Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активные центры Акцептор

    Вопрос о том, какова природа активных центров алюмосиликатов, до сих пор окончательно не решен. Катализ приписывают как кислотным центрам Бренстеда, так и кислотным центрам Льюиса. По-видимому, кислотой по Льюису — акцептором [c.249]

    Наиболее важный класс глобулярных белков образуют биологические катализаторы, ферменты. Они характеризуются каталитическим механизмом, позволяющим им ускорять достижение конкретной реакцией состояния термодинамического равновесия, а также специфичность к субстрату, благодаря которой они способны делать выбор между потенциальными молекулами субстратов, воздействуя на одни из них и отказываясь воздействовать на другие. Участок поверхности фермента, на котором происходит катализ, называется активным центром. Механизм катализа может осуществляться при помощи заряженных групп, доноров и акцепторов электрона или протона, а также при помощи атомов металла в активном центре фермента. Избирательность ферментов обусловливается формой их поверхности и характером взаимодействия с субстратом, например водородной связью, электростатическим взаимодействием или гидрофобным притяжением. Фермент и его субстрат соответствуют друг другу по форме и размеру, как ключ и замок. [c.339]


    Одновременная адсорбция донора и акцептора на одном и том же активном центре протекает без участия свободных носителей тока в твердом теле, она происходит просто путем переноса электронов через валентную оболочку катиона  [c.29]

    В литературе имеется всего несколько работ, в которых рассмотрены возможные кинетические схемы реакций, катализируемых лизоцимом [129—133]. При этом авторы работ пошли по заведомо усложненному пути, пытаясь включить в схему наряду с продуктивным также и непродуктивное связывание субстрата с ферментом. В последнем случае рассматриваются, как правило, различные способы ассоциации исходного субстрата п продуктов его частичного и полного расщепления с различными сайтами (от А до Р) активного центра. Более того, реакции трансгликозилирования, вводимые в подобные схемы, включают также различные варианты ассоциации молекул акцептора с соответствующими сайтами (Е и Е) активного центра, а также различные комбинации размеров молекул акцептора с размерами гликозильной части, удерживаемой в активном центре. Пример (не самый усложненный) подобного подхода рассмотрен в недавней работе [132] и соответствующая кинетическая схема выглядит следующим об- [c.183]

    В 1961 г. английский биохимик П. Митчел выдвинул хемиосмо-тическую (электрохимическую) гипотезу энергетического сопряжения окисления и фосфорилирования, которая в дальнейшем получила подтверждение и развитие во многом благодаря работам советских ученых (В. П. Скулачев, Е. А. Либерман). Принцип хемиосмотического сопряжения иллюстрирует рис. VI. 14. Субстрат АНг —донор водорода — окисляется на активном центре фермента, встроенного на внешней стороне мембраны митохондрии. При этом 2Н+ и А выбрасываются в окружающую среду, а два электрона переносятся на внутреннюю сторону мембраны по так называемой дыхательной цепи, ориентированной поперек мембраны. Локализованный на внутренней стороне переносчик электронов передает электроны акцептору водорода В (например, кислороду), который присоединяет 2Н+ из внутримитохондриального матрикса. Таким образом, окисление одной молекулы АНг приводит к возникновению 2Н+ во внешнем пространстве и исчезновению 2Н+ из внутреннего пространства митохондрии. Возникший градиент ионов водорода генерирует трансмембранный потенциал, который оказывается достаточным по величине для осуществления реакции фосфорилирования. Последняя состоит во взаимодействии АДФ с фосфатом Ф и приводит к образованию АТФ с поглощением 2Н+ из внешнего пространства и выделением 2Н+ в матрикс. Величина трансмембранного потенциала сравнительно 160 [c.160]


    В настоящее время структура химотрипсина и трипсина расшифрована благодаря использованию метода дифракции рентгеновских лучей [29—32], подтвердившего предположения, сделанные на основании химических исследований. Как 5ег-195, так и Н1з-57 находятся в активном центре ферментов (рис. 7-2). Следует иметь в виду, что метод Дифракции рентгеновских лучей кристаллом фермента не дает возможности обнаружить положение атомов водорода в молекуле фермента и что на рисунке они проставлены согласно химической логике. Так, Короткое расстояние (0,30 нм) между азотом остатка Н 15-57 и кислородом остатка 5ег-195 свидетельствует о наличии водородной связи. Аналогичные рассуждения привели к выводу о присутствии других водородных связей, показанных на рисунке. Если гистидин находится в непро-тонированной форме, а гидроксильная группа серина протонирована, то мы видим, что гистидин может выступать в роли акцептора протона от —СНгОН-группы серина (т. е. в роли общего основного катализатора), повышая нуклеофильность кислорода гидроксильной группы. [c.109]

    Другим активным центром на поверхности стекла является связь Si—О—Si, которая может выступать в роли акцептора протонов при образовании водородных мостиков, например со спиртами, либо участвовать в вандерваальсовом взаимодействии [65]. [c.80]

    Вариант П1 вероятнее при взаимодействии радикалов А с таким активным центром В, как двойная связь, а вариант V — с а-метиленовой группой. Несомненно, практически подобная смесь продуктов получится и при случайной стабилизации макрорадикала А каким-либо присутствующим акцептором, однако следует учесть, что здесь рассматриваются условные идеализированные схемы, исключающие побочные реакции. [c.175]

    При заполнениях, не превышающих одну молекулу па элементарную полость, молекулы нафталина находятся в двух различных энергетических состояниях состоянии КПЗ и состоянии вандерваальсового взаимодействия с поверхностью. Это свидетельствует о том, что количество акцепторных центров обоих типов не превышает во всяком случае величины, равной одному акцепторному центру на элементарную полость. Поскольку же это количество гораздо меньше катионов любого из типов Si, 8ц, Sin) I5]i то, по-видимому, акцепторами, ответственными за образование КПЗ, служат активные центры не катионной природы. Возможно, это центры кислотной природы, присутствие которых на цеолитной поверхности ранее отмечалось [6]. [c.173]

    Одной из причин изменения каталитических свойств полупроводника под действием облучения и адсорбции донорно-акцептор-ных молекул может быть изменение электронной плотности на активном центре полупроводника  [c.274]

    В результате было установлено, что, как правило, все катализаторы кислотного типа обладают совокупностью протонных и апротонных кислотных центров. Доказано отсутствие принципиальных различий в механизмах активации посредством таких заведомо кислотных катализаторов, как Н23 04, Н3РО4, А1С1д, и твердых катализаторов типа алюмосиликатов [91]. Алюмосиликатные катализаторы часто вступают в реакцию своими гидроксильными группами и образуют, например, со спиртами промежуточные формы типа поверхностных алкоголятов [86 [. В других случаях, однако, те же катализаторы обладают апротонными активными центрами — акцепторами электронов. Так, недавно Г. М. Панченков, В. А. Тулупов и сотр. [92], изучив кинетику дегидратации спиртов на кианите, нашли, что катализ в этом [c.90]

    Обычно же отравление катализатора непреднамеренное общим недостатком катализаторов гидрогенизации является то, что они становятся менее активными даже при хранении боз использования. Ухудшение свойств катализатора нри использовании ого может быть обусловлено образованием сульфидов, закупоркой пор катализатора углеродистыми отложениями и множеством других причин. Как правило, группы У-в (Н, Р, Аз, ЗЬ, В1) и У1-в (О, 3, Зе, Те) являются ядами гидрогепизирую-щих метал/ ов группы VIII (Ее, N1, Со и металлы платиновой группы) [106]. Вообще считают, что отравление катализатора есть результат адсорбционной блокировки активных центров его, имеются, однако, и другие объяснения отравления. Одна из новейших теорий утверждает, что гидрогенизационные катализаторы действуют благодаря промотиро-ванию растворенным водородом [7, 8, 46, 154], а яды (депромоторы) являются особенно жадными акцепторами водорода. [c.268]

    Особенности ферментативного катализа с точки зрения общей теории каталитических процессов заключаются в следующем. Каталитический процесс протекает в ограниченной области, называемой активным каталитическим центром фермента. Активный центр фермента содержит активные группы — доноры или акцепторы электронов (группы, содержащие пиридиновое кольцо или имидазольные кольца, хиноидные группы, комплексированные ионы металлов и др.). Необходимым условием каталитического действия ферментов является структурное соответствие активного центра и субстрата. [c.633]


    Эти реакции напоминают переацилирование, при котором синтезированный акцептор обладает некоторыми свойствами трипсина (узнает NHз-гpyппy) и папаина (имеет остаток цистеина в активном центре). [c.277]

    Работа [19] по картированию активного центра эндоксиланазы представляет особый интерес и в том отношении, что в ней была предпринята попытка независимого определения показателя сродства одного из сайтов активного центра, что дает возможность сопоставить эти величины и, таким образом, хотя и косвенно, оценить применимость допущений в теоретической части подхода Хироми. Используя меченные С и ксилозу и ксилобиозу как акцепторы в реакциях трансгликозилирования при гидролизе (соль-волизе) ксилотриозы и экспериментально определяя начальные скорости переноса ксилозы 1 и ксилобиозы Уг на олигосахарид-ный остаток в активном центре фермента, авторы [19] независимо определили показатель сродства второго (от каталитического участка) сайта по направлению к восстанавливающему концу  [c.61]

    Иначе говоря, время жизни карбокатнона в активном центре фермента должно быть столь большим, чтобы успели пройти процессы десорбции отщепившегося агликона, связывания подходящего акцептора гликоновой части субстрата и атака акцептором карбокатиона с образованием соответствующего продукта переноса. Вместе с тем исходя из известных данных об исключительно высокой реакционной способности карбокатионов такое большое время жизни для них маловероятно, даже при учете стабилизирующих факторов в активном центре фермента. Так,- по данным работы [103] время жизни гликознльных карбониевых [c.173]

    Рассмотрим еще одну схему (158) для катализа лизоцимом, подобную схеме (157). Здесь авторы работ (131, 133] ввели даже стадии десорбции агликонового фрагмента субстрата с соответствующей константой равновесия и предреакционного связывания акцептора с активным центром лизоцима на стадии трансгликозилирования, хотя экспериментальные данные никак не позволяли провести раздельный анализ предреакционного связывания акцептора и последующей кинетической стадии переноса на [c.185]

    Катионная полимеризация. Катионная полимеризация протекает в присутствии сильных кислот или таких катализаторов, как фтористый бор ВРд, бромистый алюминий А1Вгд, хлористый алюминий А1С1з и т. п. Катализаторы этого типа — сильные акцепторы электронов Активные центры при катионной полимеризации появляются в результате возникновения положительного заряда у одного из углеродных атомов молекулы мономера. Прн этом образуется карбкатион (ион карбония). Например, полимеризация изобутилена в присутствии фтористого бора и прн участии (в качестве сокатали-затора) воды протекает следующим образом. Фтористый бор образует с водой комплексное соединение [c.450]

    Большинство неметаллических катализаторов обладает полупроводниковыми свойствами, поэтому заманчиво использовать это их свойство в качестве ключа к раскрытию природы активности. Такая возможность связана со способностью полупроводника обмениваться зарядом с адсорбированной частицей, принимая или отдавая электрон. Согласно существующей теории, центром хемосорбции (активным центром) является свободный электрон (или дырка ) полупроводника. Адсорбированные атомы или молекулы рассматриваются как примеси, нарушающие строго периодическую структуру решетки. В энергетическом спектре кристалла они могут быть изображены локальными уровнями, расположенными в запрещенной зоне полупроводника (см. гл. V). Разные частицы занимают различные уровни в запрещенной зоне. Если реагирующая частица занимает уровень, расположенный ближе к зоне проводимости, т. е. уровень адсорбированной частицы находится выше уровня Ферми на поверхности, то все хемосорбционные частицы являются донорами электронов. Если же уровень адсорбированной частицы ниже уровня Ферми, она является акцептором электронов. Таким образом, адсорбционная способность и каталитическая активность поверхности полупроводника определяются взаимным расположением локального уровня адсорбированрой частицы и по,ложением уровня Ферми на поверхности. Реакция называется акцепторной, если скорость 472 [c.472]

    Измерение активностей препарата. Подготовка препарата. Сукцинатдегидрогеназа способна связывать в активном центре оксалоацетат с чрезвычайно высоким сродством. Процесс диссоциации ингибитора очень медленный, особенно при низких температурах. В свази с этим при измерении любых активностей митохондриальных ферментов, в которых участвует дегидрирование сукцината, необходимо быть уверенным, что сукцинатдегидрогеназа находится в активном состоянии. С этой целью обычно поступают следующим образом препарат фермента преинкубируют с сукцинатом (конечная концентрация 10— 20 мМ, что много больще Ks) в условиях, при которых его валовое окисление невозможно (анаэробиоз, отсутствие добавленных акцепторов, присутствие цианида для блокирования цитохромоксидазы). Пре-инкубацию проводят при —30° С в течение 30 мин. За это время происходит полное вытеснение оксалоацетата из активного центра фермента. Этот процесс называют активацией сукцинатдегидрогеназы. [c.428]

    Чтобы регулировать гидрогенолиз тиоловых эфиров и тиоамидов с целью получения альдегидов, обычно на суспензию необходимого количества никеля действуют кипящим ацетоном в течение короткого времени (обычно около 1—2 час), после чего прибавляют вещество, подвергаемое десульфуризации [149а]. По-видимому, такая обработка ацетоном, который является акцептором водорода, приводит к разрушению большей части активных центров на поверхности никеля и делает реагент более избирательным. По-видимому, эта обработка также способствует сохранению кратных связей [100 или карбонильных групп [75], которые в противном случае восстанавливаются. [c.429]

    Катализ на твердых кислотах и основаниях. Для катализаторов кислотно-основного типа специфика твердого тела не выражена так резко, как для полупроводников и металлов. Активные центры кислотных кат. представляют подвижные протоны И (центры Бренстеда) или атомы, способные присоединять пару электронов (центры Льюиса), напр, атом А1 на пов-сти AljOj. Соотв. основными центрами являются акцепторы протона или доноры электронной пары, напр, атомы кислорода на пов-сти СаО, MgO и т.п. Кислотными бренстедовскими центрами простых оксидов металлов являются поверхностные гидроксильные группы, остающиеся после частичной дегидратации пов-сти при нагр., или молекулы Н О, координационно связанные с пов-стью. Для металла М, находящегося в начале каждого периода, гидроксильные группы имеют основные св-ва [...ОМ] [ОН] для находящегося в конце периода-кис-лотные [...ОМО] Н . Льюисовскими кислотными центрами служат координационно-ненасыщенные ионы, напр. A10J на AljOj. Эти центры способны взаимод. с реагирующей молекулой-донором пары электронов. Кислотными катализаторами являются оксиды металлов с большим отношением заряда иона к его радиусу - окси ды Мо, Zn, Са, РЬ и др. Их активность связана с положением металла в периодич. системе и возрастает в периодах при переходе к V-VII группам, а в группах-при переходе к [c.540]

    Молекулярный механизм действия металлов в энзиматическом катализе, или роль металлов в активировании ферментами. В ряде случаев ионы металлов (Со , Mg , Zn , Fe ) выполняют функции простетических групп ферментов, или служат акцепторами и донаторами электронов, или выступают в качестве электрофилов либо нуклеофилов, сохраняя реактивные группы в необходимой ориентации. В других случаях они способствуют присоединению субстрата к активному центру и образованию фермент-субстратного комплекса. Например, ионы Mg через отрицательно заряженную фосфатную группу обеспечивают присоединение монофосфатных эфиров органических веществ к активному центру фосфатаз, катализирующих гидролиз этих соединений. Иногда металл соединяется с субстратом, образуя истинный субстрат, на который действует фермент. В частности, ионы Mg активируют креатинфосфокиназу благодаря образованию истинного субстрата—магниевой соли АТФ. Наконец, имеются экспериментальные доказательства прямого участия металлов (например, ионов Са  [c.146]

    Активный центр Т. состоит из трех аминокислотных остатков серин-195 (принято, что нумерация аминокислотных остатков в Т. соответствует их положениям в проферменте), гистидин-57 и аспарагиновая к-та-102. Сорбционный участок содержит карбоксильную группу аспарагиновой к-ты-189, к-рая определяет специфичность Т. к положительно заряженным субстратам. Механизм каталитич. гидролиза включает стадию сорбции субстрата, расщепления пептидной связи с образованием ацилфермента и переноса ацильной группы на нуклеоф. акцептор. [c.639]

    Сорбция субстрата в активном центре а-Х, обеспечивается гвдрофобной полостью. Ее размеры 1,0x0, 5x0,4 нм оптимальны для связывания боковых цепей остатков гвдрофобных аминокислот (триптофан, фенилаланин, лейцин, тирозин), а конфигурация допускает лишь определенную ориентацию субстрата. Механизм каталитич. гвдролиза включает стадию сорбции субстрата, расщепления пептвдной связи с образованием ацилфермента и послед, переноса ацильной фуппы на нуклеоф. акцептор. [c.263]

    Как и в случае внутримолекулярных реакций, эффективная концентрация этих кислот (оснований) намного выше той, которая может быть достигнута при использовании аналогичных катализаторов, действующих межмолекулярно. Кроме того, при протекании реакции в активном центре фермента дополнительный выигрыш обеспечивается благодаря правильной ориентации реагирующих групп. Общее ускорение реакции достигается за счет как высокой эффективной концентрации общих кислот н оснований, так и правильной ориентации. Первым указанием на важную роль переноса протона в ферментативном катализе явился тот факт, что зависимость скорости большинства ферментативных реакций от pH описывается сравнительно простыми сигмоидными или колоколообразными кривыми. Отсюда следует, что для осуществления ферментативной реакции требуется небольшое число кислотных (основных) групп, находящихся в определенном состоянии ионизации. Действительно, проведенные позже исследования показали, что во многих случаях эти группы, которые обычно удается идентифицировать на основг -нии найденных из рН-зависимости константы скорости значений р/Са, на лимитирующей стадии каталитической реакции выступают в роли доноров или акцепторов протона (табл. 6.1). В биологических системах ферментативные реакции почти всегда протекают в среде с близкими к нейтральному значениями pH, когда концентрации ионов гидроксония и гидроксида минимальны. Неудивительно поэтому, что ферменты столь широко используют механизмы общего кислотно-основного катализа. [c.137]

    Механизм действия сульфгидрильных протеаз — папаина, фпцина и бромелаина — принципиально аналогичен изображенному на рис. 6.3. В роли акцептора ацильной группы здесь выступает сульфгидрильная группа входящего в состав активного центра остатка цистеина. Об этом свидетельствуют данные, полученные при изучении действия химических ингибиторов и рН-зависимости каталитической реакции (группа с р/Са 8,4 появляется на стадии ацилирования, а не на стадии деацилирования), а также тот факт, что методами спектроскопии в ацил-ферменте была обнаружена сложная тиоэфирная связь. При замене воды на оксид дейтерия катализируемые папаином реакции проявляют значительный кинетический изотопный эффект следовательно, лимитирующей стадией является перенос протона. О химической природе группы, выступающей в роли общего основного катализатора, мы уже говорили выше. Поскольку сложные тиоэфиры легче взаимодействуют с аминами, чем с кислородными сложными эфирами, папаин является лучшим катализатором реакции транспептидации по сравнению с химотрип-сином. [c.146]

    Согласно общепринятому представлению биологическре действие стероидных гормонов осуществляется через их взаимодействие с белковыми рецепторами, образующими со стероидной молекулой активированный комплекс, переносящий илшульс действия на ядерный акцептор. Считается вероятным, что стероид-рецепторное взаимодействие разыгрывается по двухцеытровому механизму, причем в качестве активных центров стероидной молекулы выступают функциональные группы в 3- и 17- или 20-положении стероида [1 ]. При этом в качестве условия функциональной активации комплекса лиганд-рецептор рассматривается изменение геометрии входящей в него белковой молекулы [2]. [c.107]

    X таким хорошо известным явлениям, как получение нерастворимого сажекаучукового геля [53], также следует подходить с позиций специфического взаимодействия полимера с поверхностью сажи. В частности, причину появления сажекаучукового геля многие исследователи видят во взаимодействии радикалов или механически активированных макромолекул каучуков с активными центрами на поверхности сажи [47—49, 54—56]. Другие считают, что образование сажекаучукового геля происходит за счет кислородсодержащих групп [52]. Кислород воздуха, как и свободные стабильные радикалы, является акцептором макрорадикалов, поэтому на воздухе или в присутствии специально введенных акцепторов радикалов сажекаучукового геля образуется значительно меньше, чем в инертной среде [56]. Какие химические группы на поверхности сажевых частиц взаимодействуют с полимерными радикалами, возникшими в процессе меха-нохимических превращений, окончательно не установлено. Однако [c.345]


Смотреть страницы где упоминается термин Активные центры Акцептор: [c.486]    [c.100]    [c.634]    [c.226]    [c.336]    [c.341]    [c.562]    [c.182]    [c.152]    [c.328]    [c.98]    [c.274]   
Промежуточные продукты и промежуточные реакции автоокисления углеводородов (1949) -- [ c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Активность Активные центры

Активный Акцептор

Активный центр

Акцептор



© 2025 chem21.info Реклама на сайте