Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимические методы метод, Гальваностатический метод

    Для дальнейшего развития представлений о строении границы раздела электрод — ионная система и о кинетике процессов на этой границе необходимо усовершенствование существующих и разработка новых экспериментальных методов, более широкое применение современной электронно-вычислительной техники. Уже достигнут существенный прогресс в автоматизации электрохимических измерений и развитии разнообразных импульсных методов, позволяющих, в частности, изучать явления, которые протекают за времена порядка 10 с и менее (импульсные гальваностатические методы, метод высокочастотной рефлектометрии и др.). Далеко не исчерпаны возможности метода фотоэмиссии электронов из металла в раствор. Большой интерес представляют оптические методы изучения состояния поверхности электродов, а также воздействие на границу электрод — раствор лазерными импульсами различной длительности и частоты. Ценным дополнением к существующим методам электрохимической кинетики может служить метод изучения фарадеевских шумов — чрезвычайно слабых флуктуаций потенциала или тока, сопровождающих протекание всех электродных процессов и вызванных дискретным характером переноса электронов через границу фаз, дискретностью диффузионного потока и т. д. Использование электродов в виде очень тонких проволок или пленок, напыленных в вакууме на инертные подложки, позволяет делать выводы об адсорбционных явлениях по изменению сопротивления этих электродов. Для изучения состояния поверхности электродов и кинетики электродных процессов еще недостаточно используются такие мощные современные методы, как ЯМР, ЭПР, дифракция медленных электронов и т. п. Новые методы предварительно проверяются на ртутном электроде, на котором строение двойного слоя и кинетика многих электродных процессов исследованы с количественной стороны. По-прежнему актуальна проблема разработки методов очистки исследуемых растворов от посторонних примесей и приготовления чистых электродных поверхностей. [c.391]


    Поляризационные кривые снимают потенциометрическим или гальваностатическим методами. Кроме того, изучают кривые заряжения, снятые при постоянном потенциале или при постоянной плотности тока. Получаемые такими методами кривые приведены на рис. 1.4.38. На рис. 1.4.38, а, кроме потенциала питтингообразования фпо, можно также определить потенциал репассивации — фр . В практических целях потенциал репассивации даже более значим, чем потенциал питтингообразования, т. к. он показывает, при каких отрицательных потенциалах питтинги не возникают. Для определения потенциала репассивации потенциометрическим методом дополнительно снимается поляризационная кривая обратного хода. При определении потенциала питтингообразования потенциометрическим методом следует иметь в виду, что его величина, хотя и не зависит от скорости снятия кривой в широких пределах от 0,1 до 10 В/ч, при высоких скоростях (> ] О В/ч) может увеличиваться, а при более малых (< 0,1 В/ч) — уменьшаться. При снятии потенциометрических кривых важную роль играет расположение образца в электрохимической ячейке. Ранее было принято располагать образец горизонтально между двумя платиновыми электродами, позднее наибольшее распространение получил метод вертикального закрепления образца. При этом платиновые электроды, между которыми создается электрическое поле, помещаются в пористые сосуды. Достаточно широко применяется вращение образца в процессе испытания. [c.117]

Рис. 25. Схема прибора для оценки электрохимической коррозии гальваностатическим методом Рис. 25. <a href="/info/855414">Схема прибора</a> для <a href="/info/1846080">оценки электрохимической</a> коррозии гальваностатическим методом
    Хронопотенциометрия широко применяется в электрохимической кинетике при изучении быстрых электродных процессов. Для этого используется импульсный гальваностатический метод, а именно зависимость потенциала от времени изучают в течение очень коротких промежутков времени ( 10 с) после включения токов большой плотности. Определение параметров очень быстрых реакций затруднено тем, что в первый момент после включения тока происходит заряжение двойного слоя. Чтобы уменьшить время, затрачиваемое на этот процесс, используют двухимпульсный гальваностатический метод. Вначале на электрод подают импульс тока ь большой амплитуды длительностью 1—2 МКС, который заряжает двойной слой, а затем ток мгновенно уменьшают до величины и. [c.215]


    Систематизацию и классификацию существующих вольтамперометрических методов проводят с использованием разных признаков общности и различия. Как уже отмечалось, в вольтамперометрии в качестве электрического воздействия может использоваться либо заданный потенциал индикаторного электрода, изменяющийся во времени по некоторому закону E t), либо заданный ток i t). В первом случае сигналом-откликом является ток, а во втором - электродный потенциал. В соответствии с этим аппаратурные методы вольтамперометрии могут быть либо с контролируемым потенциалом - потенциостатические методы, либо с контролируемым током - гальваностатические методы. Однако электрические свойства электрохимической ячейки таковы, что в большинстве случаев потенциостатический режим измерения обеспечивает более простой в обработке и интерпретации сигнал-отклик и, следовательно, лучшие метрологические и эксплуатационные характеристики. В связи с этим в дальнейшем будут рассмотрены в основном потенциостатические методы. [c.314]

    Импульсный гальваностатический метод используется также для изучения строения двойного электрического слоя и адсорбции веществ, которые могут окисляться или восстанавливаться на поверхности электрода. При концентрациях органического вещества <10" моль/л и 1>100 А/м величина п, рассчитанная из переходного времени на хронопотенциограмме, равна пРГ, где Г — адсорбция органического вещества. Однако в ходе восстановления (или окисления) адсорбированных частиц их убыль пополняется за счет диффузии вещества из объема раствора. Влияние диффузии на хронопотенциограмму определяется видом зависимости между приэлектродной концентрацией органического вещества и величиной адсорбции его на электроде, т. е. изотермой адсорбции. Поэтому поправку на диффузию по уравнению (42.6) проводить нельзя. Кроме того, необходимо учитывать последовательность, в которой вступают в электрохимическую реакцию заранее адсорбированные и диффундирующие из раствора частицы. Адсорбцию деполяризатора, накопленного предварительно на поверхности электрода, рассчитывают по соотношению [c.215]

    Исследование анодных и коррозионных процессов проводилось с помощью всего арсенала электрохимических методов, чаще всего поляризации в потенциостатическом, потенциодинамическом и гальваностатическом режимах, в сочетании с чисто коррозионными методами — весовым, рентгенографическим, спектральным и т. д. [7]. [c.107]

    Предлагаемый электрохимический метод заключается в снятии гальваностатических кривых (анодных осциллограмм) при постоянном анодном токе. Количество легирующего компонента, накапливающегося на поверхности сплава в процессе коррозии, определяется на анодной осциллограмме по величине площадки, соответствующей процессу растворения этого компонента. Метод был использован для определения Рё, Ре, Си на нержавеющих сталях, легированных этими элементами, и палладия на сплавах титан — палладий. [c.215]

    Поляризационные измерения можно проводить также на специальных установках (потенциостатах) потенциодинамическим и гальваностатическим методами с автоматической записью поляризующего тока при постоянном потенциале или потенциала при фиксированном токе. Сочетание обоих методов позволяет более глубоко изучать поведение электрохимических систем. [c.461]

    К гальваностатическим методам относят также кулонометрические измерения, которые позволяют определять зависимость г по времени т. Принцип их сводится к тому, что плотность заряда электрода р, первоначально соответствующая равновесному потенциалу фр, резко изменяется при разомкнутой цепи. В итоге изменения Лр потенциал электрода сначала сдвигается относительно фр, но по мере протекания электрохимической реакции вновь приходит к первоначальному равновесному значению. При осуществлении метода после сообщения электроду определенного заряда наблюдают за изменением т) во времени и по т]—т-кривым рассчитывают Кр и а. Принципиальная схема установки для кулонометрических измерений приведена на рис. 75. Увели- [c.316]

    Книга посвящена методу хронопотенциометрии, или гальваностатическому методу, широко используемому при электрохимических измерениях. В книге излагаются теоретические основы метода, показаны области его применения, причем основное внимание уделяется применению хронопотенциометрии в аналитическом контроле, а также для исследования кинетики электродных процессов, определения коэффициентов диффузии ионов и изучения адсорбционных явлений на электроде. [c.2]

    Водные вытяжки исследуют электрохимическими методами определяют pH, снимают гальваностатические, потенциостатические или потенциодинамические поляризационные кривые, а также используют емкостно-омический метод (импеданс). Можно применять и полярографические методы. [c.94]

    При изучении защитных свойств смазочных материалов широкое распространение получили электрохимические методы. Это — измерение электродных потенциалов, снятие поляризационных кривых гальваническими и потенциостатическими методами, измерение силы тока, возникающего между двумя электродами и др., а также измерение электрического сопротивления и емкости (импеданса) пленок, определение их пробивного сопротивления. О скорости электрохимических реакций судят по поляризационным кривым, выражающим зависимость между смещением потенциала электрода и плотностью протекающего через него тока (гальваностатический метод). Образование на металле хемосорбционных соединений четко проявляется по изменению работы выхода электрона из металла, обусловленного электрическим взаимодействием между металлом и адсорбирующимся веществом. [c.321]


    За.мена высоконикелевых сталей в процессе производства и хранения уксусной кислоты сталями с пониженным содержанием никеля имеет большое значение. Коррозионное поведение-сталей с пониженным содержанием никеля и безникелевых сталей в уксусной кислоте изучено неполно электрохимическое поведение почти не изучено. Исследования такого рода если и проводились, то с применением гальваностатического метода [1]Лб], [13]. [c.21]

    При снятии поляризационных кривых наблюдаются колебания потенциала во времени, приводящие иногда к самопроизвольному изменению приложенного тока. Такие колебания потенциала и тока особенно заметны в области предельных токов. Поэтому наряду с обычным методом получения I — е кривых все чаще используют так называемые потенциостатический и гальваностатический методы. При потенциостатическом методе на электрод подают определенное значение потенциала, которое при помощи специальной электрической схемы можно поддерживать неизменным в течение длительного времени. Затем непрерывно вплоть до установления ее постоянства регистрируют силу тока, отвечающую данному потенциалу. Серия таких измерений дает потенциостатическую г — 8 кривую. При гальваностатическом методе, напротив, поддерживают постоянным ток и наблюдают за изменением потенциала во времени до тех пор, пока он пе достигнет постоянного значения. Полученная зависимость I от е называется гальваностатической кривой. Сочетание этих методов позволяет более глубоко изучить поведение электрохимических систем. [c.329]

    I—г-кривую. При гальваностатическом методе, наоборот, поддерживают постоянным ток и наблюдают за изменением потенциала во времени до тех пор, пока он не достигнет постоянного значения. Полученная зависимость г от г называется гальваностатической кривой. Сочетание этих методов позволяет более глубоко изучить поведение электрохимических систем. [c.398]

    Наряду с этими методами, в которых изменение потенциала электрода приводит к протеканию тока, был введен и гальваностатический метод, основанный на регистрации изменения потенциала исследуемого электрода при нарушении электрохимического равновесия импульсом тока. Трудности, связанные с заряжением двойного слоя, частично преодолевают методом двойного импульса. [c.9]

    Испытания образцов углеродистой стали с защитными лакокрасочными покрытиями проводятся обычно на стендах, устанавливаемых вблизи цехов на территории заводов. Для ускоренных испытаний применяется метод снятия гальваностатических анодных поляризационных кривых с окрашенными и неокрашенными электродами [4]. Применяемая для этого электрохимическая ячейка представлена на рис. 9.1. Конструкция ячейки предусматривает возможность насыщения электролита азотом и водородом. [c.265]

    Нами был разработан электрохимический метод определения количества Ке, Си, Р<1, накапливающихся на поверхности корродирующего сплава. Для определения количества легирующих добавок снимают анодные гальваностатические кривые заряжения, регистрируемые на электронном осциллографе (анодные осциллограммы), в растворах соответствующего состава. При этом на осциллограмме фиксируется площадка, отвечающая процессу анодного растворения легирующего компонента (Р(1, Ке, Си и др.). По количеству электричества, соответствующего этой площадке, на основании известной реакции анодного растворения данного компонента определяют количество растворившегося металла. Использование этого метода возможно в том случае, если при потенциалах, соответствующих анодному растворению присадки, сплав находится в пассивном состоянии и его основа практически не растворяется и анодно не окисляется. [c.57]

    Физические методы являются необходимым дополнением к электрохимическим методам, которые позволяют на основании зависимостей параметров электродного процесса (плотности тока, потенциала и т. д.) от сьойств исследуемой системы и условий эксперимента судить о кинетике и механизме электрохимической реакции образования активных центров. К электрохимическим методам относятся классическая полярография, хроновольтамперометрия, потенциостатическая осциллополярография, хронопотенциометрия, гальваностатическая осциллопо-лярография, метод вращающегося диска с кольцом, а также циклическая вольтамперометрия, хронопотенциометрия с изменением направления тока [13, с. 37]. Причем электрохимические методы исследования непрерывно развиваются и совершенствуются. Теоретические основы различных электрохимических [c.108]

    Поляризационные кривые позволяют изучить кинетику электродных процессов, величину защитного тока при электрохимической. чащите, явление пассивности и др. Существует два способа снятия поляризационных кривых гальваностатический и потенциостатический. Гальваностатический метод заключается в измерении стационарного потенциала металла при пропускании через него тока определенной плотности. По ряду значений потенциалов при соответствующих плотностях поляризующего тока строят кривые катодной или анодной поляризации, т. е. зависимости Е = /(г к) или Е = /(/,г). [c.342]

    Одним из основных методов её исследования является анализ поляризационных кривых, отражающих зависимость скорости процесса г от величины электродного потенциала е. Такие кривые можно получить компенсационным методом, потенциостатически или гальваностатически с применением неподвижного электрода или вращающегося дискового электрода. Природу замедленной стадии можно установить по форме кривой, ее изменению с изменением температуры, концентрации и состава электролита. По характеру зависимости предельного тока от скорости вращения дискового электрода можно разграничить влияние диффузии и химической стадии. Форма кривых изменения потенциала электрода во времени при постоянной плотности тока или без него дает возможность судить об отсутствии или наличии пассивационных явлений. Температурная зависимость скорости электрохимических реакций (температурно-кинетический метод) используется для расчета [c.138]

    Поляризационные измерения потенциостатическим и гальваностатическим методами при электрохимических исследованиях процессов, протекающих в си--стеме электрод — электролит, проводят на потенцностате П-5827М. Основная функция потенциостата — поддержание потенциала или поляризующего тока исследуемого электрода на заданном уровне. [c.85]

    В методе косвенной гальваностатической кулонометрии электролиз проводят при постоянном значении силы тока, так же как и в методе прямой гальваностатической кулонометрии. Отличие заключается в том, что электролиз проводят при большой концентрации электроактивного вспомогательного реагента, то есть вспомогательный реагент выполняет роль электрохимического буфера, препятствуя сдвигу потенциала рабочего электрода в процессе электролиза. Поскольку концентрация вспомогательного реагента остается практически неизменной, выход по току титранта при правильно выбранньк условиях остается все время постоянным и близким к 100 %. [c.130]

    В уже цитированной работе [418] для исследования кинетики электрохимических процессов в присутствии поверхпостно-активных веществ был применен импульсный гальваностатический метод. Многими авторами для изучения торможения электрод- [c.91]

    Если первые главы книги можно рассматривать как сравнительно популярное введение, в котором в четкой и доступной рме изложены классические электрохимические методы, то главы 2 и 5, вьще-ляющиеся и по объему, представляют обзоры более высокого уровня, которые интересны и для специалистов. И здесь внимание сосредоточено на методах - конкретные задачи привлекаются скорее как иллюстративный материал и не претендуют на полноту обсуждения, но делают более наглядными экспериментальные возможности. Глава 3, написанная Я. Кутой и Э. Егером, называется "Измерение перенапряжений . Вводные разделы, включающие формальную кинетику, классификацию методов, подготовку эксперимента, составляют "жизненное обеспечение" главы. Для ее чтения может понадобиться только система определений потенциалов из предьщущих глав книги. Далее изложены стационарные потенциостатические и гальваностатические методы, нестационарные методы, включая и кулоностатический, новые варианты релаксационных методов (скачки площади, давления, температуры, концентрации). В последнем разделе описаны попытки приме-ншия вычислительной техники для изучшия кинетики электродных процессоа [c.6]

    Для проведения коррозионных исследований с помощью электрохимических поляризациоиных измерений используют два метода гальваностатический и потенциостатический. В первом методе за постояниую, или запрограммированную во времени, величину принимается (задается) сила тока, поляризующего электрод, соответственно постоянной считается плотность тока. При этом потенциал электрода зависит от плотности тока, скорости коррозионного процесса, состава коррозионной среды и т. д. [c.195]

    Существуют два основных метода электрохимических поляризационных измерений гальваностатический и потенциостати-ческий. При использовании гальваностатического метода поддерживают постоянным (или изменяют по заданной программе) ток, поляризующий электрод, а следовательно, и расчетную плотность тока вн (при неизменной поверхности электрода). В ходе опыта потенциал является функцией плотности тока, скорости реакции, состава раствора и других переменных. При анализе экспериментальных данных можно рассматривать ско-)0сть реакции как функцию потенциала, состава раствора и т. д. Три потенциостатической поляризации поддерживают постоянным (или изменяют по заданной программе) потенциал электрода, определяя плотность тока и скорость реакции как функцию потенциала и других переменных. [c.58]

    Применение потенциостатических методов более оправдано уже по той принципиальной причине, что скорость электродного процесса является функцией потенциала, а не наоборот. Решающее преимущество в плане возможностей эксперимента принадлежит потенциостатическим измерениям, поскольку с их помощью можно изучать практически любые реальные зависимости между скоростью электрохимической реакции I (или плотностью тока) и потенциалом Ф, а с помощью гальваностатического метода — лишь определенные, сравнительно несложные типы таких зависимостей. Это различие иллюстрируется рис. VI. 2. Определяя установившийся потенциал и скорость растворения при каждом заданном токе поляризации гальваноста-тическим методом (как и потенциостатическим), можно получить зависимость ст = /(ф) в областях аЬ и катодной поляризации при несколько более отрицательных ф. Однако как только задаваемый ток станет выше кр, потенциал сразу сместится в точку /, так как лишь в области к он может быть стабильным при г вн > кр- В результате останется нераскрытой область b defghi. [c.60]

    В нашей стране налажен серийный выпуск потенциостатов П-5827 и П-5827М, которые работают и как гальваностаты. Эти потенциостаты позволяют снимать поляризационные кривые по-тенциодинамическим и гальваностатическим методами при электрохимическом исследовании анодных и катодных процессов, протекающих в растворе электролита. С помощью потен-циостата, снимая поляризационные кривые, можно выбрать условия для проведения различных электрохимических процессов, например для получения чистых веществ, для испытания коррозионных свойств металлов и сплавов, для фазового анализа в металлографии, для анализа сплавов, растворов и т. п. Потенциостаты в комплекте с вспомогательным оборудованием обеспечивают поддержание заданного потенциала рабочего электрода изменение потенциала или тока рабочего электрода ступенчато и по линейному закону с различной скоростью развертки поддержание заданного тока поляризации рабочего электрода изменение потенциала или тока поляризации рабочего электрода в соответствии с напряжением внешнего задающего генератора регистрацию потенциала рабочего электрода и тока поляризации. [c.30]


Смотреть страницы где упоминается термин Электрохимические методы метод, Гальваностатический метод: [c.79]    [c.152]    [c.30]    [c.37]    [c.329]    [c.163]    [c.547]    [c.59]   
Быстрые реакции в растворах (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Метод гальваностатический

Методы электрохимические



© 2025 chem21.info Реклама на сайте