Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Использование основных продуктов переработки смолы

    Продукты, получаемые в процессе переработки каменноугольной смолы, находят применение в различных отраслях народного хозяйства. Далее приведены данные об использовании основных продуктов. [c.190]

    Главным методом первичной переработки каменноугольной смолы является ректификация с получением фракций, подвергающихся дальнейшей переработке с получением соответствующих товарных продуктов. Относительно высокая термическая стабильность основных компонентов каменноугольной смолы позволяет широко использовать этот, хорошо освоенный, высокопроизводительный и легко управляемый процесс. Ступенчатое разделение каменноугольной смолы с помощью растворителей [41, с. 255] не имеет особых перспектив. Хотя при разделении смолы растворителями ослабляются вторичные процессы термической конденсации, использование больших объемов растворителей, удаление из них экстрактов и рафинатов связано с существенными энергетическими затратами и потерями, поэтому экономически процесс не имеет особых преимуществ. К тому же при отделении растворителя возможно термическое разложение его. Невелика и селективность холодного фракционирования сложных смесей из-за неизбежного сопряженного растворения компонентов. [c.160]


    Широкое промышленное применение сухой перегонки каменного угля для получения светильного газа и кокса привело к необходимости изучения основных (газы) и побочных продуктов этой промышленности. Уже в 1825 г. Фарадей выделил из светильного газа бензол, конденсировавшийся в газопроводных трубах. Химики вынуждены были заняться проблемой использования больших количеств каменноугольной смолы, при разгонке которой были выделены, кроме бензола, многие другие ароматические углеводороды толуол, нафталин, антрацен, далее ряд фенолов и много других продуктов. При химической переработке продуктов выделенных из смолы, были получены нитросоединения, амины и [c.19]

    Полукоксование углей. В результате термического разложения углей методом полукоксования в основном получают полукокс, смолу и газ. Эти же продукты могут быть получены и из других источников сырья, поэтому масштабы переработки углей методом полукоксования определяются не технологической необходимостью, а главным образом сравнительной эффективностью производства и использования полукокса, смолы и газа. Это положение сохранится и в видимой перспективе. [c.312]

    В публикуемом сборнике основное место в статьях отводится совершенствованию добычи горючих сланцев, в частности, штанговому креплению. Технологические статьи посвящены изучению методов переработки смолы в направлении ее химического использования и получения новых продуктов. В этом же направлении развивается содержание аналитических и методических работ по изучению сланцевой смолы. [c.2]

    Жидкие продукты высокоскоростного пиролиза сернистого мазута более широкого фракционного состава аналогичны по основным показателям смолам, получающимся при пиролизе углеводородного сырья при производстве этилена. Поэтому для комплексного использования всех жидких продуктов пиролиза мазута, очевидно, может быть применен метод, предложенный для переработки смол пиролиза, позволяющий получать бензол, толуол, нафталин, растворители, полимерную смолу и другие продукты [4]. Возможны и другие пути переработки и использования жидких продуктов пиролиза мазута, выкипающих выше 180°С. Разработка таких путей является задачей дальнейших наших исследований. [c.44]

    В настоящее время промышленность органического синтеза использует следующие основные виды сырья природные и попутные газы газообразные и жидкие углеводороды, получаемые при перегонке нефти, крекинге и пиролизе нефтепродуктов твердые парафиновые углеводороды и тяжелые нефтяные остатки коксовый и сланцевый газы смолу коксования, а также сланцевую и древесную смолу и торфяной деготь. Наша страна располагает громадными запасами нефти, природного и попутного нефтяного газа, представляющих собой наиболее экономичные виды сырья для химического синтеза. Использование нефтяного сырья для получения разнообразных продуктов представлено на рис. 63. Кроме того, для органического синтеза в больших количествах используются и неорганические соединения кислоты, щелочи, сода, хлор и т. п., без которых невозможно осуществление многих процессов. Как правило, любое сырье необходимо предварительно очистить от влаги, механических примесей, сернистых соединений и других п])имесей и разделить, выделив индивидуальные углеводороды. Таким образом получают очищенное сырье, из которого дальнейшей переработкой можно получить те или иные полупродукты и целевые продукты. [c.161]


    В начале промышленного освоения гидрокрекинга изучался и развивался в основном процесс при высоком давлении (200 ат и выше). Это обусловливалось использованием его преимущественно для переработки высоко-, ароматизированного сырья — смол процессов коксования и полукоксования каменных и бурых углей и продуктов их термического растворения (проводимого под давлением водорода), а также тяжелых нефтяных остатков. Для таких видов сырья в гидрируемые молекулы многоядерных ароматических углеводородов и гетероциклических соединений, а также в частично гидрированные полициклические соединения требовалось вводить много водорода. Эти реакции интенсифицировали повышением давления, которое при переработке каменноугольных пеков в промышленности достигало 700 ат. [c.51]

    В соответствии с решением майского Пленума ЦК КПСС в течение ближайшего семилетия выпуск пластмасс, в том числе выпуск полимеров, получаемых полимеризацией, будет значительно увеличен. Особенно быстрое развитие должно получить производство полиэтилена, полипропилена, поливиниловых смол. Решающее значение для обеспечения такого быстрого развития промышленности полимеризационных смол приобретает синтез мономеров, преимущественно получаемых из продуктов нефтехимического производства. Для обеспечения плана выпуска пластмасс в 1975 г. необходимо подвергнуть переработке десятки миллионов тонн нефти. Производство виниловых производных (основных типов мономеров) основано на использовании этилена, пропилена, ацетилена и бензола. Основным источником получения бензола становится процесс ароматизации нефти. На схеме XII.1 показаны направления использования продуктов нефтехимического синтеза в производстве основных типов полимеров, получаемых полимеризацией (за исключением производства синтетических каучуков). [c.758]

    Настоящий сборник, как и предыдущие выпуски трудов Всесоюзного научно-исследовательского института по переработке и использованию топлива, содержит основные результаты научно-исследовательских, опытных и опытно-промышленных работ, выполненных институтом в 1961 г. и частично в 1962 г. В сборник включены также некоторые работы, проведенные в других организациях, тематика которых связана с работами института. Значительное место в сборнике отведено статьям, освещающим различные вопросы переработки горючих сланцев и использования продуктов их термического разложения. К этой группе работ относятся статьи но окислению керогена сланцев, исследованию процессов сушки и полукоксования прибалтийского сланца, исследованию состава и разработки методов использования сланцевых смол и дистиллятов, а также статьи по использованию минеральной части сланцев и совершенствованию технологии и агрегатов сланцеперерабатывающих предприятий. [c.3]

    В последние годы положение изменилось. Работами коллектива ВНИИПС было показано, что нейтральные кислородные соединения являются веществами, определяющими успех или неуспех всех способов переработки сланцевой смолы на моторное топливо и другие продукты. Углеводородный материал сланцевой смолы, представляющий собой основной потенциал сланцевого жидкого топлива, как бы окружен кислородным барьером , который ограничивает возможность использования и переработки сланцевой смолы на моторное топливо. Процессы крекинга, ароматизации, обработки хлористым алюминием, серной кислотой и прочие оказались в случае сланцевой смолы совершенно бесперспективными именно из-за наличия в ней нейтральных кислородных соединений. [c.21]

    Из приведенной на рис. 14 схемы (стр. 46—47), в которой показаны природные источники сырья и пути получения алифатических углеводородов, видны некоторые направления использования ацетилена. Основными источниками получения алифатических соединений, в том числе олефинов и продуктов их превращений, а также ароматических и гетероциклических соединений, являются нефть, уголь и продукты их переработки, например смола. Синтезы на основе окиси углерода также позволяют получить парафины, олефины и их простейшие производные, например метанол и высшие спирты. На этих синтезах основано и получение производных углеводородов с длинной цепью углеродных атомов, обладающих моющими свойствами. С открытием синтезов на основе ацетилена возникли совершенно новые направления химической переработки исходных веществ. [c.175]

    Переработка сланцевой смолы на химические продукты в первую очередь ориентируется па использование для этих целей фенолов, в основном так называемых легких , с границами кипения 180—280° и 180—300°. В сланцевых смолах содержится до 25 вес. % фенолов или каких-то других кислых веществ, извлекаемых водными растворами щелочей, близких ио свойствам фенолам. Эти фенолы кипят в очень широком интервале температур, и лишь 10—15% от общего количества фенолов выкипает в пределах 180—300°. [c.139]


    Сырье, применяемое в промышленном органическом синтезе, обеспечивает решение важных задач химической промышленности комбинирование производств на базе комплексного использования сырьевых материалов замену пищевого сырья непищевым и растительного— минеральным (см. гл. II). Основными видами сырья являются природный и попутный углеводородные газы, газообразные и жидкие продукты нефтепереработки, а также синтез-газ (СО + Нз), коксовый газ и промышленные смолы, получаемые при термической переработке древесины, каменного угля, сланцев, торфа. [c.279]

    Существовал период, когда основной целью полукоксования углей ставили выработку первичного дегтя как исходного сырья для переработки на ряд продуктов. Однако рентабельность его переработки лимитировалась в капиталистических условиях целым рядом обстоятельств, в частности периодическим отсутствием сбыта вырабатываемых и извлекаемых из первичных смол продуктов, большими затратами на переработку и т. д. Сырая первичная смола могла иметь самое ограниченное применение (например как флотореагент на обогатительных установках). Сжигание ее под котлами являлось явно нерентабельным и не оправдывало расходов на полукоксование. В настоящее время, когда использование первичного дегтя имеет место для получения светлых моторных топлив методом гидрогенизации, положение с его использованием сильно меняется. По этим соображениям следует различать следующие области использования первичных смол  [c.139]

    Необходимо вести дальнейшие систематические исследования ио накоплению данных о молекулярных весах смол и асфальтенов, как первичных, так и выделенных пз остаточных продуктов переработки нефти, с использованием нескольких из названных выше индивидуальных углеводородов в качестве осадителей. Зная данные по содержанию асфальтенов в сырых нефтях основных месторождений страны, а также в тяжелых остатках продуктов переработки, определенные методом осаждения в стандартных условиях хотя бы одним из трех названных выше индивидуальных парафиновых углеводородов (м-пентан, к-гептан, пзооктан), а для некоторых нефтей — результаты осаждения асфальтенов всеми тремя методами, мы будем всегда иметь возможность получить вполне сравнимые результаты хотя бы по одному показателю. [c.88]

    В зависимости от условий переработки из буро-угольной смолы могут быть получены в различных соотношениях бензин, дизельное топливо, смазочные масла, парафин, мазут, беззольный кокс. Из данных табл. 9.57 видно, что при дистилляции основными продуктами являются дизельное топливо и мазут, на долю которых приходится 64-65 %. При этом увеличение отбора одного из них сопровождается ггропорциональ-ным уменьшением второго, а суммарный выход остается примерно постоянным. Если в технологию переработки смолы включена стадия крекинга, удается увеличить количество получаемого бензина с 3-6 % примерно до 15 %, а при использовании гидрогенизации дистиллятных фракций его выход можно довести приблизительно до 80 %. [c.452]

    Основное направление переработки таких продуктов — получение ароматических углеводородов свободных от серы бензола, толуола и ксилолов или только бензола для органического синтеза, а также нафталина, тетралина. Другое направление связано с использованием отдельных фракций, содержащих реакционно-способные непредельные соединения, в качестве сырья для получения нефтеполимерных смол или для выделения индивидуальных непредельных соединений (например, выделение циклопентадиена из пироконденсата или легкой смолы и последующее гидрирование его в циклопентен). Пироконденсат или легкая смола (или их фракции) после гидрогенизационного облагораживания в зависимости от степени гидрирования нена-сьиценныл углеводородов могут применяться как высокооктановый стабильный компонент автомобильных бензинов (октановое число 110 моторному методу 80—83, индукционный период более 900 мин) или как сырье для пиролиза. [c.56]

    Объектами многих исследований были естественные асфальты, сильно отличающиеся по соотношению основных составляющих (углеводороды, смолы, масла) от таких остаточных продуктов нефтяного происхождения, как мазуты, гудроны и, особенно крекинг-остатки. Смолы и асфальтены, выделенные из природных асфальтов и из сырых нефтей, не подтвергавшихся воздействию высоких температур, представляют собой нативные, т. е. первичные, практически не измененные вещества, в том состоянии, в каком они содержались в природных продуктах (нефть, природный асфальт). Исследование состава и строения именно этих веществ представляется особенно важным для понимания условий их образования и химической эволюции в недрах земли на протяжении длинной геологической истории, а также для выбора наиболее правильных и экономически целесообразных направлений их переработки и использования. [c.363]

    Основы немецкой классификации изложены в книге Gruppeneinteilung der Patentklassen , 4-е издание (1928 г.) которого имеется в русском переводе. В 1958 г. вышло 7-е издание этого труда. Немецкая классификация патентов аналогична принятой в Советском Союзе. Химические патенты относятся в основном к классу 12 Химические способы и аппараты, поскольку они не вошли в другие классы . Класс 12 разделяется в свою очередь на 18 подклассов 12а — Способы кипячения и оборудование для выпаривания, концентрирования и перегонки в химической промышленности 12Ь — Кальцинирование, плавление 12с — Растворение, кристаллизация, выпаривание жидких веществ 12d — Осветление, выделение осадков, фильтрование жидкостей и жидких смесей 12е — Адсорбция, очистка и разделение газов и паров, смешение твердых и жидких веществ, а также газов и паров друг с другом и с жидкостями 12f — Сифоны, сосуды, затворы для кислот, предохранительные устройства 12g — Общие технологические методы химической промышленности и соответствующая аппаратура 12h — Общие электрохимические способы и аппаратура 121 —Металлоиды и их соединения, кроме перечисленных в 12к 12к— Аммиак, циан и их соединения 121 — Соединения щелочных металлов 12т — Соединения щелочноземельных металлов 12п — Соединения тяжелых металлов 12о — Углеводороды, спирты, альдегиды, кетоны, органические сернистые соединения, гидрированные соединения, карбоновые кислоты, амиды карбоновых кислот, мочевина и прочие соединения 12р— Азотсодержащие циклические соединения и азотсодержащие соединения неизвестного строения 12q — Амины, фенолы, нафтолы, аминофенолы, аминонафтолы, аминоантраце-ны, оксиантрацены, кислородо-, серо- и селеносодержащие циклические соединения 12г — Переработка смол и смоляных фракций из твердых топлив, например сырого бензола и дегтя добывание древесного уксуса, экстракция угля, торфа и пр. добывание и очистка горного воска 12s — Получение дисперсий, эмульсий, суспензий, т. е. распределение любых химических веществ в любой среде, использование химических продуктов или их смесей как диспергирующих или стабилизирующих средств. Многие подклассы в свою очередь делятся на группы и подгруппы. [c.89]

    Промышленное использование побочных продуктов и отходов неминуемо предполагает ориентировку на наиболее подходящие виды сырья (в роли сырья зачастую выступают такие основные продукты химической промышленности, как сода или каменноугольная смола). Неуклонное расширение отраслей, выпускающих основные продукты химической промышленности, обусловливается, во-первых, тем, что без массового производства в определенных, экономически оправданных масштабах не может быть и речи о каких-либо выгодах, а во-вторых — вышеохарактеризованными особенностями оборудования. Этот процесс вызывает соответствующий рост выпуска побочных продуктов. А это в свою очередь диктует необходимость дальне11шего расширения отраслей, выпускающих основные виды продукции. При такой взаимозависимости общее укрупнение комбинатов представляется неизбежным. Далее, ход событи ведет к развитию отраслей по переработке побочных продуктов в новые основные отрасли с присущими им самостоятельностью и крупно-масштабностью. Таким образом, формируются комплексные, или вертикально-горизонтальные, комбинаты, объединяющие как старые , так и новые основные отрасли, развившиеся из переработки побочных продуктов. Короче говоря, создаются комбинаты, устойчивость которых обеспечивается максимально эффективным, комплексным использованием основных сырьевых материалов и взаимодополнением отдельных отраслей, выпускающих различные виды продукции [c.33]

    Большое значение для экономики производства фенола кумольным методом имеют использование побочных продуктов и их превращение в фенол. Особенно это относится к фенольной смоле. Один из методов переработки фенольной смолы — ее гидрирование метановодородной фракцией на алюмокобальт-молиб-деновом катализаторе с последующей ректификацией получаемого гидрогенизата и выделением до 49% изопропилбензола, до 23% фенола и до 13% этилбензола (в расчете на смолу). Таким путем выход фенола увеличивается примерно на 3%. Другим методом переработки фенольной смолы является ректификация в вакууме. При ректификации происходят частичная деструкция кумилфенола с образованием фенола и а-метилстирола и деполимеризация части димера а-метилстирола. Одновременно диметилфенилкарбинол дегидратируется в а-метилстирол. Полученный а-метилстирол выделяют ректификацией. Кроме того, выделяют фенол-сырец, возвращаемый в основную систему ректификации, и ацетофенон. Сложной проблемой является переработка сточных вод, содержащих фенол. Сброс таких вод в водоемы недопустим. Предложено извлекать фенол из сточных вод в специальном экстракторе. [c.201]

    Все новые исследования, проводимые в области химической технологии угля, характеризуются общей направленностью на повышение коэффициента технологической эффективности преобразования угольного вещества во вторичные химические продукты. В связи с необходимостью дальнейшего расширения ассортимента химических продуктов коксования для промышленности органического синтеза изучают проблему широкого использования таких многотоннажных продуктов переработки каменноугольной смолы, как фенантрен, флуорен, флуо-рантен, карбазол, аценафтен и др. Следует уделять -большое внимание научно-исследовательским работам по совершенствованию технологических схем производства традиционных и широко используемых химических продуктов коксования. Несмотря на интенсивный рост выпуска ряда основных органических продуктов и полупродуктов в нефтехимии, следует ожидать дальнейшего увеличения производства многих продуктов и в коксохимии. Так, до сих пор каменноугольная смола является единственным источником производства таких продуктов, как [c.192]

    Сырьем для производства ТУ служат высокоароматизованные фракции переработки нефти и коксохимии, а также природные и попутные газы. Основным жидким сырьем являются газойли термического и каталитического крекинга, смолы пиролиза и ароматические экстракты, а также продукты переработки угля (антраценовая и хризеновая фракции, антраценовое масло и пековые дистилляты). Процесс удается существенно интенсифицировать, а свойства ТУ модифицировать использованием различных присадок и добавок. [c.238]

    Углубление процесса переработки нефти, или, что то же самое, повышение степени ее использования и повышение выходов ценных товарных нефтепродуктов — высококачественных моторных топлив и химических продуктов, стало в наше время одним из актуальнейших направлений совершенствования технологии переработки нефти. Основным резервом для эффективного решения этой задачи является тяжелая, или высокомолекулярная, часть нефти, составляющая при нынешней технологии переработки нефти 25—30% от поступившей в переработку сырой нефти и получившая название тяжелые нефтяные остатки . Если учесть, что больше половины этих остатков составляют так называемые неуглеводородные компоненты нефти, или смолисто-асфаль-теновые вещества, то станет ясно, какое большое научное значение и практическую актуальность приобретает проблема изучения состава, строения, свойств, химических реакций и основных направлений химической переработки и технического исиользова-Ш1Я нефтяных смол и асфальтенов. Вполне понятно поэтому, что эта область химии и технологии и геохимии нефти все больше и больше привлекает к себе внимание исследователей и инженеров. За носледние годы заметно расширилась география исследований в этой области и увеличилось число публикаций по составу, структуре и методам исследования смол и асфальтенов. Опубликованные материалы рассредоточены в многочисленных специальных периодических изданиях разных стран и поэтому труднодоступны. Обобщающие монографические работы по смолисто-асфальтено-вым веществам нефти отсутствуют. В монографии одного из авторов Высокомолекулярные соединения нефти , второе издание которой вышло в 1964 г. на русском и в 1965 г. — на английском языке, несколько специальных глав посвящены этому вопросу. [c.3]

    В обиходном смысле понятие парафин чаще всего связывают с продуктом, представляющим собой твердую массу из углеводородов предельного ряда и имеющим белый или желтоватый цвет в зависимости от наличия в нем смол и масел. Впервые парафин был использован для изготовления свечей, так как он дает хорошее пламя и не осгавляет пепла. Начало производству твердых парафинов в России положил неизвестный предприниматель, построивший в 70-х гг. ХУ1П в. в Тверской губернии завод для переработки торфа. Но это начинание скоро зачахло из-за экономических затруднений его инициатора. Парафинами в технике называют концентраты предельных углеводородов в основном нормального строения (от Ся до С4о), вы-дс. ленные из нефти или из каких-либо других продд ктов, [c.168]

    Основным источником нафталина является каменноугольная смола. В каменноугольных смолах, получаемых из углей Советского Союза, содержание нафталина колеблется от 4 до 12% и зависит в основном от состава каменноугольной шихты и условий процесса коксования В технических сортах нафталина содержатся примеси метилнафталинов, тионафтена, индола и других веществ, присутствующих в каменноугольной смоле. В зависимости от катализатора, применяемого при окислении во фталевый ангидрид, а также от типа испарительных устройств цехи производства фталевого ангидрида могут перерабатывать нафталин различной степени чистоты. Возможность использования нафталина более низкого качества для производства фталевого ангидрида зависит от наличия станции очистки нафталина на перерабатывающем заводе. Качество нафталина определяется показателями того продукта, который непосредственно может перерабатываться во фталевый ангидрид. В большинстве случаев экономически выгоднее очищать нафталин на заводах-нзготовителях, чтобы в цехи-потребители он поступал в виде, пригодном для непосредственной переработки. [c.19]

    Выполнение намеченной пленумами программы потребовало большого строительства новых и реконструкции действующих предприятий, в результате чего за период с 1961 по 1970 г. была создана современпая химическая промышленность, что, в свою очередь, привело к изменению в ее размещении на территории страны. Основными факторами, повлиявшими на формирование территориальных пропорций, явились специфические особенности, присущие процессу развития отрасли в этом периоде, а именно переход на более высокий технический уровень использование новых видов сырья, создание более совершенной структуры химической продукции, в частности рост производства полимерных материалов, расширение ассортимента химических продуктов и значительное увеличение объемов их производства. Это был качественно новый этап в развитии химической индустрии страны. Природный и попутные газы нефтедобычи, продукты нефтепереработки в значительной степени заменили традиционные виды сырья (уголь, кокс, коксовый газ, пищевое сырье) при получении ряда важнейших химических продуктов (аммиака, метанола, синтетических каучуков и др.) и стали широко использоваться для производства пластических масс и синтетических смол. Эти изменения повлекли за собой существенные сдвиги в размещении ряда отраслей химической промышленности в связи с ускоренным их развитием в районах добычи углеводородного сырья и центрах его переработки. [c.313]

    Принципиальная технологическая схема полукоксования топлива в виде схемы основных материальных потоков показана на рис. 99. Подготовленное к переработке сырье поступает в печи, в которых оно нагревается до заданных температур без доступа воздуха и подвергается пирогенетическому разложению. Парогазовая смесь образовавшихся продуктов разложения подвергается конденсации, вследствие чего она разделяется на воду, первичную смолу и первичный газ. Твердый остаток — полукокс— различными способами -даляется из печей и после охлаждения направляется а дальнейшее использование. [c.215]

    Суммарные ксилолы. Получаются в процессе риформинга на ароматику совместно с бензолом и толуолом и выделяются из смеси ароматических углеводородов на нефтеперерабатывающих заводах. Основная часть суммарных ксилолов идет на дальнейшую переработку с целью извлечения изомеров, в первую очередь пара-ксилола и орто-ксилола. Вторым направлением использования ксилолов является их смешение с автобензинами для увеличения октановых характеристик бензинов. Еще одним из направлений использования суммарных ксилолов является применение их как растворителей. Выделение индивидуальных изомеров и последующая химическая переработка пара-ксилола в терефталевую кислоту и диметилте-рефталат составляет сырьевую базу пластмасс, синтетических (полиэфирных) волокон. Переработка орто-ксилола во фталевый ангидрид обеспечивает сырьем производство пластификаторов и ал-кидных смол. Переработка мета-ксилола в изофталевую кислоту обеспечивает сырьем производство сложных эфиров. Технологические процессы на основе смеси ксилолов, а также цены получаемых продуктов в 1995 г, представлены на рис. 5.4. Конечные продукты на основе ксилола и типичные направления применения этих продуктов приведены на рис. 5.5 [48]. [c.147]

    Технологическая схема установки обезвреживания вентиляционных выбросов выбирается в зависимости от их фракционного и химического состава, физико-химических свойств газообразных, жидких и твердых примесей, входящих в состав выбросов, степени изменения их количества и состава во времени, возможности утилизации уловленных компонентов и схемы воздушного тракта котлов. В связи с этим применяются следующие схемы установок тип 1 — одноступенчатая схема обезвреживания сравнительно сухих вентиляционных выбросов с их прямой подачей от источников образования в топочное устройство тип 2 — двухступенчатая схема обезвреживания выбросов, содержащих значительное количество высококипящих органических соединений (капель различных смол, минеральных и растительных масел, нефти и продуктов ее переработки и т. п.), с предварительным улавливанием основной массы жидких фракций в гидроловушках барботажного типа и последующим направлением потока загрязненного воздуха в топочное устройство, а уловленных жидких фракций для вторичного использования или уничтожения на специальных полигонах тип 3 — двухступенчатая схема — для увлажненных или запыленных вентиляционных выбросов с предварительным отделением конденсирующихся жидких фракций или твердых частиц в инерционных аппаратах (циклонах НИИОгаз, блок-циклонах или батарейных циклонах ЦКТИ) с последующим направлением очищенного потока в топочное устройство тип 4 — двухступенчатая [c.255]


Смотреть страницы где упоминается термин Использование основных продуктов переработки смолы: [c.79]    [c.219]    [c.82]    [c.401]    [c.182]    [c.102]    [c.22]    [c.115]    [c.156]    [c.213]    [c.112]   
Смотреть главы в:

Справочник коксохимика Т 6 -> Использование основных продуктов переработки смолы




ПОИСК







© 2025 chem21.info Реклама на сайте