Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективность олефинов

    Типичным примером кожухотрубчатого реактора с внутренним теплообменом, работающего нри условиях, близких к изотермическим, является реактор для селективной полимеризации олефинов (рис. 140). [c.276]

    Кайзер [97] провел обширную работу по определению оптимальных условий гидратации на ионитах. Он исследовал зависимость между соотношением вода олефины, давлением и временем контакта на ионитах Амберлит-15 и Амберлит IR-120. Было показано, что на ионитах можно достичь таких же значений конверсии и селективности, как при гидратации на неорганических катализаторах. Максимальная конверсия составляла 72,9% при объемной скорости жидкости 0,6 и селективности 96,4%. Ниже будет показано, что реакция протекает по псевдопервому порядку и существенно зависит от давления и температуры. [c.65]


    При избыточном содержании бу — танов за счет повышения растворяющей способности растворителя ухудшается качество деасфальтизата (возрастают коксуемость и вязкость, ухудшается цвет). Особенно нежелательно присутствие в пропане олефинов (пропилена и бутиле — нов), снижающих его селективность, вследствие чего возрастает содержа гие смол и полициклических ароматических углеводородов в деасфальтизате. [c.228]

    В реакции изомеризации парафиновых углеводородов наиболее медленной стадией является перегруппировка промежуточных соединений на кислотных центрах носителя, поэтому при синтезе катализатора необходимо придать носителю сильные кислотные свойства. Роль металла сводится к осуществлению первичного акта дегидрирования молекулы парафинового углеводорода с образованием олефина и протекания реакции гидрирования промежуточных соединений, что обеспечивает стабильность каталитической системы. Немаловажным моментом в синтезе катализатора изомеризации является подбор правильного соотношения между концентрацией металла и кислотностью носителя - это определяет не только активность, но и селективность его действия и стабильность в процессе изомеризации. [c.42]

    Крафтса, например хлорид цинка [82], трехфтористый бор [83 и безводный треххлористый алюминий. Последний селективно поли-меризует реакционноспособные олефины и одновременно переводит сернистые соединения в легко удаляемые комплексы химизм превращений, которым при этом подвергаются сернистые соединения, очень сложен, так как одновременно протекает целая серия первичных и вторичных реакций. Подвергалась изучению глубина сероочистки хлористым алюминием для различных типов сернистых соединений [84]. В общем случае 1 г хлористого алюминия на 100 мл сильно разбавленного раствора сернистых соединений в лигроине (нафте) удаляет от одной трети до половины сернистых соединений. Для некоторых сульфидов очистка идет еще глубже. Катализат подвергается затем вторичной перегонке, при которой содержание сернистых соединений еще больше снижается, так как большая часть исходных сернистых соединений превратилась в высококипящие комплексы. Хлористый алюминий применяется в промышленном масштабе для глубокой очистки специальных сортов смазочных масел. [c.239]

    Процесс флюид-ЮОП используется для селективной переработки газойлевых и более высококипящих углеводородных фракций с целью получения высокооктанового бензина, котельного топлива, олефинов для алкилирования и полимеризации, сжиженного нефтяного газа и других продуктов [c.7]


    Для дегидрирования парафинов, как видно из данных табл. 16, благоприятны высокие температуры, но даже при 900 К и 0,1 МПа нельзя достичь степени конверсии выше, чем 50%. Это учитывается в технических процессах дегидрирования, которые проводят со значительной рециркуляцией непревращенного сырья. Для процессов же гидрирования желательны невысокие температуры, хотя выбором давления и разбавления водородом можно и при 800 К осуществить его до конверсии олефина 97%- Поскольку удаление олефинов из нефтяных фракций селективным гидрированием необходимо при получении высокооктановых компонентов, требуется оценка их возможной конверсии и соответствующий выбор величин Т, Р и б. [c.130]

    Учитывая селективность цеолитов по отношению к олефинам, можно из газовых смесей, содержащих олефины и парафины, извлекать [c.99]

    N 283 ОКОЛО 150° С является селективным катализатором восстановления диенов и ацетиленов до олефинов [90]  [c.99]

    Необходимо отметить, что процесс, обратный первой стадии (адсорбции углеводорода) приводит к изомеризации (миграции двойной связи), что и наблюдали на опыте, а скорость восстановления катализатора, измеренная в отсутствие кислорода, достаточна для объяснения скорости окислительной дегидрогенизации [81]. Но эти модели не дают ключа к решению вопроса о происхождении различий в селективности у разных окислов, т. е. эти модели не раскрывают причин, заставляющих окислы отдавать предпочтение одному из возможных реакционных путей (через альдегид или диен). Начальный выход первичных продуктов окисления никогда не равен 100%, и всегда присутствует какое-то количество продуктов деструкции. Этот новый тип селективности связан с легкостью десорбции первичных продуктов, которые очень часто адсорбируются сильнее, чем олефин, как показывает их влияние на кинетику реакции. В экстремальных случаях не десорбируется ни одно из промежуточных соединений между олефином и СО или СОг, и единственной реакцией, которую удается наблюдать, является полное сгорание, и притом не только на неселективных катализаторах, но и на селективных, таких, как В1— —Мо—О (например, циклопентен) [83]. По той же причине при работе со всеми этими катализаторами следует избегать микропористости, поскольку из-за медленной диффузии в порах удлиняется время контакта, что приводит к глубокому разрушению желательных продуктов. [c.165]

    По сравнению с алкиларилсульфонатами (нанример, додецилбензол-сульфонат натрия), которые применялись для разделения фенолов, отделения альдегидов от кетонов, а циклопарафинов от олефинов, дпметилсульфо-лан (2,4-диметилтетрагидротиофен-8-диокспд), который удерживает селективно олефины , в качестве неподвижной фазы получил большее значение. [c.212]

    В специальных случаях выделение определенных олефинов из газовых смосой может производиться при помощи селективных растворителей. Так, из 1 аза, богатого этиленом, последний можно выделить промывкой раствором медпоп соли под давлепием. Растворимость олефинов в этаноламиновом растворе одпохлористой меди при 20° представлена в табл. 40. [c.74]

    При частичном сульфохлорировании углеводородов с последующим экстрагированием сульфохлорида селективными растворителями (см. стр. 405) и отделении моносульфохлорида от дисульфохлоридов петр-олейным эфир-ом или пентаном при —30° можно получить практически чистые 100%-ные моносульфохлориды. После десульфирования и обработки небольшими количествами концентрированной серной кислоты (для удаления олефинов, образовавшихся в качестве побочных продуктов) из этих моносульфохлоридов можно получить чистые, не содержащие углеводородов хлористые алкилы. [c.388]

    Из-за опасности пиролиза вряд ли целесообразно проводить хлорирование при температурах выше 600° при этом вследствие более легкого дегидрохлорироваиия 2-хлорпропана должно было бы наступать обогащение продуктов реакции 1-хлорпропаном. Такое обогащение одним продуктом за счет другого происходит особенно легко, когда при хлорировании образуются третичные хлориды. В этих случаях всегда следует считаться с возможностью пиролиза. При высоких температурах он может наступить даже в стеклянной аппаратуре, причем в результате указанного обоганхения содержание более стабильных продуктов превышает величину, получающуюся при отсутствии селективного хлорирования. Степень пиролиза можно легко установить, определяя выделившийся при хлорировании хлористый водород и сравнивая его количество с количеством прореагировавшего хлора. Если выход хлористого водорода иэ прореагировавшего хлора превышает теоретический, это происходит вследствие пиролиза. При этом в отходящих газах должны присутствовать олефины, а в продуктах реакции, если работают по рециркуляционному методу, содержится больше дихлоридов, чем это должно быть при таком же отношении углеводорода к хлору и прн нормально протекающем хлорировании. [c.546]

    МОЖНО алкплировать изобутан пропиленом, получая изогептаны [15, 16]. После этого кислота еще разбавляется и в таком виде используется для алкилирования изопентана С - и Ст-олефинами, а также для селективного вымывания диолефинов. После этого кислота регенерируется. Регенерация серной кислоты определяет минимальную мощность алкилирования, обеспечивающую рентабельность установки. На меньших установках выгоднее работать только с фтористым водородом [17]. (При отсутствии обработки потери катализатора в присутствии фтористого водорода значительно уменьшаются [18].) [c.256]


    Как видно из приведенных в табл.8.5 данных, при переходе от реактора с псевдоожиженным слоем к лифт — реактору улучшается селективность крекинга, возрастает содержание олефинов С -С в газе и содержание олефинов в бензине. Однако вследствие "средней" активности катализатора Цеокар —2 в лифт — реакторе не достига — ютс5( достаточная конверсия сырья и выход бензина, из — за неза — вершенности вторичных реакций изомеризации и ароматизации [c.127]

    В настояшее время реализовано несколько модификаций процесса каталитического дегидрирования парафинов под давлением водорода на платинсодержащем катализаторе процессы фпрмы ЮОП (США) ио производству олефинов п выше (пакол-процесс) и Сз—С5 (катафин-ироцесс, процесс оле-флекс — рис. 55). Селективность процессов — до 90% для Сз — 5 и более 90% для высших олефинов. Ацетиленовые и диеновые углеводороды практически отсутствуют вследствие давления водорода и применения гидрирующего катализатора. Глубина деструкции исходного парафина минимальная — выход газа С —Сг не превышает 5%. [c.159]

    Каталитическое дегидрирование высших нормальных парафинов протекает селективно лишь при невысокой степе1ш прев-ращения сырья. Для выделения олефинов из смеси с парафинами требуются существенные капитальные вложения и повышенные эксплуатационные затраты. [c.161]

    Диспропорционирование смесей Се—Сю и С20, полученных при высокотемпературной олигомеризации этилена, позволяет повысить выход детергентных фракций олефинов С12—Сц. Вначале осуществляют изомеризацию двойной связи при 30— 50 °С, объемной скорости до 2 ч над калием и натрием, нанесенными на активный оксид алюминия, а затем проводят дис-иропорционирование над алюмомолибденовым катализатором (12% МоОз) прн 150°С, давлении 0,5—0,7 МПа, в растворителе— гексане. Степень превращения олефинов 60—70%, селективность 65—90%. [c.161]

    Химические методы могут быть использованы или для разделения некоторых классов углеводородов, или для идентификации индивидуальных углеводородов в узких фракциях. Ароматршеские углеводороды могут быть количественно отделены от насыщенных углеводородов сульфированием олефины могут быть количественно и селективно гидрированы при низких температурах в присутствии эффективных катализаторов циклогексаны (исключая четвертичные производные) дегидрируются в ароматические углеводороды над платиновым катализатором и т. д. [c.13]

    Избирательная гидрогенизация замещенных ацетиленов. Многочисленные представители моно- и дизамещенных ацетиленов были гидрогенизи-рованы в соответствующие олефины. Сопряженные системы, содержащие тройную и двойную связи (винилацетилен, дивинилацетилен), также были гидрогенизированы в полиолефины [90]. Селективная гидрогенизация применяется в промышленности для удаления замещенных ацетиленов из бутадиена [И]. [c.240]

    В ходе проведенных исследований установлено, что максимальной олефинообразующей способностью, оцениваемой по соотношению суммы олефинов к сумме парафинов в газе, обладают катализаторы, содержащие оксиды железа (рис. 1.6). Причем стабильные максимальные значения этого показателя наблюдаются на всем исследованном временном интервале для гранулированного железоокисного катализатора. Для других катализаторов этот показатель растет одновременно с потерей окислительной активности и далее снижается под действием накопления коксовых отложений. Таким образом, установлено, что железоокисные катализаторы обладают высокой селективностью в реакциях окислительного дегидрирования. [c.26]

    Олефины с третичной основой большей частью труднее поддаются гидрированию, чем внутренние непредельные соединения с прямой цепью, а те в свою очередь, более устойчивы, чем термические олефины [176]. Благодаря тому, что реакция устойчива к катализатору, температуре, давлению и углеводородной структуре, создаются благоприятные условия для селективного гидрирования примером этого служит удаление олефинов из ароматических углеводородов при низкой температуре (20° С и давлении водорода 28 кПсм или 115—175° С при атмосферном давлении водорода) над никелевым катализатором [177] и насыш ение бензино-лигроиновой фракции термического крекинга [178]. [c.90]

    Недеструктивные процессы применяются также и при селективном гидрировании олефинов в бензинах каталитического крекинга. Одновременно гидрирование влечет за собой и очистку нефтепродуктов от серы, азота и кислорода. Они удаляются из нефтепродуктов в виде таких соединений, как сероводород, аммиак и вода. Сущность изл1енений, происходящих ири недеструктивном гидрировании бензина каталитического крекинга, демонстрируется в табл. П-6 [203—205]. [c.94]

    Успех подобной переработки бензинов зависит от избирательного воздействия водорода на неуглеродные соединения и скорости селективного гидрирования олефинов в присутствии ароматических соединений. Во время войны применялись процессы над никелевым катализатором при низком давлении (4— 10 кПсм ) и над сульфидом молибдена при высоком давлении (211 кГ/см ). В настоящее время практикуется частичное гидрирование крекинг-бензинов для осуществления химической стабилизации и предварительной обработки сырья, направляемого на каталитический риформинг. [c.94]

    Кислый гудрон, образующийся при сернокислотной очистке нефтепродуктов, имеет очень сложную природу, даже когда очистке подвергается бензин или керосин. В кислом гудроне содержатся эфиры и спирты, которые образуются при взаимодействии кислоты с олефинами сульфокислоты, которые образуются прп сульфировании ароматики, нафтенов и фенолов соли, которые образуются при реакции кислоты с азотистыми основаниями нафтеновые кислоты, сернистые соединения и асфальтены, для которых серная кислота является селективным растворителелк К этому перечню соединений следует еще добавить продукты окислительно-восстановительных реакций, т. е. смолы и растворимые в кислоте углеводороды, а также воду и свободную серную кислоту. Гурвич [66] считает, что в кислом гудроне присутствует много непрочных соединений кислоты с углеводородами эти соединения легко разлагаются при хранении кислого гудрона или при разбавлении его водой. Очевидно, что соотношение между перечисленными компонентами кислого гудрона будет различным в различных конкретных случаях и зависит как от природы очищаемого нефтепродукта, так и от технологического режима очистки и от крепости применяемой кислоты. [c.236]

    Силикагель — двуокись кремния плюс небольшое количество связанной воды. Он приготовляется обработкой силиката натрия минеральными кислотами, серной или соляной. Образовавшийся гель отстаивается, затем выщелачивается водой для удаления солей и избытка кислоты, а продукт сушится и просеивается. Высокая селективность и большая пропускная способность делают силикагель ценным для аналитического разделения ароматики, олефинов, парафинов и циклопарафинов. Промышленное отделение ароматики от парафинов и циклопарафинов уже разработано и испытано в полузаводском масштабе [5, 6, 33]. [c.266]

    Разделение углеводородов на классы. Силикагель весьма селективный адсорбент для отделения ароматики от парафинов и циклопарафинов, и он теперь широко применяется в лабораторной практике для определения содержания ароматики в разлггчных нефтяных фракциях он также употребляется в некоторых случаях для определения содержания олефинов [9, 10, 36]. Были [c.267]

    Процесс фирмы Стоун энд Вебстер инжинирин1> используется для селективного крекинга мазутов с высоким содержанием асфальтенов и обычных вакуумных газойлей с получением высокооктанового бензина, средних дистиллятов и олефинов Сз—С4. [c.12]

    Долгое время считалось, что непредельные углеводороды бензинов крекинга имеют, в основном, алифатическое строение и относятся к классу моноолефинов [46]. В работах более позднего периода при использовании селективного каталитического гидрирования [47, 4 ] удалось доказать наличие непредельных углеводородов циклической структуры. Так, при селективном каталитическом гидрировании бензина термического крекинга, содержащего 36 вес. % непредельных углеводородов, было найдено, что 33% непредельных превращается в парафины, 37% — в нафтены и 30% — в алкиларо-матические углеводороды [4]. Следовательно, исходный бензин содержал олефины, циклоолефины и ароматические углеводороды с двойной связью в боковой цепи. [c.15]

    Для избирательного гидрирования диенов, которое не затрагивает олефинов и алкенилароматических углеводородов, используют селективные гидрирующие катализаторы, например алюмопалла-диевосульфидный, при мягком режиме гидрирования (40—200 °С и 2,2—2,5 МПа). [c.87]

    В середине 30-х годов делались серьезные попытки использовать каталитическое гидрирование в процессах очистки масел и крекинг-бензина. С распространением в промышленных масштабах процессов общей и селективной полимеризации газообразных олефинов гидрирование было применено для превращения олефинового полимер-бензина в гидробензин, состоящий из предельных углеводородов, и диизобутилена — в изооктан. [c.39]

    В случае таких окислов, как, например, Си—О, окислительная стадия протекает медленно (нулевой порядок по олефину), в то время как для В1—Мо—О медленной является восстановительная стадия (нулевой порядок по кислороду). Промоторы (В1 для Мо—О, Мо для V—О) должны влиять главным образом на медленную стадию, например на способность окислов Мо—О или V—О восстанавливаться [92]. С точки зрения электронной теории промоторы должны изменять работу выхода электрона (ф) твердого тела, причем увеличение ф ускоряет восстановление, а уменьшение ф ускоряет окисление. Дальнейшие реакции алилльного радикала определяют селективность катализатора, но предполагаемые механизмы не были достаточно обоснованы. Так, например, образование альдегида и диена представляли по аналогии с гомогенным разложением гидроперекисей [16] соответственно следующим образом  [c.164]

    Общая картина окисления ароматических углеводородов очень близка к тому, что было описано для олефинов атака боковой цепи в бензильном положении с образованием альдегида или кислоты происходит быстрее и легче, чем атака ядра, при которой образуются хиноидные соединения и продукты их разложения. Селективному окислению благоприятствуют те же слабые катализаторы (УгОа, М0О3, ШОз), в то время как сильные катализаторы (N10, МпОг) и металлы (Р1, N1, Аи) приводят к полному разложению до СО2 и СО. Каталитическое сгорание ароматических углеводородов, по-видимому, протекает легче, чем сгорание алканов, но медленнее, чем сгорание олефинов [5]. [c.173]

    В противоположность олефинам продукты окисления ароматических ядер, по-видимому, образуются путем присоединения к сопряженной системе, а не путем замещения. При 1,4-присоединении к бензольному ядру образуется хиноидная система, которую всегда находят среди первичных продуктов, и вполне возможно, что хорошие выходы малеинового ангидрида из бутадиена имеют такое же происхождение [16]. Иоффе и Волькенштейн [162] указывают, что окисление бензола на окислах-полупроводниках р-тнпа (как, например, СиО) приводит к полному сгоранию (СО, Oj), но с одновременным образованием следов фенола и дифенила, которые не были найдены при селективном окислении на окислах-полупроводниках п-типа (как, например, V2O5) в этом случае главными продуктами являются хинон и малеиновый ангидрид. Теоретические соображения заставляют думать, что в первом случае при диссоциативной адсорбции gHg образуются фенильные радикалы gHe, а во втором случае ассоциативная адсорбция приводит к образованию хиноидных бирадикалов  [c.177]


Смотреть страницы где упоминается термин Селективность олефинов: [c.277]    [c.222]    [c.113]    [c.231]    [c.142]    [c.74]    [c.356]    [c.295]    [c.352]    [c.385]    [c.198]    [c.161]    [c.167]   
Окисление углеводородов на гетерогенных катализаторах (1977) -- [ c.285 ]




ПОИСК







© 2025 chem21.info Реклама на сайте