительной индустрии, катализаторных фабрик и т.д. [c.218]

    С 1955 по 1980 г. по методу Фишера — Тропша работал единственный завод в Сасолбурге (ЮАР). Здесь же продолжались работы по дальнейшему изучению и совершенствованию процесса. Эти и другие исследования, выполненные в то же время в других странах, рассмотрены в обзоре [6], содержащем сведения о разработке различных типов реакторов, теоретических и практических аспектах получения различных продуктов, механизме и кинетике реакции, а также о приготовлении и характеристиках используемых катализаторов. Данная глава посвящена главным образом процессу Фишера — Тропша, реализованному фирмой Сасол с использованием катализаторов на основе железа. Описаны также технологические усовершенствования, внесенные за время его эксплуатации, обсуждаются перспективы производства моторного топлива при сочетании процесса Сасол с другими. Следует заметить, что значительная [c.161]

    При спнтезе Фишера — Тропша образуются главным образом углеводороды с нормальной цепью. Это — его особое преимущество перед другими процессами прямого или непрямого превращения угля в моторное топливо. Так, способы прямой гидрогенизации угля, а также способ фирмы Экссон гидрогенизации угля в жидкой фазе путем переноса водорода от растворителя дают продукты с высоким содержанием ароматических углеводородов, являющиеся превосходным сырьем для получения бензина. Но для получения из них дизельного топлива необходимо еще проводить гидрогенизацию в жестких условиях. По способу фирмы Мобил уголь сначала газифицируют и затем из синтез-газа получают метанол, который с помощью специального цео-литного катализатора превращают в высококачественный бензин с большим содержанием ароматических углеводородов. Но дизельного топлива при этом не образуется. [c.197]


Смотреть страницы где упоминается термин Моторные топлива получение: [c.642]    [c.34]    [c.307]    [c.26]    [c.183]    [c.463]   
Химия и технология синтетического жидкого топлива и газа (1986) -- [ c.164 , c.284 , c.285 , c.290 ]

Общая химическая технология органических веществ (1955) -- [ c.107 , c.150 ]




ПОИСК







© 2025 chem21.info Реклама на сайте