Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакторы непрерывного и периодического действия

    В промышленности дегидрирование бутана в бутены осуществлено в реакторах периодического действия с неподвижным слоем катализатора (фирма Филлипс и др., США) или непрерывно в реакторах с псевдоожиженным слоем мелкозернистого катализатора (СССР, Румыния). В псевдоожиженном слое катализатора осуществлено также дегидрирование изопентана в изоамилены (СССР). [c.653]


Рис. УШ-24. Зависимости г = / (т) для реакторов периодического (а, б) и непрерывного (а) действия г — средняя скорость превращения). Рис. УШ-24. Зависимости г = / (т) для <a href="/info/25689">реакторов периодического</a> (а, б) и непрерывного (а) действия г — <a href="/info/6338">средняя скорость</a> превращения).
    Нейтрализация (омыление) является завершающим процессом при производстве большинства присадок. В качестве нейтрализующих реагентов используют, как правило, гидроокиси бария, кальция и цинка. Важен способ подачи реагентов на омыление в кристаллическом виде, в виде суспензии в масле или в воде практикуется также подача гидроокиси бария в расплавленном виде. Нейтрализацию можно проводить в реакторе-нейтрализаторе периодического действия или в пленочном реакторе непрерывного действия. Чем глубже проходит реакция, тем меньше в конечном Продукте механических примесей и выше его зольность. Процесс нейтрализации довольно длителен. [c.316]

    Можно различать реакторы, в которых протекают различные химические процессы реактор смешения или батарея реакторов смешения одно- или многоступенчатые проточные реакторы реакторы с неподвижным, движущимся или кипящим слоем инертных или каталитически активных твердых частиц. Наконец, по режиму работы различают реакторы непрерывного, периодического и полунепрерывного (полупериодического) действия. [c.20]

    Процесс окисления остаточных фракций нефти воздухом в промышленной практике осуществляется в аппаратах разного типа кубах периодического действия, трубчатых змеевиковых реакторах и пустотелых колоннах непрерывного действия. Особенности окисления в этих аппаратах рассматриваются ниже. [c.48]

    Реактор смешения периодического действия — аппарат, в который единовременно загружают исходные компоненты, взаимодействующие между собой определенное время, до достижения необходимой степени превращения. Затем полученную смесь выгружают. В таком реакторе состав реакционной массы одинаков во всем объеме и непрерывно изменяется во времени. [c.89]

    Значения экспонентного интеграла можно взять по таблицам и уравнение (11-78) легко интерпретировать графически [11]. Уравнение (11-78) пригодно только для реакторов периодического действия, причем I — фактическое время пребывания, однако формально им пользуются и для реакторов непрерывного действия, заменяя I на I. [c.218]


    Общее правило, устанавливающее связь между избирательностью химического процесса и его аппаратурным оформлением если зависимость между степенью превращения и избирательностью падает, то следует выбирать реактор смешения периодического действия или реактор вытеснения, а для реакций с возрастающей зависимостью — реактор смешения непрерывного действия. Выбор типа реактора по избирательности и способу подачи реагентов приведен в табл. 7.1. [c.180]

    На рис. 119 приведена технологическая схема производства полистирола. Полимеризацию проводят в две стадии. Первая стадия—форполимеризация—протекает в реакторах 1 периодического действия, куда из сборника поступает стирол, в котором растворен инициатор полимеризации. Температуру в реакторе поддерживают в пределах 60—80 С. При этой температуре инициатор распадается и начинается полимеризация стирола. Процесс форполимеризации проводят при перемешивании, что обеспечивает равномерное распределение тепла в реакционной смеси. Вязкий раствор полимера (27—29%-ный) в мономере из реакторов 1 передается в многосекционную колонну 2 непрерывного действия. Она состоит из шести—восьми секций, в каждой из которых поддерживается определенный температурный режим—от 80—85 °С в первой секции, до 212 °С в последней секции. Внизу колонна заканчивается конусом, в котором температура достигает 215 °С. Для обеспечения непрерывной работы колонны ее соединяют с двумя реакторами форполимеризации. Форполимер медленно стекает по колонне в течение 25—30 ч, постепенно обогащаясь полимером. Пары мономера поднимаются вверх по колонне и отводятся на охлаждение и конденсацию. Конденсат возвращается в сборник. Из конуса колонны расплавленный полистирол, полностью освобожденный от мономера, непрерывной струей стекает на шнек-пресс 3, который выдавливает полимер в воздушный холодильник 4. Здесь полистирол охлаждается, образуя прозрачную стекловидную массу, которая затем измельчается в грануля-торе и сбрасывается в приемник. [c.426]

    Из сравнения кривых 1 я 2, соответствующих равенствам (11.6) и (П.12) ясно, что для достижения конверсии, равной 95% в реакторе непрерывного действия полного перемешивания, объем аппарата должен быть в 6,3 раза больший, чем объем реактора полного вытеснения или реактора периодического действия полного перемешивания. Для реакций более высокого порядка (кривые 3 ж 4) влияние типа реактора на степень конверсии еще более значительно. Для степени конверсии, равной 95%, объем непрерывно действующего реактора должен быть в 20 раз больше соответствующего реактора полного вытеснения. [c.31]

    Реактор смешения непрерывного действия. В реакторе смешения периодического действия все частицы реакционной среды находятся одинаковое время, а температура может изменяться практически по любому заданному закону. Исключение составляют только реакторы большого объема, в которых вследствие значительной инерционности температуру можно изменять в ходе синтеза только в сравнительно узких пределах. Если к реактору идеального смешения непрерывно подводить реагенты и одновременно с той же скоростью выводить из него содержимое (рис. 3.10), ситуация в нем начнет быстро изменяться. В установившемся стационарном режиме концентрация реагентов одинакова во всем объеме реактора и на выходе из него. Среднее время пребывания реагентов в реакторе равно [c.140]

    При изучении реакторов широко применяется моделирование процесса и расчет необходимых параметров по полученной модели. В связи с этим предлагаемая работа посвящена изучению химического превращения в различных типах реакторов и сравнительному анализу моделей реакторов для выбора наиболее целесообразной. Количество выполняемых работ соответствует числу моделей реакторов. Первая часть работы посвящена изучению химических превращений в проточном трубчатом реакторе, вторая — в реакторе смешения периодического действия и третья — в реакторе смешения непрерывного действия и каскаде таких реакторов. [c.283]

    Такой реактор непрерывного действия позволит, так же как и реактор дискретного (периодического) действия, самостоятельно менять и загрузку аппарата и время реакции. Это очень важная связь между принципом работы реакторов дискретного и непрерывного действия. Мы не учитывали время запаздывания ни в том, ни в другом случаях, ибо это не имеет большого значения. [c.38]

    Выражения (3.93), (3.97) и (3.99) применимы к условиям замкнутой системы, в которой процесс термического умягчения зависит от времени задержки, температуры и солености раствора. В реакторе непрерывного действия с перемещающейся жидкостью без перемешивания между элементарными объемами потока этот процесс происходит так же, как и в реакторе разового (периодического) действия. Такие аппараты называют реакторами вытеснения. [c.68]

    Детальное экспериментальное изучение химических реакций, лежащих в основе разрабатываемого процесса, — необходимое условие для получения его надежной кинетической модели. В случае быстро протекающих реакций (время полупревращения порядка от долей секунды до нескольких минут), которые реализуются в промышленности в виде непрерывных процессов, проходящих в проточных реакторах, метод исследования кинетики в периодически действующих изотермических реакторах, кратко изложенный в этой главе, непригоден. Изучение кинетики таких реакций, к которым относятся подавляющее большинство каталитических и все газовые реакции, проводят в специальных установках проточного типа. [c.35]


    Для наглядности равенства (11.35) и (11.37), связывающие X и у при = 1, а также значение величины селективности V изображены в виде кривых на треугольной диаграмме (рис. 12). Из анализа кривых следует, что с увеличением степени превращения X скорость побочной реакции увеличивается, при этом селективность уменьшается в обоих типах реакторов, всегда оставаясь меньшей в реакторе полного перемешивания. Например, при степени превращения X = 0,6 селективность процесса в реакторе полного вытеснения составляет 0,61, а в реакторе полного смешения — только 0,4. Снижение селективности наблюдается и при переходе от реактора периодического действия к реактору непрерывного действия, что весьма существенно при моделировании и объясняется различным уровнем концентрации целевого продукта в начальный и конечный моменты времени пребывания в аппарате. [c.34]

    I —перенос тепла теплопроводностью (первый порядок)-, 2 —параллельные или. последовательные реакции первого порядка-, 3 —единичная стадия смешения первого порядка 4, 7 — последовательные и параллельные многостадийные процессы 5 —последовательности тепловых стадий 6 — многостадийные последовательности перемешивания 8 — кинетические зависи мости, являющиеся функцией температуры 9 —кинетические закономерности второго и высших порядков 10— проточный (трубчатый) реактор I — непрерывно и периодически действующие реакторы с перемешиванием 2 —реакторы для гетерогенного катализа  [c.117]

    Для сульфирования ароматических соединений применяют главным образом концентрированную серную кислоту, олеум и серный ангидрид. Сульфирование ароматических соединений проводят в аппаратах периодического действия с мешалками и охлаждающими рубашками, змеевиками или с дополнительной выносной теплообменной аппаратурой. В многотоннажных производствах процессы сульфирования проводят непрерывна в каскаде реакторов с мешалками. В реакторах поддерживают различную температуру в соответствии с изменением концентрации и готовности сульфирующего агента. [c.109]

    При нитровании углеводородов реакционная масса состоит из двух несмешивающихся жидкостей. Процессы нитрования могу г быть как периодическими (их проводят в аппаратах периодического действия), так и непрерывными (их проводят в каскаде реакторов с мешалками). После каждого аппарата устанавливают сепаратор для отделения органической фазы от нитрующей смеси. Лри этом свежую нитрующую смесь подают в последний аппарат, в котором находится пронитрованный углеводород и возможно создание более жестких условий для исчерпывающего нитрования исходного, вещества. Отработанные кислоты из этого аппарата отделяют и направляют в предыдущий аппарат и т. д. Таким [c.117]

    По способу подвода и отвода реагентов реакторы делятся на следующие группы 1) реакторы периодического действия, в которые все реагенты вводятся до начала реакции, а смесь продуктов отводится после окончания процесса 2) реакторы непрерывного действия, характеризуемые установившимся потоком реагентов через реакционное пространство 3) реакторы полунепрерывного (полупериодического) действия. [c.290]

    Зависимость селективности от степени превращения позволяет выбрать оптимальную модель реактора для максимального выхода целевого продукта В (рис. 33). Выход продукта в реакторе идеального вытеснения или же реакторе смешения периодического действия определяется площадью под кривой зависимости 5в от х в непрерывно работающем реакторе полного смешения — площадью прямоугольника, равной 5в- а. Если селективность с увеличением степени превращения уменьшается (рис. 33,а,б), выход также будет уменьшаться. В этом случае площадь под кривой будет бoльuJe площади прямоугольника и, следовательно, предпочтителен реактор идельного вытеснения или реактор периодического действия. Каскад реакторов полного смешения (рис. 33,6) даст более высокий выход, чем единичный реактор полного смешения. Если с увеличением степени превращения селективность возрастает (рис. 33, е), то по заштрихованным площадям видио, что выход в реакторе полного смешения будет значительно выше, чем в реакторе идеального вытеснения или реакторе периодического действия. При этом использование каскада реакторов не рекоменду- [c.101]

    О потоке газа или жидкости, проходяш,ем через реактор. Проведение реакций в потоке целесообразно в тех случаях, когда время реакции относительно невелико, а производительность аппарата высока и реагенты представляют собой газообразные вещества. При высоких концентрациях, когда возможны побочные реакции, применение проточных реакторов облегчает регулирование состава получаемого продукта. Большинство непрерывных процессов протекает в стационарном состоянии. Нестационарное состояние возникает при пуске и остановке аппаратов (см. стр. 132). Непрерывные процессы обычно проводят в гораздо более крупных масштабах, чем периодические. Некоторые типы реакторов непрерывного действия показаны на рис. 1У-1 и 1У-2. Характер зависимости концентраций компонентов смеси от времени и изменение концентраций по длине или высоте реактора показаны на рис. 1У-3. [c.113]

    Определить максимальную концентрацию вещества В при проведении реакции а) в реакторе периодического действия б) в одноступенчатом реакторе смешения непрерывного действия в) в двухступенчатом реакторе смешения непрерывного действия. [c.130]

    Метод технологического расчета при помощи номограмм был создан для эндотермических жидкофазных реакций первого порядка, протекающих в непрерывно или периодически действующих реакторах с теплообменом, осуществляемым конденсацией паров при постоянной температуре. Этот метод основан на большом числе решений, выполненных на электронно-счетной машине . [c.155]

    Переходя таким путем от времени к пространственной координате, мы как бы представляем реактор идеального вытеснения в виде непрерывной совокупности реакторов периодического действия кинетика реакций в каждом из этих реакторов описывается одним и тем же уравнением (1,11) при одинаковых начальных условиях значение же времени, которому отвечает состояние реакционных систем, непрерывно изменяется вдоль их цепочки. [c.18]

    Исследуя устойчивость реакторов полунепрерывного или непрерывного действия, мы определяем условия, ири которых сохраняется некоторый стационарный режим. Как было показано в главе HI, реакторы периодического действия не имеют таких режимов для них характерно изменение режима со временем. Поэтому проблема устойчивости этих реакторов формулируется, как проблема устойчивости движения. [c.171]

    Данные о кинетике химических реакций можно получать, изучая процессы,, протекающие в реакторах периодического или непрерывного действия. При применении периодическидействую-щих реакторов исходные реагенты загружают в аппарат через определенные промежутки времени и наблюдают за ходом процесса. При использовании реакторов непрерывного действия реагенты непрерывно поступают с заданной скоростью либо в смеситель в виде сравнительно длинной узкой трубы, либо в несколько последовательно соединенных смесителей за ходом реакции наблюдают после достижения стационарного состояния в нескольких точках по длине аппарата. [c.14]

    На характер протекания химической реакции большое влияние оказывает качество смешения компонентов. Если в аппаратах периодического действия смешение производится в самом реакторе, то для непрерывно действующих реакторов, особенно при реакциях в паровой фазе, необходимо предварительное смешение. Нами уже упоминались смесители, применяемые при хлорировании. На рис. 48 показано несколько конструкций камер предварительного смешения они могут быть соединены с реактором или смонтированы отдельно от него. [c.122]

    В резервуарах хранят как дорожные, так и строительные битумы для обеспечения слива битумов самотеком резервуары возводят на постаменте. В отдельных случаях используют наземные резервуары вместимостью примерно 700 и 1000 м (Хабаровский и Новогорьковский НПЗ), предназначенные для хранения менее вязких продуктов и не оснащенные средствами обогрева. В случае перевода установки на непрерывную схему окисления (в трубчатых реакторах или колоннах) хранят битумы также в высвободившихся окислительных кубах. Наконец, рубраксы и другие высокоплавкие битумы, получаемые в кубах периодического действия разной емкости, хранят до слива непосредственно в кубах. [c.142]

    Теория одноступенчатой кристаллизации была предложена Брэнсомом, Даннингом и Миллардом [13]. Ими было достигнуто удовлетворительное совпадение теоретически найденного распределения с экспериментальными данными, полученными при использовании небольшого лабораторного кристаллизатора непрерывного действия. Диапазон изменения размеров кристаллов оказался шире, чем при соответствующей кристаллизации в реакторе периодического действия. Этого, по-видимому, и следовало ожидать вследствие явления проскока. В годы войны автор настоящей работы и его сотрудники получили аналогичные результаты при проведении исследования роста кристаллов цик-лонита (Н. О. X.) в кристаллизаторе промышленного типа. Эти результаты опубликованы не были. [c.118]

    Отсюда следует, что в отношении выхода реакций расщепления периодический процесс является оптимальным В любом типе реактора непрерывного действия неизбежны колебания времен пребывания, и даже, если среднее время пребывания в реакторе будет равно I, всегда найдутся элементы потока, которые пройдут через систему со временем пребывания, большим или меньшим оптимального значения. Чем шире диапазон изменения времен пребывания, тем меньше максимально возможный выход. [c.110]

    Носитель, поступающий со склада, рассеивают на грохоте / и по мере надобности через рукавный вакуум-фильтр 2 подают в эмалированный реактор с паровой рубашкой 3 для извлечения избыточного количества АЬОз серной кислотой. Для-уменьшения потерь носителя из-за растрескивания гранул предусмотрено пневм.атиче-ское перемешивание фаз. В реакторе поддерживают температуру 90°С и концентрацию кислоты — 10%. Время, необходимое для извлечения АЬОз, рассчитывают по формуле (IV. 46). Реактор 3 — периодически действующий, что вызвано трудностью подбора конструкционного материала для создания непрерывно действующего аппарата. Для обеспечения непрерывности процесса одновременно используют несколько реакторов. В целях защиты от коррозии кислыми водами последующих аппаратов, отмывку носителя от сульфат-иона первоначально производят в том же аппарате. Частично отмытый носитель поступает на сетчатый конвейе ) 4 (сетка из нержавеющей стали с диаметром отверстий 0,1—0,2 мм). Алюмосиликат располагается на ленте конвейера слоем толщиной в 2—3 см. Лента конвейера с лежащим на ней носителем движется над сборником промывных вод 7 и орошается сверху водой с помощью форсунки 6. Отмывка носителя продолжается 40 мин. В соответствии со скоростью движения ленты и временем отмывки рассчитывают необходимую длину промывной зоны. Носитель сушат 1 ч в печи 8 тоннельного типа при 120—130°С и пропитывают раствором активных солей в ванне 9. Она представляет собой прямоугольную емкость из нержавеющей стали с паровой рубашкой для создания и поддерживания необходимой тeмпepaтypьL Раствор солей непрерывно циркулирует через ванну с помощью центробежного насоса И. Для облегчения поддержания постоянной концентрации пропиточного раствора, отношение Ж Т в ванне равняется 120. Перемешивание раствора специальными механическими средствами нецелесообразно, поскольку при достаточной мощности циркуляционного насоса И достигается полное смешение в системе ванна, насос, сборник 10. Емкости 13 и 14 используют для приготовления [c.145]

    Сырье в реакторы непрерывного действия закачивают при температуре не выше 20 °С. Все кубы-окислители оборудуют предохранительными клапанами или взрывными пластинами. Краны, в которых застыл битум, обогревают водяным паром или применяют индукционный электрический подогрев. В отдельных случаях может быть допущен открытый огонь для подогрева при наличии разрешения органов пожарного надзора и выполнении мероприятий пожарной безопасности. Сливают готовые битумы из кубов периодического действия и кубов-раздат-чиков в железнодорожные бункеры при температуре не выше 150 °С в крафт-мешки, котлованы и битумовозы — при температуре не выше 200 °С. Высокоплавкие битумы (рубракс марок А и Б) сливают в котлованы при температуре не выше 270 °С. [c.97]

    Расчет реакторов с сегрегированным потоком. В реакторах для проведения процессов в гетерогеннь1х системах часто можно различить непрерывную и диспергированную (зерна твердого тела, капли жидкости, газовые пузырьки) фазы. При движении через реактор каждый элемент диспергированной фазы полностью или частично сохраняет свои особенности, и с учетом проходящего в нем химического превращения такой элемент можно рассматривать как микрореактор периодического действия. Движение диспергированной фазы является частным случаем сегрегированных потоков. Обычно сегрегированный поток определяется как движение отдельных элементов жидкости (газа) или твердого тела, полностью изолированных друг от друга с точки зрения массообмена. [c.329]

    Фирма Шелл Кемикал Корпорейшен, исходя из почти чистого -крезола, тоже вырабатывает ди-/и/ е/ге-бутил- -крезол и выпускает его в продажу под маркой ионол . Процесс осуществляется полунепрерывно реактор представляет собой большой периодически действующий автоклав, регенерационная система построена по принципу непрерывного действия. Этот продукт широко используется как антиокислитель для трансформаторных масел и для бензинов. Другим антиокислителем, используе-мы.м нефтяной промышленностью, является 2,4-диметил-6-бутилфенол. [c.508]

    IV-6. Определить минимальную стоимость батареи реакторов непрерывного действия для переработки 907 кг1сутки реагента. Исходная концентрация вещества 20 кмоль/м , концентрация на выходе из реактора 2,4 кмоль Данные по кинетике реакции в аппарате периодического действия приведенв в табл. 32. [c.137]

    Выбор между реактором периодического действия и реактором смешения зависит, разумеется, от большого числа факторов, из которых одним из самых важных является объем производства. При массовом производстве всегда предпочтителен непрерывный процесс, однако при этом необходимо учитывать влияние самого реактора на качество целевого продукта. Пластмассы никогда не являются химически однородными веществами они представляют собой смеси веществ, имеющих сходную общую структуру и различные молекулярные веса. Это является естественным следствием вероятностного характера самой реакции не каждая молекула активируется или претерпевает соответствующее соударение в один и тот же момент времени, и поэтому молекулы полимера имеют совершенно различную длину цепи. Действнтельно, если М. "оиомер и Р,- — полимер с чис/юм звеньев г, то мы имеем последовательность реакций тина [c.114]

    Иллюстрацией данного положения может послужить исследование, проведенное автором и его коллегами [21] в годы войны. Речь идет о разработке метода нитрования гексаметилентетра-мина (гексамина) с целью получения взрывчатого вещества цик-лонита (R. О. X.). Мелкие кристаллы гексамина добавляли к 97—100%-ной азотной кислоте при соответствующей температуре. Кинетика реакции была неизвестна, но было обнаружено, что суммарный выход, полученный в лабораторном реакторе периодического действия, весьма чувствителен к соотношению гексамина и азотной кислоты в реакционной смеси. По-видимому, это связано с влиянием эффективной концентрации нитрующей среды. По мерс протекания реакции расходуется азотная кислота и выделяется вода. При этом происходит постепенное растворение и взаимодействие все новых и новых количеств твердого гексамина при непрерывном разбавлении кислоты. Логичное объяснение экспериментальных наблюдений дает гипотеза, согласно которой мгновенный выход, т. е. выход на каждую вновь добавляемую порцию гексамина, почти полностью определяется мгновенной концентрацией кислоты. [c.124]


Смотреть страницы где упоминается термин Реакторы непрерывного и периодического действия: [c.179]    [c.263]    [c.37]    [c.112]    [c.305]    [c.114]    [c.11]    [c.12]    [c.17]   
Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.173 ]




ПОИСК





Смотрите так же термины и статьи:

НЕПРЕРЫВНОЕ КУЛЬТИВИРОВАНИЕ БАКТЕРИИ ПРИМЕНИТЕЛЬНО К ОЧИСТКЕ СТОЧНЫХ ВОД АКТИВНЫМ ИЛОМ В АЭРОТЕНКЕ Реакторы периодического действия

Реактор действия

Реактор непрерывного действия

Реактор периодического действия

Соотношение времени пребывания компонентов в реакторах периодического и непрерывного действия

Сравнение выходов в реакторах периодического и непрерывного действия с мешалками

Формальная кинетика химических реакций, протекающих в реакторах периодического и непрерывного действия



© 2025 chem21.info Реклама на сайте