Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронная спектроскопия поглощения

    Оптико-спектроскопические методы, используемые в промышленном контроле, могут быть разделены на две основные группы электронная спектроскопия (спектроскопия в ультрафиолетовой и видимой областях спектра) и колебательная спектроскопия (спектроскопия в инфракрасной, ближней инфракрасной (ВИК) областях спектра, а также рамановская спектроскопия). В УФ и видимой областях спектра поглощение обусловлено переходами между атомными или молекулярными электронными энергетическими уровнями. Переходы между электронными энергетическими уровнями могут происходить только в том случае, если энергия падающего фотона соответствует разности энергий соответствующих уровней. Эти энергетические уровни для ближней ультрафиолетовой и видимой областей имеются в изолированных атомах, отдельных неорганических ионах, органических соединениях, содержащих сопряженные двойные связи, и большом числе разнообразных молекулярных веществ. Поглощение в ультрафиолетовой и видимой областях очень сильное, поэтому возможно определение концентраций на уровне нескольких частей на миллион. Однако полосы поглощения обычно очень широкие по сравнению с [c.656]


    Электронная спектроскопия поглощения [c.515]

    ЭЛЕКТРОННАЯ СПЕКТРОСКОПИЯ ПОГЛОЩЕНИЯ [c.515]

    В настоящее время для установления строения органических соединений наиболее широко применяют спектроскопию ЯМР, ИК- и электронную спектроскопию поглощения (ЭСП), а также масс-спектрометрию, основанную на превращениях молекулы под действием электронного удара. [c.515]

    Электронная спектроскопия поглощения (ЭСП) - метод, основанный на исследовании взаимодействия вещества с электромагнитным излучением в области длин волн, равных 10- -10 см. [c.575]

    Колебательная инфракрасная спектроскопия (ИК-спектроскопия) наряду с электронной спектроскопией в видимой и ультрафиолетовой области — один из важных источников информации о строении молекул. Для получения инфракрасных спектров поглощения используют специальные приборы — инфракрасные спектрометры. Принцип действия их сходен с принципом действия спектрофотометров. Однако для этой области спектра используются специфические источники излучения, специфические методы регистрации излучения и специальные материалы для призм и кювет. [c.155]

    В табл. 22 [24] приведены данные по электронным спектрам типичных комплексов Мо(1П), Mo(IV) и Mo(V). В большинстве случаев полосы, соответствующие d—d-переходам, имеют очень слабую интенсивность и во многих случаях полностью маскируются сильными полосами переноса заряда. В ряду комплексов Mo(V) полоса переноса заряда смещается в сторону длинных волн при усилении донорных свойств лиганда [21]. В том же направлении смещаются полосы в аналогичных комплексах Fe(III). В обоих этих случаях имеет место перенос заряда от лиганда к металлу [25]. Сильное взаимодействие между атомами металла и соответствующими лигандами в комплексах Mo(V) и Fe(III) и то, что оба эти металла входят в состав всех молибденсодержащих ферментов, являются сильным аргументом в пользу важной роли молибдена и железа как компонентов электрон-транспортной цепи. Из всех молибденсодержащих ферментов только ксантиноксидаза была детально изучена методом электронной спектроскопии. Поглощение, обусловлен- [c.268]

    Электронные спектры поглощения ароматических соединений широко используются в изучении углеводородной части нефтей, нефтепродуктов и других природных горючих ископаемых. Когда перешли к исследованию состава неуглеводородной части тех же продуктов, в частности соединений, содержащих серу и азот, наряду со всеми другими методами анализа стали привлекать и спектроскопию в ультрафиолетовой области. Возникла необходимость сбора и систематизации спектров поглощения нужных соединений, т. к. они были разбросаны по отдельным статьям и зарубежным каталогам, в которых, из-за отсутствия удобной системы, их было нелегко разыскать, не легче было добыть и сами каталоги. Это вызвало появление справочных книг [1, 2], которые в той или иной мере помогали идентифицировать выделенные из исследуемых продуктов типы соединений. [c.158]


    Предлагаемый в данной работе подход относится к феноменологическим, т.к. система, поглощающая излучение, рассматривается как единое целое, а переходы электронов с одного уровня на другой во внимание не принимаются. Такое необычное направление в электронной спектроскопии определено нами, как электронная феноменологическая спектроскопия (ЭФС). Вещество изучается как единое целое, без разделения его спектра на характеристические частоты или длины волн отдельных функциональных групп или компонентов системы. Известно, что электронное строение веществ определяет его физико-химические свойства [5]. В свою очередь, электронные спектры также определяются конфигурацией электронных оболочек. Отсюда следует, что электронные спектры поглощения могут быть применены для определения физико-химических свойств. [c.84]

    Спектрометрия кругового дихроизма Спектроскопия поглощения рентгеновских лучей Спектроскопия ядерного магнитного резонанса (ЯМР) Спектроскопия электронного парамагнитного (спинового) резонанса (ЭПР) [c.151]

    Образно сравнивают ДОВ с инфракрасной спектроскопией, а КД с электронными спектрами поглощения. [c.203]

    Принцип ЭПР-спектроскопии заключается в том, что вещество, содержащее неспаренные электроны, помещается в магнитное поле и облучается электромагнитными волнами. На резонансной частоте V, которая определяется равенством гу = =ку /2п и равна Уе/2п, где 7 — гиромагнитное отношение для электрона, происходит поглощение энергии, что фиксируется специальным устройством, принимающим энергию. При Я 3000 гаусс V 10 с что соответствует длине волны в 3 см (микроволновой диапазон). [c.298]

    Практическое использование электронных спектров поглощения осуществляется в интервале длин волн 2,Ы0 —7,5-10- м (видимая и ближняя ультрафиолетовая области). Особенность этой области заключается в большом сходстве спектров поглощения у многих различных по составу и природе соединений. Поэтому возможности электронной молекулярной спектроскопии для идентификации соединений путем сравнения спектров ограничены. В тех [c.163]

    Следует отметить, что флуоресценция, фосфоресценция и фотохимические процессы также объясняются электронными переходами. Так, при фотохимических процессах в химическом взаимодействии участвуют молекулы в возбужденном состоянии, которые обусловливают их реакционную способность. Благодаря использованию электронных спектров поглощения появилась возможность определять ионизационные потенциалы молекул, которые можно вычислить из длин волн, необходимых для возникновения эффекта фотоионизации. Наиболее общее практическое приложение спектроскопии и в первую очередь электронной спектроскопии — опре- [c.163]

    Очень важное значение для изучения химических свойств элементов, исследования структуры внешних электронных слоев атомов имеют излучения, отражаюш,ие изменения энергии валентных электронов. Им соответствуют длины волн в основном видимого (500 нм) и ультрафиолетового диапазона (100 нм). Спектральные исследования в этой области длин волн электромагнитного излучения получили название оптической электронной спектроскопии. Оптические спектры атомов могут быть получены, когда возбужденные тем или иным методом (электронного удара, поглощения кванта света, в результате столкновения при нагревании с другим атомом и т. п.) внешние (валентные) электроны атомов переходят из состояний с большей энергией в состояния с меньшей энергией. При этом излучается квант света, частота которого (см. 3.3) определяется соотношением —Е1=к и характеризует линию спектра. [c.67]

    При выявлении взаимосвязи спектра и структуры молекулы в электронной спектроскопии признается целесообразным наблюдение за изменениями в положении и интенсивности полосы поглощения при переходе от некоторого родоначального хромофора, ответственного за поглощение, к модифицированному путем введения в систему первого дополнительной хромофорной или ауксохромной группы. Для характеристики спектральных изменений, вызванных модификацией структуры, используется специальная терминология  [c.49]

    В сборнике имеется некоторое количество задач по использованию электронных спектров поглощения. Они составлены с таким расчетом, чтобы была ясна область применения УФ-спектроскопии в задачах предлагается сделать выбор между возможными структурами, имеющими сопряженные и изолированные хромофорные группы, объяснить изменения в спектрах, происходящие под влиянием растворителей. В сборник включен также ряд задач по совместному использованию УФ- и ИК-спектроскопии или ИК- и ПМР-спектроскопии. [c.112]

    Обширные перспективы в этом плане открывает метод интегральной электронной спектроскопии. На основе обойцения обширного эмпирического и теоретического материала М.Ю.Доломатовым установлена квазилинейная связь физико-химических, зависящих от электронной структуры инградиентов, характеристик многокомпонентных химических систем с удельными показателями поглощения в видимой и/или ультрафиолетовой области [46,47]. Закон квазилинейной связи имеет вид  [c.16]


    К сожалению, эта принятая в молекулярной спектроскопии система обозначений противоположна системе, принятой в атомной спектроскопии. Кроме того, некоторые авторы, работающие в области микроволновой спектроскопии, а также электронной спектроскопии больших молекул, не следуют принятому правилу и записывают первым символом исходное состояние, т. е. нижнее состояние в поглощении и верхнее состояние в испускании. В настоящей книге мы всегда будем придерживаться рекомендации Международной комиссии по спектроскопии. [c.52]

    Электронные спектры поглощения наблюдаются в результате поглощения ультрафиолетового (УФ) и видимого излучения при этом происходит переход (возбуждение) валентного электрона с занимаемого им уровня на уровень с более высокой энергией. По характеру поглощаемого излучения электронную спектроскопию часто называют спектроскопией в УФ и видимой области или УФ-спектроскопией. [c.515]

    В электронной спектроскопии интенсивность полос поглощения измеряется обычно значением молярного коэффициента поглощения в максимуме полосы (емакс или 1 емакс). Полосы поглощения могут быть охарактеризованы также и интегральной интенсивностью А [c.62]

    В ИК-спектроскопии разность энергий основного и возбужденного состояний достаточно велика, так что для переходов, характеризующихся высокой вероятностью, не возникает проблемы чувствительности. Хотя при исследовании вещества в конденсированной фазе обычно не удается разрешить тонкую вращательную структуру, проблема совместного возбуждения в этом случае не является непреодолимой. Однако при этом представляют интерес и переходы с низкой вероятностью. В более явном виде эта проблема проявляется в электронной спектроскопии поглощения, где на основании данных о разрешенных переходах часто делаются попыт- [c.397]

    Самый простой способ использования любого физического метода исследования состоит в идентификации finger-print области спектра (или области отпечатков пальцев ), т. е. в идентификации вещества или определении его чистоты но характерному для данного соединения спектру поглощения или испускания (либо по характерной дифракционной картине). В этом отношении некоторые методы оказываются наиболее ценными чем большее число наблюдений можно получить в результате эксперимента, чем выше разрешение и чем в большей степени данный метод включает взаимодействие излучения со всей молекулой в целом, тем более ценным он оказывается, конечно, при условии, что метод достаточно прост в экспериментальном отношении и доступен с точки зрения стоимости исследования. Обычно в качестве надежного метода определения отпечатков пальцев соединения применяют ИК-спектроско-пию, поскольку этот метод позволяет обнаружить колебания, относящиеся к любым отдельным частям молекулы, тогда как в электронных спектрах поглощения часто проявляются только те переходы, которые связаны со сравнительно небольшой областью в молекуле вследствие этого данный метод может оказаться нечувствительным к изменениям в остальных частях молекулы. Из числа методов, пригодных для качественного анализа, некоторые могут быть использованы и для получения количественных данных, причем ценность представляют лишь те методы, в которых возможно определение коэффициентов экстинкции. В этом отношении наиболее надежен метод электронной спектроскопии поглощения, что определяется его высокой чувствительностью и легкостью приготовления растворов для исследования. [c.399]

    Современные методы спектрального анализа трудно применять к исследованию многокомпонентных систем, нефтей, нефтяных фракций, многокомпонентных полимеров. Исследования, проведенные в последние годы, позволяют выделить элекфонную феноменологическую спектроскопию (ЭФС) как перспективное направление в изучении совокупности свойств многокомпонентных органических веществ и оперативном контроле процессов химических и нефтехимических производств В отличие от обычного варианта электронной спектроскопии, в ЭФС вещество изучается как единое целое, без разделения его спектра на характеристические частоты или длины волн отдельных функциональных фупп или компонентов. ЭФС основана на установленны х нами закономерностях связи оптических характеристик поглощения (коэффициентов поглощения, коэффициентов отражения, цветовых характеристик и тд.) с физикохимическими свойствами системы. Разработанные на этих принципах исследовательские методы использованы в лабораторной и производственной практике. [c.224]

    В рамках развития принципов феноменологического подхода к сложному веществу разработано новое научное направление - неатомарный недискретный подход к спектрам вещества разработаны принципы феноменологической электронной спектроскопии. Последняя дает возможность прогноировать свойства всех веществ на основе установленного нами закона квазилинейной связи свойств и оптических характеристик поглощения. По сравнению с классической, феноменологическая спектроскопия имеет ряд преимуществ, т.к. позволяет получать любую информацию о структуре и физико-химических свойствах веществ, рассматривая их спектр как единое целое, без выделения характеристических частот в спектрах отдельных компонентов. [c.101]

    В рамках развития принципов феноменологического подхода к сложному веществу разработано новое научное направление - неатомарный недискретный подход к спектрам вещества разработаны принципы феноменологической электронной спектроскопии. Последняя дает возможность прогноировать свойства всех веществ на основе, установленного нами, закона квазилинейной связи свойств и оптических характеристик поглощения. По сравнению с классической, феноменологическая спектроскопия имеет ряд преимуществ, т.к. позволяет получать любую информацию о структуре и физи- [c.107]

    При измерении спектров поглощения в ультрафиолетовой области в качестве источника света используется водородная (дейтеривая) лампа (200—350 нм), а кюветы для раствора вещества, призма и вся оптика в приборе должны быть изготовлены из кварца (обычное стекло непрозрачно для коротковолнового излучения). При работе в видимой области используют тот же прибор, но в качестве источника излучения применяют лампу накаливания (от 350 нм и далее), а кюветы могут быть изготовлены из обычного стекла. В качестве растворителей в УФ спектроскопии применяют вещества, не имеющие поглощения в исследуемой области спектра и не вступающие в химическое взаимодействие с растворенным веществом (см. табл. 1). Для измерения электронных спектров поглощения обычно используют сильно разбавленные растворы (10 —10" моль/л). [c.129]

    Новый метод исследования поля лигандов использует явление поглощения (или, наоборот, эмиссии) атомными ядрами Т -квантов. Наиболее существенное отличие этого метода от электронной спектроскопии состоит в проявлении очень резкого резонансного максимума, соответствующего энергетическим переходам при излучении. Уже относительное изменение энергии на 10 2 7-кванта достаточно для того, чтобы подавить резонанс. Однако это означает, что энергия отдачи ядра при поглощении у-кванта изменяет условия резонанса и подавляет его. Е 1958 г. Мёссбауэр при исследовании ядер Чг нашел условия ядерного резонанса с отдачей на весь кристалл. Энергия отдачи в условиях проявления эффекта Мёссбауэра вследствие прочной связи всех атомов в кристалле достаточно мала для того, чтобы обеспечить возможность резонансного поглощения 7-лу-чей. Тем самым становится возможной -спектроскопия с высокой разрешающей способностью. Даже эффект Допплера, обусловленный перемещением источника уизлучения со скоростью [c.128]

    Предполагалось, что интермедиатом может быть кетен (9), Характеристическое ИК-ноглощение кетенов локализуется в области 2100— 2130 см- . Когда был проведен фотолиз с ИК-спектроскопическим контролем реакции, было найдено, что по мере протекания фотолиза полоса прн 2118 см- появляется, растет и затем уменьшается по интенсивности. Обнаружение этого характеристического поглощения составляет хорошее доказательство иетеяоной природы интермедиата. Как и в случае спектроскопии в УФ- и видимой области, количество интермедиата, которое можно обнаружить, зависит как от интенсивности полосы поглощения, так и от присутствия мешающих полос. В общем в данном методе чувствительность ниже, чем при использовании электронной спектроскопии в УФ- и видимой об.пасти. Для обнаружения интермедиата в концентраций порядка 10" М необходимы очень бла-гопрнятнь7е условия. [c.141]

    Хотя квантовомеханические расчеты позволяют предсказать число полос поглощения и приблизительно указывают их местоположение, они не дают необходимой точности при расшифровке спектров. Поэтому в электронной спектроскопии широко используются эмпирические правила и атласы спектров, позволяющие проводить сравнительный анализ [30, 31]. Ориентироваться в этой области читателю помогут следующие указания. Положение полосы поглощения сдвигается батохромио (в сторону более длинных волн, более низких энергий) при увеличении [c.19]

    РЕНТГЕНОЭЛЕ1СГР0ННАЯ СПЕ1СГРОСКОПЙЯ (РЭС, ЭСХА-электронная спектроскопия для хим. анализа), метод исследования электронного строения хим. соед., состава и структуры пов-сти твердых тел, основанный на фотоэффекте с использованием рентгеновского излучещ1я. При облучении в-ва происходит поглощение рентгеновского кванта hv (/ -постоянная Планка, v-частота излучения), сопровождающееся эмиссией электрона (наз. фотоэлектроном) с внутренних или внепших оболочек атома. Энергия связи электрона в образце в соответствии с законом сохранения энергии определяется ур-нием =/ v- , , где кинетич. энергия фотоэлектрона. Значения [c.245]

    Недавно циклобутадиен был охарактеризован методами спектроскопии как дискретная химическая частица, образующаяся при низкотемпературном (ж 8—20°К) фотолизе в твердых матрицах. Лин и Крантц [44], а также Чапмен и сотр. [45] установили, что при фотолизе фото-а-пирона (90) в аргоновой матрице образуется вещество с очень простым ИК-спектром, которое они идентифицировали как циклобутадиен. Недавно группе Майера [46] удалось выяснить причину расхождений между спектром, наблюдавшимся в работах вышеназванных авторов и спектрами, полученными позднее другими исследователями. Майер и сотр. показали, что некоторые полосы в спектре обусловлены образованием комплексов с переносом заряда между (1) и другими продуктами фотофрагментации, а ИК-спектр самого (1) содержит только полосы при 1240 и 570 см . В электронном спектре поглощения не наблюдается полос с Я, > 290 нм, а ниже 290 нм тянется полоса концевого поглощения [46] остальные, наблюдавшиеся ранее полосы поглощения опять-таки связаны с образованием комплексов с переносом заряда. [c.478]

    Световая волна характеризуется обычно длиной волны, которая изменяется от 120 (далекий ультрафиолет) до 760 нм (ближайшая инфракрасная область). Человеческий глаз видит световые лучи в интервале 400—700 нм. Этот интервал называется видимым светом , а изучающая в этом интервале действия света спектроскопия — видимой . В отличие от нее спектроскопия в лучах с длиной волны X < 400 нм называется ультрафиолетовой спектроскопией (УФ-спектроскопия). Метод электронной абсорбционной (поглощение света) спектроскрпии рассмотрен кратко ранее. Здесь же дано более полное представление о поглощении света веществом (фотофизика молекул) и о химических превращениях, которые происходят под воздействием светового электромагнитного излучения (фотохимия молекул). [c.257]

    Спектроэлектрохимические методы. Дополнительную информацию о характере взаимодействия вещества с электродами дает сочетание электрохимического метода с электронной спектроскопией или другими методами спектроскопии. Метод стал называться спектроэлектрохимическим и получил широкое применение в научной практике за последнее десятилетие. Спектроэлектрохимическое исследование вещества состоит в одновременном воздействии на вещество электрического и электромагнитного поля. Возникающие при этом промежуточные продукты электрохимического превращения, проходящего на прозрачных для света электродах, подвергаются воздействию электромагнитного излучения и регистрации их электронных спектров поглощения, ЯМР-, ЭПР-, ИК-спекгров, спектров комбинационного рассеяния и т. д. [c.295]


Смотреть страницы где упоминается термин Электронная спектроскопия поглощения: [c.51]    [c.7]    [c.350]    [c.13]    [c.140]    [c.700]    [c.119]    [c.146]    [c.481]    [c.94]   
Смотреть главы в:

Органическая химия Том1 -> Электронная спектроскопия поглощения


Органическая химия Том1 (2004) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Поглощение электроном

Спектроскопия поглощения

Спектроскопия электронная



© 2024 chem21.info Реклама на сайте