Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние среды

    Влияние среды на характер окислительно-восстановительной реакции проявляется н в том, что для некоторых элементов в одной и той же степепи окисления в кислой п щелочной средах характерны разные формы соединений, наиример  [c.209]

Таблица 2.12. Влияние среды при хлорировании катализаторов на их активность в реакции изомеризации н-бутана [19] Таблица 2.12. <a href="/info/7664">Влияние среды</a> при <a href="/info/52071">хлорировании катализаторов</a> на их активность в <a href="/info/20489">реакции изомеризации</a> н-бутана [19]

    К первой группе относятся сосуды, работающие под избыточным давлением свыше 0,07 МПа (0,7 кгс/см ). Они, за небольшим исключением, находятся под надзором органов Госгортехнадзора, которые регистрируют их, дают разрешение на пуск сосудов в работу и подвергают нх периодическим техническим освидетельствованиям. Технические освидетельствования проводятся инженерами-контролерами Госгортехнадзора они заключаются во внутреннем осмотре, производимом не реже одного раза в четыре года, с целью выявить состояние внутренних и наружных поверхностей сосуда и влияние среды на его стенки, и в гидравлических испытаниях с предварительным внутренним осмотром, производимых не реже одного раза в 8 лет. Для отдельных видов сосудов гидравлическое испытание допускается не реже, чем через 10 лет (о гидравлических испытаниях см. на стр. 182). [c.190]

    Представления об особой, исключительной роли воды во множестве процессов, происходящих в природе, возникли еще в древности и затем часто высказывались на всех этапах развития естественных наук. В прошлом веке, когда геология оформилась как самостоятельная ветвь естествознания и начала брать на вооружение физико-химические и математические методы исследования, геологическую деятельность воды стали рассматривать как двоякую химическую и механическую. Условность такого разграничения была очевидна с самого начала тем не менее до сих пор продолжают появляться работы, в которых механические свойства горных пород анализируются без учета физико-химического влияния среды даже в тех случаях, когда это влияние давно обнаружено. Это связано с тем, что интеграция наук о Земле с различными разделами других естественных наук происходит неравномерно. Так, химическая термодинамика проникла в геологию намного раньше, чем кинетика механика идеализированных сплошных сред опередила физику реального, дефектного твердого тела и т. д. Однако такая очередность, в какой-то мере отражающая возраст отдельных областей фундаментальных наук, никоим образом не соответствует степени их важности для понимания природных процессов. К числу разделов науки, внедрение которых в геологию началось совсем недавно, относится физи-ко-химическая механика твердых тел и дисперсных систем, рассматривающая механические свойства в их взаимосвязи с физико-химическими процессами, протекающими на межфазных границах. [c.84]

    Основываясь на современных исследованиях Н-связи, можно сделать предположение, что процесс поляризации существенно зависит от перемещения и положения протона Н-мостика в электрическом поле. Так, в работах [206, 660] при рассмотрении влияния среды на структурную форму комплекса с водородной связью (КВС) отмечается зависимость этой формы от диэлектрической проницаемости среды. При исследовании водородной связи О—Н---М обнаружено, что с повыщением диэлектрической проницаемости раствора происходит переход КВС из молекулярной формы в ионную с последующей диссоциацией комплекса при более высоких значениях е раствора [660, 661]. Существенно, что перенос протона вдоль Н-связи в КВС, как установлено в работе [662], вызывается реорганизацией среды. Хотя влияние среды на связь О—Н---0 мало изучено, высокая подвижность протонов в структуре льда все же д ет основание предполагать, что в образуемых при определенных величинах сорбции КВС возможна миграция протона Н-связи. [c.246]


    Состояние внутренних и наружных поверхностей аппаратов и влияние среды на стенки сосудов проверяют не реже чем через каждые четыре года. Гидравлическое испытание проводят не реже чем через каждые восемь лет. Перед этим испытанием обязателен внутренний осмотр оборудования. Это освидетельствование проводит инспектор по котлонадзору. [c.96]

    Влияние среды на характер реакций [c.93]

Таблица 2.13. Влияние среды на активность хлорированных катализаторов в реакции изомеризации и-бутана [19] Таблица 2.13. <a href="/info/7664">Влияние среды</a> на <a href="/info/296189">активность хлорированных</a> катализаторов в <a href="/info/20489">реакции изомеризации</a> и-бутана [19]
    По конструкции вентили выполняют с расположением резьбы шпинделя перед сальником (рис. 258) и после него (рис. 259). В последней конструкции исключается неблагоприятное влияние среды и ее температуры на резьбу шпинделя. [c.302]

    Здесь ко — коэффициент скорости в системе, не влияющей на процесс влияние среды учитывается вторым членом (коэффициенты активности уА < а  [c.113]

    На конечной стадии физико-химического, анализа влияние среды проявится в том, что скорость сложного химического процесса окажется нелинейной функцией не [c.113]

    Влияние среды, в которой идет реакция с участием ионов, обусловлено в основном диэлектрической проницаемостью ее и специ- [c.162]

    Коррозионно-эрозионные повреждения твердых металлов повышаются при увеличении потока жидкого металла и его плотности. Они не наблюдаются для сталей в жидком литии даже при высоких скоростях, возникают в жидких натрии и калии при скорости выше 8—10 м/с, а в жидких висмуте, свинце и ртути — при скорости выше 3 м/с. Указанные пределы скоростей превышать не рекомендуется. Более подробно эти вопросы так же, как и эффекты влияния среды на металл, испытывающий действие напряжений, рассматриваются в ч. И применительно к коррозии металлов в жидких электролитах (см. с. 332). [c.147]

    При рассмотрении механизма действия катализаторов, оценке их активности и особенно при составлении кинетических уравнений нроцессов на данных катализаторах нужно иметь в виду тот факт, что взаимодействие между катализатором и средой не ограничивается влиянием катализатора на реакционную среду, а наблюдается и обратное влияние среды на катализатор. Четко вопрос о влиянии среды на катализатор, вероятно, впервые рассматривался Брунсом 99] и Боресковым [100]. [c.49]

    Состояние теории в настоящее время таково, что возможно чисто качественное рассмотрение влияния среды, в которой реакция протекает, на ее скорость. Применительно к кислотному катализу жидкими кислотами в процессах, используемых в переработке нефти, можно указать на следующее. В принципе кислотный катализ может осуществляться как в кислотной фазе при растворении в ней углеводородов, так и в углеводородной при растворении в ней кислоты. Так как диэлектрическая постоянная углеводородов мала ( 2), то ионы в углеводородной фазе могут существовать только в виде ионных пар. В кислотной фазе, имеющей высокую диэлектрическую проницаемость, идет диссоциация на независимые друг от друга ионы, реагирующие со скоростью, на несколько порядков большей, чем ионы в ионных парах. Поэтому реакция всегда идет в кислотной фазе. [c.164]

    Изменение химического состава катализатора под влиянием среды весьма часто не приводит к образованию новой фазы, но заметно сказывается на каталитической активности. В окисных полупроводниковых катализаторах это связано с обогащением или обеднением окисла кислородом по сравнению со стехиометрическим составом. Такого типа явления наблюдались, например, в реакции разложения метанола на окиси цинка [101 ] и в реакции окисления водорода на окиси никеля [102]. Для кислотно-основных катализаторов такого типа влияние среды на катализатор связано со степенью гидратации, а следовательно, с величиной функции кислотности катализатора. Действительно, при реакциях гидратации-дегидрата-ции всегда существует равновесие гидратированных и дегидратированных форм катализатора  [c.49]

    Интересны примеры влияния среды на течение процесса с участием перекиси водорода  [c.94]

    В центре современной науки о химическом превращении сейчас находится проблема связи реакционной способности частиц с их строением. Это направление было заложено в работах А. М. Бутлерова [221], В. В. Марковникова [222] и Н. А. Меншуткина [223]. В частности, работы Меншуткина заложили фундамент изучения проблемы реакционной способности частиц в связи с их строением и влияния среды на химическое превращение. В силу сложившихся научных традиций указанное направление получило дальнейшее развитие в работах советской научной школы кинетиков, возглавляемой Н. Н. Семеновым, наряду с зарубежными исследованиями. [c.161]


    Вышеприведенные примеры объясняют причину растворения в кислотах и щелочах многих веществ, которые в воде практически не растворимы. Они объясняют также влияние среды на направление процесса. [c.200]

    Влияние среды на константу скорости реакции [c.595]

    Разделение ионов происходит не только в результате чисто электростатического влияния среды через диэлектрическую проницаемость, но и благодаря сольватации ионов молекулами рас- [c.163]

    Взаимодействие между катализатором и средой не ограничивается влиянием катализатора на реагенты, а как отмечено выше, имеется и обратная связь между средой и катализатором. Строго можно лишь говорить о каталитической активности всей системы в целом, включающей контактную массу и реакционную смесь [1—5, 35, 36, 57—60]. В катализаторе под влиянием среды могут изменяться состояние поверхности структурные характеристики контактной массы химический состав и, следовательно, свойства всего объема катализатора без образования новых фаз (растворение кислорода, водорода, азота) химический состав с образованием новых фаз (образование окислов металлов в реакциях окисления, сульфатов при окислении 50г в 50з). [c.40]

    Для кислотно-основных катализаторов влияние среды сказывается, в частности, на снижении гидратации контакта, а, следовательно, изменении величины функции кислотности твердой фазы. [c.40]

    Исследования влияния среды прокаливания -собственных летучих, водорода и азота на качество коксов, прокаленных при 1350 °С и 2000 °С, показали, что влияние этого фактора несущественно. [c.26]

    Во втором случае моделирование возможно после внесения поправок, учитывающих влияние среды на константы скорости отдельных реакций. Применение аддитивного принципа возможно при условии выбора самосогласованных значений для кинетических характеристик элементарных реакций. [c.215]

    Влияние среды, в которой проводится термообработка до восстанов-jieHHH водородом, на размеры кристаллов платины отмечалось и для металлцеолитных катализаторов, приготовленных пропиткой, что связано с образованием различных соединений металлов, отличающихся подвижностью и способностью восстанавливаться водородом. Сделанные выводы справедливы для металлцеолитных катализаторов, содержащих различные металлы и приготовленные из цеолитов >азличных типов (А, X, Y, морденит и эрионит). [c.63]

    Уравнение Бреистеда—Бьеррума в наиболее обттгей форме решает вопрос о влиянии среды на скорость элементарной химической реакции. [c.346]

    Однако в условиях эксплуатации деталей, в результате наличия надрезов, перекосов, влияния среды и т.п. стадия разрушения (т.е. возникновение и развитие трещины) появляется задолго до исчерпания несущей способности, до максимальной величины нагрузки, выдерживаемой деталью. При этом прочность материала (детали в идеализированных условиях) недоиспользуется или даже не используется вовсе. Длительность процесса разрушения (роста трещины) до полного разрушения занимает значи- [c.151]

    Е(заимодействие без образования новых фаз. Изменение каталитических свойств поверхности катализатора под влиянием среды трудно рассматривать в отрыве от всего механизма гетерогенного катализа. Адсорбция компонентов реакционной среды на поверхности полупроводниковых катализаторов равнозначна внедрению примесей в поверхность катализатора с появлением новых локальных электронных уровней, сдвигом уровня Ферми и общим изменением состояния электронно-дырочного газа. Следовательно, с точки зрения электронной теории катализа данный тип влияния среды на активность катализатора включается в общее рассмотрение механизма гетерогенно-каталитических реакций. [c.49]

    Сведения о катализаторах гидрокрекинга весьма ограничены. По патентным данным , наиболее распространены катализаторы гидрокрекинга, содержащие в качестве гидрирующих компонентов металлы VI и VII групп периодической системы элементов, их сульфиды или окислы, осажденные на различных носителях (в зависимости от направленности процесса). Катализаторы содержат также активирующие добавки — другие металлы, серу, галогены. Роль канадого из компонентов катализатора не может считаться до конца ясной, тем более, что несомненно взаимодействие активного агента с добавками и носителем, а также изменение всего катализатора в целом под влиянием среды, компонентов сырья и высокой температуры. [c.319]

    Влияние среды на характер реакций. Будет лн данное соединение окислителем или вo faнoвитeлeм, нередко зависит от среды. В зависимости от нее может меняться и характер протекания процесса между одними и теми же реагентами. Это молено проиллюстрировать иа следующем примере. Как известно, перманганат калия является сильным окислителем, причем наибольшую окислительную активность ионы (Мп+ 04)" проявляют в сильнокислой среде, восстанавливаясь до ионов Мп - -, меньшую —а нейтральной, а также в слабокислой и слабощелочной средах, в которых они восстанавливаются до Мп+Юг, и минимальную — в сильнощелочной среде, восстанавливаясь в ней до иона (Мп+ 0 4) , [c.208]

    Обучение автоматов. Ключевой проблемой, возникающей в связи с взаимодействием автомата с окружающей средой, является изучение влияния среды на поведение автомата, исследование возможности приспосабливания автомата к внешним условиям и целенаправленного улучшения этого приспосабливания. Количественный анализ перечисленных вопросов требует прежде всего определения меры целесообразности поведения автомата. С этой целью поведение автомата подразделяют на три вида благоприятное, неблагоприятное и безразличное и избирают метод поощрения или штрафования за тот или иной вид поведения. Например, благоприятным считают такое поведение, при котором ответная реакция среды переводит входное воздействие в нуль и(А )=0, а неблагоприятным — когда и (А ) = 1. Код О или считают соответственно поощрением или штрафом, а математическое ожидание р=М и — мерой целесообразности поведения автомата [4]. Ситуация, когда выход автомата является бернуллиевой решетчатой функцией у (А )=Ь к), соответствует безразличному поведению автомата. В этом случае мера целесообразности поведения равна условному математическому ожиданию Ро=М и/у=Ь). Отсюда естественно считать, что автомат характеризуется целесообразным поведением, если р рд. [c.120]

    AI2O3. Параметры перехода б->-а-форм см. в работе О влиянии среды на температуру плавления см. в работе [c.436]

    Влияние среды. Большое влияние на скорость химических процессов оказывает среда, в которой протекает процесс. Так, скорости реакций взаимодействия галоидалкилов с третичными аммониевыми основаниями в различных средах различаются на 3—4 порядка. Эти реакции получили название реакций Меншуткина, по имени автора, впервые проведшего обширные исследования влияния растворителя на скорость таких реакций. Например, скорость реакции СгН + + ( гH5)зN-i- (СгН )4М1 в нитробензоле почти в 3000 раз больше, чем в гексане. Скорости многих реакций зависят от состава смешанных растворителей, присутствия электролитов, pH растворов и др. [c.530]

    Действительно, при алкилировании ароматических углеводородов бензоцикленовыми производными наблюдается изменение полиметиленовых колец. На основании многочисленных исследований было установлено, что склонность к карбониевоионным внутримолекулярным перегруппировкам определяется сложной зависимостью от многих факторов, в том числе от структурных эффектов самой молекулы и влияния среды [140, с. 179]. [c.126]

    Влияние среды на кинетику реакций с участием нонов. Насколько велика роль среды, в которой протекает ионная реакция, можно видеть из следующего примера. Распад молекулы НС1 в газовой фазе на атомы водорода и хлора требует затраты тепла 103 ккал/моль, а распад на ионы Н и С — 330 ккал/моль, поэтому раопад на ионы неосуществим. При растворении же НС1 в воде легко идет диссоциация НС1 на ионы. Затраты энергии на разрыв связи Н —С1" компенсируются в этом случае взаимодействием ионов с молекулами воды, и из значения энергии разрыва связи видно, что взаимодействие это очень сильное. [c.162]

    Юровский [23, с. 66] не отрицает, что растительные белковые вещества (точнее, цистин) играли большую роль в образовании различных видов органической серы. Он подробно развил и обосновал гипотезу о минеральном происхождении серы в угле. Согласно этой гипотезе основным источником всех видов сернистых соединений в угле являются сульфаты, растворенные в морской воде, которая заливала накопленные растительные материалы в процессе их преобразования. Сюда прибывали и пресные воды, которые приносили соединения железа. Различные условия покрытия угольных пластов, состав покрова и влияние среды на процессы торфо- и углеобразования привели в одних случаях к образованию преимущественно минеральных, а в других — органических сернистых соединений в угле. Юровский придает большое значение в образовании сернистых соединений микроорганизмам, живущим в морской и пресной воде, которые способны разлагать различные серусодержащие вещества до сероводорода. Эти микроорганизмы могли бы превратить сульфаты из морской воды в сероводород, который с железом образует пирит. [c.112]

    Реагент АНП-2 является катионоактивным поверхностно-активным веществом, поэтому на эффективность его действия будет оказывать влияние среда, в которой он применяется. Ранее в работах М, 3. Мавлютовой [2] было пока зано влияние на деэмульгирующую способность анионоактивного реагента НЧК величины pH дренажной воды. В связи с этим представляет определенный ин тсрес проследить влияние изменения величины водородного показателя дре нажной воды на эффективность реагента АНП-2. Определение этой зависи мости имеет большое практическое значение, так как при промысловой обра ботке нефтяных эмульсий различных месторождений pH среды в деэмульсацн онных аппаратах может сильно. меняться в зависимости от. характера нефти Кроме того, в некоторых случаях для уменьшения коррозии оборудования прг деэмульсации нефтей, помимо деэмульгатора, приходится добавлять в обрабатываемую эмульсию водный раствор щелочи.  [c.188]

    А содержат димерные углеводородные автоассоциаты, стойкость, которых повышается с повышением сродства к электрону акцептора (ангидрида), в поле влияния которого они находятся. Стойкость этих димеров коррелирует как со строением углеводородной молекулы, так и со свойствами растворителя. Для молекул-до-норов, где второй заместитель отсутствует или максимально удален от первого, стойкость коррелирует с такой характеристикой среды, как диэлектрическая постоянная, а у неплоских молекул — с вязкостью, температурой плавления и показателем преломления. Чувствительность димеров к влиянию среды зависит от типа симметрии молекулы исходного углеводорода. Ранее было сделано предположение о параллельном расположении углеводородных молекул, образуюш,их димер [2]. Есть основания предполагать, что в среде УА взаимное расположение нафталиновых молекул соответствует таковому в кристаллах исходных соединений. На примере систем, исследованных в Д, показано различие активности мономерных молекул нафталиновых углеводородов и соответствующих димеров, существующих в поле влияния ПДА [2]. 05 этом же говорит и различие способности их КПЗ к взаимному наложению синглет-триплетной полосы компонентов на синглет-синглетную полосу КПЗ. Большая стойкость КПЗ с димерами, чен с мономерными молекулами, соответствует известному эмпирическому правилу о повышении прочности при увеличении молекулярного веса одного из компонентов. Механизм взаимодействия между углеводородными молекулами в димере не ясен. Известно мнение, что ароматические углеводороды способны выступать как в роли доноров, так и в роли акцепторов л-электронов [22], Явление образования ароматическими л-донорами димеров вереде органических растворителей в поле влияния ПДА было обнаружено [c.136]


Смотреть страницы где упоминается термин Влияние среды: [c.256]    [c.423]    [c.328]    [c.136]    [c.106]    [c.301]    [c.55]    [c.53]    [c.135]    [c.90]   
Смотреть главы в:

Органическая химия. Т.4 -> Влияние среды

Химическая кинетика -> Влияние среды

Спектроскопия ЯМР -> Влияние среды

Эмиссионный спектральный анализ нефтепродуктов -> Влияние среды

Оптический круговой дихроизм -> Влияние среды

Молекулярная фотохимия -> Влияние среды

СН Кислоты -> Влияние среды

Электрофильное присоединение к ненасыщенным системам -> Влияние среды

Кинетический метод в синтезе полимеров -> Влияние среды

Углеводородные и другие жаростойкие волокнисты материалы -> Влияние среды

Биология Том3 Изд3 -> Влияние среды

Химия нитро- и нитрозогрупп Том 1 -> Влияние среды

Физические методы органической химии Том 2 -> Влияние среды

Физические методы органической химии Том 2 -> Влияние среды

Введение в популяционную генетику -> Влияние среды


Определение pH теория и практика (1972) -- [ c.0 ]

Определение рН теория и практика (1968) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте