Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сложные восстановление

    В первой части книги рассматриваются вопросы формальной кинетики простых реакций (порядок реакции, константа скорости, кинетические уравнения различных порядков), математические характеристики сложных кинетических систем и экспериментальные характеристики простых и сложных кинетических систем. Вторая часть имеет вспомогательный характер — она посвящена статистическим методам, применяемым к системам из большого числа частиц при равновесии. В третьей — рассматриваются вопросы кинетики гомогенных реакций в газах (реакции мономолекулярные, бимолекулярные, тримолекулярные, сложные реакции в газовой фазе взрывные процессы и процессы горения). Четвертая, последняя, часть посвящена реакциям в конденсированной фазе (кислотно-основной катализ, реакции окисления-восстановления, радикальная полимеризация, гетерогенный катализ). [c.4]


    При биологическом использовании глюкозы в качестве источника энергии ее сгорание протекает не в одну стадию. Разложение глюкозы представляет собой сложный процесс, включающий более 25 стадий. На многих из этих стадий высвобождаемая энергия запасается путем синтеза молекул АТФ. Анаэробная ферментация, или гликолиз, обеспечивает предварительное разложение глюкозы с образованием пировиноградной кислоты, а цикл лимонной кислоты завершает окисление углерода в СО2. Атомы водорода передаются молекулам-переносчикам, НАД и ФАД. Эти молекулы повторно окисляются в дыхательной цепи, где происходит дальнейшее запасание энергии путем синтеза новых молекул АТФ, а атомы водорода используются для восстановления О2 в Н2О. [c.338]

    Реакции электрического окисления и восстановления включают в себя широкий круг процессов от простейшей ионной перезарядки до сложных превращений, лежащих в основе органического электросинтеза. Процессы электрохимического восстановления и окис- [c.428]

    Из данных табл. 39 видно, что карбонилсодержащие соединения в условиях жидкофазного процесса превращаются полностью с глубоким восстановлением карбонильной группы. В случае ароматического кетона конечным продуктом восстановления является углеводород, при восстановлении алициклического кетона протекают более сложные превращения, идущие, вероятно, по радикальному механизму  [c.193]

    Потенциал сложного редокси-электрода является функцией не только активностей окисленных н восстановленных частиц, но и активности водородных ионов. Характер зависимости потенциала редокси-электрода от активности водородных ионов определяется при этом природой реагирующих частиц. Так, иапример, для системы МпО -—Мп2+, в которой протекает электродная реакция [c.171]

    Реакция четыреххлористого титана с борогидридом алюминия весьма сложна. Восстановление титана сопровождается одновременно образованием алюминий-титан-хлор-боро-гидридов [128]. [c.86]

    Причина отклонений заключается в сложности этих реакции. Действительно, в процессе реакций часто происходит не только переход электронов, но и изменение состава участвующих в реакции ионов. Такое изменение состава наблюдается, например, при восстановлении анионов МпОГ и СгаО до катионов Мп + и Сг +. Сложные реакции проходят всегда через ряд промежуточных стадий, так что уравнения реакций не отражают действительного течения процесса, а являются лишь суммарными. Скорость же всего процесса зависит именно от скоростей течения отдельных промежуточных стадий и потому не может быть заранее определена на основании суммарного уравнения реакции. [c.372]


    Вязкоупругие жидкости, т.е. среды, обладающие свойствами как твердого тела, так и жидкости, а также способные к частичному восстановлению формы после снятия напряжений. Для таких сред зависимость между касательными напряжениями и градиентом скорости значительно сложнее-она включает производные по времени как напряжений, так и градиента скорости. [c.336]

    Значительное количество работ выполнено по исследованию осаждения Нг(газ.) на катодах и Ог (газ.) на анодах. Восстановление ионов Н на металлическом катоде с выделением газообразного водорода является не менее сложным процессом, чем каталитическая гидрогенизация. [c.556]

    Здесь следует рассмотреть два основных варианта реакции Фри-деля-Крафтса. Первый вариант — прямое алкилирование бензола (или гомологов) с применением олефинов или неорганических сложных эфиров (алкилгалоидов или сульфатов) и небольших количеств катализатора. Другой вариант заключается в ацилировании с образованием арилал-килкетонов (как промежуточных соединений) и восстановление их в ароматические углеводороды. Ацилирование производится хлорангидридами или ангидридами с добавлением стехиометрических количеств катализатора — галогенида металла, обычно безводного хлористого алюминия  [c.480]

    Реакции сульфирования и окисления-восстановления протекают в относительно меньшем масштабе, потому что большая часть отработанной кислоты может быть регенерирована. Однако нри очистке крекированных дистиллятов от серы на первый план выступает химическое воздействие кислоты при этом происходят реакции полимеризации, этерификации, конденсации ароматических углеводородов и олефинов, сульфирование и т. д. Азотистые основания при этом нейтрализуются, а нафтеновые кислоты растворяются в серной кислоте. Поэтому состав осадка очень сложный и в значительной степени зависит от природы очищаемого дистиллята, крепости кислоты и температуры очистки. [c.570]

    Каталитическое восстановление окиси углерода в присутствии железа стало известным в 1912 г. были получены метиловый и высшие спирты, альдегиды, кетоны, кислоты, сложные эфиры и небольшое количество жидких углеводородов. [c.248]

    В объем капитального ремонта входят работы текущего ремонта и работы по ликвидации неполадок, выявленных при эксплуатации печей. Капитальный ремонт — наиболее сложный и полный по объему. Он осуществляется для полного восстановления работоспособности печного комплекса. [c.180]

    Ко второй группе относятся требования, обеспечивающие ремонтопригодность при ремонте оборудования в РМЦ предприятий. Для этого в конструкции оборудования должны быть предусмотрены простота разборки и сборки узлов, а также их комплексов применение простых средств механизации на операциях разборки и сборки максимальная возможность восстановления номинальных размеров изнашивающихся элементов корпусов, сложных и базовых деталей экономически оправданная возможность восстановления номинальных размеров изнашивающихся элементов остальных деталей простота проверки состояния деталей и узлов после стендовых испытаний возможность проверки взаимодействия всех частей оборудования после ремонта. [c.69]

    Большая дефицитность и дороговизна коксующихся углей заставляет искать другие способы получения железа. В промышленности используют методы так называемого прямого восстановления железно руды смесью СО и Hg, получаемой конверсией природного газа, или углем. По этому методу обычно требуется довольно сложная подготовка руды, формование ее в виде округлых частиц окатышей или в виде брикетов. В результате восстановления при температуре не выше 1100°С образуется губчатое железо, переплавкой которого в электропечах, минуя стадию производства чугуна, получают сталь. Известно много вариантов процессов прямого восстановления железной руды. Хотя значение данного метода возрастает, все же большую часть стали выплавляют из чугуна. [c.555]

    Стоимость восстановления детали обычно составляет 10—25% стоимости изготовления новой детали, а для базовых деталей сложной конфигурации —5—10%. [c.76]

    Ароматические нитросоединения нолучаются обычно прямым нитрованием соответствующих соединений. Ароматические нитросоединения применяются в больших количествах как красители и взрывчатые вещества, а также в парфюмерной промышленности. Они используются также в качестве растворителей и химических реагентов. Нитрогруппа может действовать как хромофорная группа в красителях, особенно если имеется несколько нитрогрупн и они располагаются в кольце таким образом, что становятся частью сложной сопряженной системы. Значительно чаще нитрогруппа используется как исходная группа для получения соответствующего анилина в результате применения восстановления в довольно мягких условиях. Использование нитросоединений в промышленности взрывчатых веществ направлено в первую очередь на военные цели. Промышленное производство взрывчатых веществ основано больше на нитроглицерине, т. е. на сложном эфире азотной кислоты, чем на истинных нитросоединениях. Некоторым, весьма существенным исключением являются нитрокарбонитратные пороха, содержащие нитрат аммония и незначительные количества тринитротолуола или динитротолуола. В парфюмерной промышленности нитросоединения используются в качестве синтетических мускусов. Большая группа производных полинитро-/к/)т-бутилбензола обладает запахом, напоминающим мускус. [c.543]


    Следует отметить, что многие реакции, которые, судя по записи иу уравнений, можно отнести к внутримолекулярным, в действитель-ности протекают по сложному механизму, включающему межмолекулярное окнсление — восстановление. [c.208]

    Весьма сложно происходит восстановление НЫОз. Состав образующейся смеси продуктов восстановления (N0, N02, N2 и др.) зависит от природы восстановителя, концентрации кислоты и температуры. [c.210]

    Наряду с применением для синтеза ацетона изопропиловый спирт употребляют для синтеза различных сложных эфиров (например, изопропилацетата — растворителя лаков), для введения изопропиловой группы в другие соединения (тимол, изопропилфенол). р1саптогенат нзонропплового спирта является важным флотацион-нт,ш агентом. Изонропилат алюминия используется для восстановления альдегидов по методу Меервейн — Понндорфа. [c.66]

    В сложных редокси-электродах реакция протекает с изменением валентностп реагирующих частиц и их состава. В реакциях такого рода участвуют обычно ионы водорода, и молекулы воды участие последних не сказывается, однако, на характере уравнений для электродного потенциала благодаря тому, что активность воды в ходе реакции, за исключением очень концентрированных растворов, остается постоянной. Если сохранить обозначение Ох для окисленных частиц и Кес1 для восстановленных, то схему сложного редокси-электрода можно записать следующим образом  [c.171]

    Природа электрода, так же как и сгепень развития его поверхности, играет важную роль в кинетике процессов электрохимического восстановления и окисления особенно отчетливо это проявляется в случае сложных окислительно-восстановительных реакций. Например, при восстановлении азотной кислоты на губчатой меди получается почти исключительно аммиак, а на амальгамированном свинце — преимущественно гидроксиламин. Другим примером влияния материала электрода на процесс электровосстановления может служить реакция восстановления ацетона. В результате этого процесса получаются два основных конечных продукта — изопропиловый спирт СН3СНСН3 и пннакон (СНзСОНСНз)2. [c.432]

    Известно несколько случаев таких сложных реакций. Одной из реакций, которая была изучена довольно детально, является восстановление Н2О2 ионом I". Эта реакция описывается схемой  [c.37]

    X. Синтез 9-й-октил (1,2,3,4-тетрагидро) нафтацена. Примене)1ие реах ций ацилирования по Фриделю-Крафтсу, дегидроциклизацпи, избирательного восстановления антрахинонового производиого и транс-апнулярного дегидратирования к синтезу высокомолекулярных углеводородов со сложными конденсированными кольцами видно па примере получения 9-и-октил (1,2,3,4-тетрагидро) нафтацена [36]. [c.514]

    Реакции восстановления окиси углерода водородом лежат в основе синтеза целого ряда продуктов, как то метанола, высших спиртов, сложных кислородсодержащих соединений, углеводородов и т. д. Направление синтеза (с точки зрения получаемых продуктов) зависит от соотношения СО водород , технологического режима и природы катализатора. В Германии синтез углеводородов (так называемый синтез по Фишеру и Тропшу) в годы II мировой войны подвергся детальному изучению и широкому внедрению в промышленность. [c.591]

    Гидрирование сложных эфиров или кислот (в более жестких условиях) также приводит к образованию спиртов эта реакция применяется в промышленности в основном при производстве высших спиртов из жирных кислот или их сложных эфиров. Стеариновый (октадецнловый) спирт получают, например, энергичным восстановлением стеариновой кислоты  [c.233]

    При восстановительных процессах (восстановление нитрогруппы в нитрофеноле и пикрщювой кислоте на платине, восстановление карбонильной группы в ацетоне) основным активным центром также является одноатомный ансамбль. Кроме того, для платиновых катализаторов активной оказывается и более сложная структура — пятиатомный ансамбль [Р1]5. Механизм реакции в этом случае еще не вполне ясен и требует дальнейшего изучения. [c.362]

    Уравпение восстановления серы более сложно, так как и исходное вещество (H2SO4 или SO ), и продукт реакции (H S), кроме серы, содержат другие элементы. При составлении этого уравнения будем исходить из того, что реакция протекает н кислой водной среде, а ион SO4 превращается в молекулу H2S  [c.267]

    Некоюрые сложные вещества в определенных условиях (обыч-но при нагреваинн) претерпевают внутримолекулярное окислен и е-восстановление. При этом процессе одна составная часть вещества служит окислителем, а другая — восста-Н0Е Ителем, Примерами внутримолекулярного окисления-восстановления могут служить многие процессы термической диссоциации. Так, в ходе термической диссоциации водяного пара [c.272]

    Восстановление изоляционных и антикоррозионных покрытий. Такие покрытия, как гу1ммироВ Ка, футеровка, окраска и термоизоляция, в процессе эксплуатации чггс го выходят из строя. Для нх восстановления тре-. буется комплекс сложных операций, связанных со строительством вспомогательных лесов, устройством подвес- ных беседок, приспособлений для подъема футеровоч-ной плитки, изоляционных материалов и т. ц. [c.163]

    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]

    Альдегиды восстанавливаются этими боронатами при комнатной температуре достаточно быстро кетоны в этих же условиях восстанавливаются медленнее, а сложные эфиры реагируют медленно даже при повышенной температуре. Нитрилы не восстанавливаются совсем, а пероксиды и хлорангидриды кислот реагируют быстро. Ароматические нитросоединения не способны к восстановлению при низких температурах и лишь частично восстанавливаются при 65°С [530]. Истинная причина такой селективности аммонийборонатов может быть связана с тем, что реагенты содержат различное количество остаточной [c.367]

    На примере каталитического восста-повленпя водородом д-нитрофенола и других нптросоединений можно проследить влияние растворителя на феноменологическую кинетику реакции, описываемую достаточно сложными ленгмюровскпми уравнениями. Было показано [17], что в общем виде скорость восстановления на ни- .елевом катализаторе выражается уравнением  [c.54]

    В зоне редукции, по данным Дж. Е. Клейпула и И.Р. Каплана (1974 г.), происходят весьма сложные и разнообразные процессы, из которых еле-, дует прежде всего указать восстановление соединений Са и М , различных соединений Ре и, по-видимому, других металлов, а также восстановление нитритов до. Еще более сложно ферментативное разложение ОВ, в результате которого образуются как Н. и 2 так и N, МН и различные органические соединения. Например, сахара и аминокислоты разлагаются на органические кислоты и спирты (2-, 3- и 4-углеродиые). [c.47]

    Получение. Соли или оксиды Ga, In, TI выделяют в результате сложной переработки отходов производства алюминия и обработки полиметаллических руд. Электролизом подкисленных водных растворов солей или восстановлением оксидов (углем, водородом) получают металлы. Выделенные металлы очищают зонной плавкой или методами амальгамной металлургии (см. разд. 7.4.3 и 8.9). О легкости их получения путем восстан вления свидетельствуют следующие данные если для АЬОз AGf = — 1582 кДж/мо ль то для GazOa и ПгОз эта величина значительно меньше, она соответственно составляет —998 и —832 кДж/моль. Производство металлов Ga, In и TI составляет десятки тонн в год. [c.344]


Смотреть страницы где упоминается термин Сложные восстановление: [c.554]    [c.103]    [c.554]    [c.424]    [c.425]    [c.452]    [c.158]    [c.57]    [c.370]    [c.372]    [c.436]    [c.64]    [c.91]    [c.41]   
Органическая химия Том2 (2004) -- [ c.244 ]




ПОИСК





Смотрите так же термины и статьи:

Бензойной кислоты сложные эфиры, электролитическое восстановление

Буво—Блана, реакция восстановления сложных эфиров карбоновых кислот

Восстановление органических соединений эфиров сложных

Восстановление сложных эфиров

Восстановление сложных эфиров Восстановление карбоновых кислот

Восстановление сложных эфиров органических кислот

Гидрирование также Восстановление сложных эфиров с расщеплением

Из карбонильных соединений или сложных эфиров (главным образом реакции бимолекулярного восстановления)

Карбоновые кислоты, сложные эфиры восстановление до ацилоинов

Каталитическое восстановление сложных эфиров (таблица

Образование сложных эфиров, хлор ангидридов, ангидридов и амидов кислот Восстановление карбоновых кислот

Препаративные методы синтеза спиртов Синтезы Гриньяра, гидроборирование-окисление, восстановление альдегидов, кетонов, сложных эфиров, карбоновых кислот

Реакции восстановления, протекающие по сложным механизмам

Реакции окисления — восстановления с участием молекул химических соединений и сложных анионов

Реакции сложных эфиров Гидролиз, Алкоголиз. Аммонолиз. Восстановление

Синтезы Гриньяра, гидроборирование-окисление, восстановление альдегидов, кетонов, сложных эфиров, карбоновых кислот Химические свойства спиртов

Сложные эфиры алифатических карбоновых восстановление

Сложные эфиры алифатических карбоновых кислот восстановление

Сложные эфиры восстановление оптически активных эфиров аминокислот

Спивак С. И. Степень полноты экспериментальной информация при восстановлении кинетических или равновесных констант сложных химических реакций

Частичное восстановление сложных эфиров

Электролитическое восстановление сложных эфиров

Эфиры сложные восстановление калий алкоголяты

Эфиры сложные восстановление натрием в спирте

Эфиры сложные, восстановление боргидридами

Эфиры сложные, восстановление до спирто



© 2025 chem21.info Реклама на сайте