Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые кислоты ароматически свойства

    Химические свойства. Ароматические кислоты сочетают в себе свойства карбоновых кислот и свойства ароматических соединений. Обладая карбоксильной группой, они способны подобно другим кислотам образовывать соли, сложные эфиры, галоидангидриды и т. д. Обладая бензольным ядром, они способны к реакциям замещения атомов водородов в ядре на галоиды, способны нитроваться, сульфироваться. [c.121]


    Органические основания по своей природе так же многообразны, как и органические кислоты. Фактически все классы соединений за исключением углеводородов, их галогенопроизводных, тиоспиртов и тиоэфиров, нитро-, нитрозо- и диазосоединений обладают ясно выраженными основными свойствами. При этом по способности к протонированию (реакция 5.1) они располагаются в ряд амины неароматические > амины ароматические > спирты > > фенолы > простые эфиры > кетоны > альдегиды > азосоединения > сложные эфиры > амиды карбоновых кислот > карбоновые кислоты. Среди этих соединений выделяются неароматические амины, которые в водном растворе 138 [c.138]

    По химическим свойствам ароматические кислоты с карбоксильной группой в боковой цепи подобны алифатическим карбоновым кислотам. [c.322]

    Ароматические кислоты обладают всеми общими свойствами, характерными для карбоновых кислот ароматического ряда. Они образуют соли, ангидриды, галоидоангидриды, амиды, сложные эфиры и др. [c.229]

    Группа 1Г Вещества, на свойства которых преобладающее влияние оказыва-ют неполярные остатки углеводороды н их галогенпроизводные, простые и сложные эфиры, спирты более чем с пятью С-атомами, высшие альдегиды и кетоны высшие оксимы, средние и высшие карбоновые кислоты, ароматические карбоновые кислоты, ангидриды кислот, лактоны, высшие нитрилы и ам.иды кислот, фенолы, тиофенолы, высшие амнны, хиноны, азосоединения. [c.296]

    Из рис. VI П-25 видно, что для ряда ароматических карбоновых кислот эти предположения вполне оправдываются. По оси абсцисс на этом рисунке отложены значения логарифмов к — константы скорости инициирования реакции, приводящей к появлению окраски, а по оси ординат — величины р/С катализировавших этот процесс ароматических карбоновых кислот. Ароматические кислоты были выбраны потому, что эти соединения обладают наиболее приемлемыми физическими свойствами (они не летучи при температуре опыта) и молекулы их имеют почти одинаковые размеры. Значительные отклонения от имеющей место закономерности наблюдаются лишь для двух оршо-замещенных бензой- [c.71]

    Ароматические карбоновые кислоты — твердые вещества, умеренно растворимые в воде. Они немгюго слабее, чем простые алифатические кислоты. Химические свойства карбоксильной группы ароматических кислот сходны со свойствами алифатических кислот, в обычных условиях образуются сложные эфиры, амиды и хлорангидриды. Восстановление карбоксиль- [c.148]


    Алифатические амины обладают приблизительно такой же основностью, как и аммиак, а ароматические амины значительно менее основны. Амины гораздо менее основны, чем гидроксил- или этилат-ион, но они существенно более сильные основания, чем спирты, простые и сложные эфиры и т. д., а также вода. Под действием водных минеральных или карбоновых кислот амины легко превращаются в соли водный раствор, содержащий гидроксил-ион, легко переводит соли обратно в свободные амины. Как и в случае карбоновых кислот, почти ни одна реакция аминов не происходит без превращения в соли и в свободные основания, и поэтому целесообразно рассмотреть свойства этих солей [c.687]

    II. Ко второй группе относятся вещества, на физические свойства которых наибольшее влияние оказывает неполярная часть молекулы. Это — углеводороды, галогенпроизводные углеводородов, простые и сложные эфиры, спирты (содержащие более 5 атомов углерода), высшие кетоны и альдегиды, высшие оксимы, высшие и средние карбоновые кислоты, ароматические карбоновые кислоты, ангидриды кислот, лактоны, высшие нитрилы и амиды кислот, фенолы, тиофенолы, высшие амины, хиноны, азопроизводные. [c.570]

    Ароматические сложные эфиры получаются при помощи стандартных методов (разд. 8.3.1). Эти вещества проявляют обычные свойства сложноэфирной группировки, правда, эфиры ароматических карбоновых кислот менее активны, чем соответствующие алифатические производные. Электрофильное замещение в ароматическом кольце протекает обычным образом (разд. 3.5.2, Б). [c.163]

    Бензойная кислота С Нз—СООН, простейший представитель ароматических кислот, имеет все обычные свойства карбоновых кислот, отличаясь от кислот жирного ряда несколько большей степенью диссоциации (б-Ю у уксусной кислоты 2-10" ). [c.208]

    За последние годы опубликовано значительное число работ [51—55], в которых показано, что нефтяные кислоты как типично карбоновые образуют разнообразные производные (соли, эфиры, амиды и т. п.) подобно жирным кислотам. Аналогию в химических свойствах нефтяных кислот и алифатических легко объяснить, если исходить из предположения, что карбоксильная группа большей части содержащихся в нефтях карбоновых кислот соединена с циклическими элементами структуры молекулы (полиметиленовые или ароматические кольца) не непосредственно, а через алифатический мостик различной длины иными словами, если рассматривать нефтяные кислоты как кислоты жирного ряда, у которых один или несколько атомов водорода в углеводородной цепи замещены циклическими углеводородными радикалами. В этом случае строение нефтяных карбоновых кислот можно выразить одной из следующих структур  [c.319]

    Непредельные и ароматические кислоты проявляют наряду с общими свойствами карбоновых кислот также и свойства, характерные для непредельных и ароматических соединений. [c.220]

    Карбоновые кислоты, в которых карбоксильная группа и ароматическое ядро разделены цепью насыщенных атомов углерода, обладают, с одной стороны, свойствами алифатических карбоновых кислот, а с другой-свойствами алкилбензолов Поскольку свойства и тех и других уже рассматривались, в настоящем разделе будут обсуждены только такие соединения, в молекулах которых ароматическое ядро и карбоксильная группа непосредственно связаны между собой [c.299]

    Уже результаты предварительных химических реакций на наличие ароматических свойств в данном соединении позволяют сделать некоторые предположения о химической характеристике этого класса органических соединений. Так, часто используют введение новых заместителей в ароматическое ядро или модифицируют имеющиеся заместители с целью получения новых продуктов, удобных для идентификации исследуемого соединения. Если в молекуле уже имеются подходящие заместители, то химик может обратиться к другим разделам этой главы, где описаны реакции этих групп (например, карбоновые кислоты, амины, анилины, сложные и простые эфиры, карбонильные соединения и т. д.). Кроме того, в этой книге имеются специальные обзоры реакций некоторых типов ароматических соединений (ароматиче- [c.281]

    Замена атомов водорода в заместителях на ф ор значительно увеличивает их электроноакцепторное влияние [228]. При этом повышаются кислотные свойства фенолов и ароматических карбоновых кислот и уменьшается основность аминов. [c.244]

    ФТАЛЕВЫЕ КИСЛОТЫ (бензолди-карбоновые кислоты) СвН4(СООН)2. Известны ортофталевая, изофталевая и тере-фталевая кислоты, о-Фталевая кислота — простейший представитель двухосновных ароматических кислот получают ее окислени-и другими способами. о-Ф. к. кристаллизуется из воды в виде блестящих листочков, т. пл. 200 С, малорастворима в воде. о-Ф. к. содержится в зелени и семенной коробочке мака. При нагревании выше 200 С теряет воду и превращается во фталевый ангидрид. Эфиры о-Ф. к.— маслянистые высококипящие жидкости, применяют в качестве пластификаторов, манометрических жидкостей, в газожидкостной хроматографии и в качестве рабочей жидкости в вакуумных диффузионных насосах. Диметиловый эфир обладает реппелент-ными свойствами и применяется для отпугивания насекомых. В химической промышленности применяют не о-Ф. к., а ее ангидрид (см. Фталевый ангидрид). [c.270]


    Пример 3. Соединение нейтрального характера реагирует со щелочами при нагревании с образованием соли и летучего органического вещества. Качественные реакции на азот, серу и галогены отрицательные. В коротковолновой части (у > 2500 см ) ИК-спектра (рис. 1.13) имеются только полосы валентных колебаний водорода насыщенных радикалов (между 2800 и 3000 см ). Очень слабая широкая полоса при частоте 3500 см — вероятнее всего примесь воды (или спиртов), второй слабый максимум при 3450 см" — обертон очень сильной полосы при 1730 см" -. Следовательно, вещество не содержит никаких группировок ОН (а также ЫН и 5Н, но они исключаются уже данными качественных реакций), не содержит водорода при тройных связях С=С, двойных связях С=С и С=0 или ароматических кольцах. Отсутствие этих фрагментов подтверждается также исследованием области частот 1500—2500 см , в которой имеется лишь полоса 1730 см . Эта очень сильная полоса точно соответствует частоте валентных колебаний карбонила в нескольких классах органических веществ (см. таблицу характеристических частот в конце книги), но с учетом указанных химических свойств ее следует приписать сложноэфирной группировке (лактоны, имеющие те же частоты валентных колебаний С=0, не образуют летучих веществ при реакции со щелочами ангидриды карбоновых кислот имеюг в этой области две полосы и также не образуют летучих веществ при действии щелочей). Не исключена, однако, возможность одновременного присутствия кетонной группы (второго карбонила) и (или) группировки С—О—С простых эфиров. Таким образом, исследуемое вещество скорее всего является сложным эфиром какой-то кислоты предельного или [c.25]

    Кислотные свойства карбоновых кислот. Наиболее сильной из карбоновых кислот является муравьиная кислота. Константа ее диссоциации равна 2,14-10 . Кислотные свойства карбоновых кислот, содержащих в соединении с карбоксильной группой углеводородные радикалы, ослаблены они зависят и от характера радикала. Карбоновые кислоты ароматического ряда несколько сильнее, чем кислоты предельного ряда. Так, например, константа диссоциации бензойной кислоты при 25° равна 0,67 10-, а уксусной кислоты 0,176- 10 <. При замещении же в метильном радикале ж сусной кислоты атомов водорода хлором кислотные свойства возрастают для монохлоруксусной кислоты константа диссоциации при 25° равна 14-10 а для [c.337]

    Простейшая двухосновная карбоновая кислота—щавелевая М2С2О4 она состоит из двух карбоксильных групп (С0 >Н)2, является кислотой средней силы и обладает восстановительными свойствами. Из ароматических двухосновных кислот следует указать фталевую СбН/(С02Н)2, которая существует в виде трех изомеров — орто-, мета- и пара-. [c.152]

    Кремний во многих элементооргаиических соединениях обычно имеет ковалентность близкую к четырем и так же, как и углерод, — тетраэдрическую направленность ковалентных связей. Связь его с углеродом малополярна. Связи кремния Si-Si и Si-Н легко разрушаются в полярных средах, а соответствуюшие соединения энергично реагируют с кислородом. Устойчивых кремнийорганических соединений, по своей структуре и составу аналогичных органическим соединениям с двойной или тройной связью между атомами кремния, не существует. Это связано с общим свойством для элементов третьего периода неспособностью к образованию прочных -связей. Поэтому отсутствуют устойчивые кремниевые аналоги органических соединений ароматических углеводородов, альдегидов, кетонов, карбоновых кислот, сложных эфиров. [c.593]

    В одной из недавних работ, посвященных вопросу о строении нефтяных кислот [47 ], имеется прямое указание, основанное на патентных данных [48] и частном сообщении не опубликованных данных, на то, что карбоновые кислоты, соли которых являются наиболее эффективными эмульгаторами, содержат в молекуле ароматическое ядро. Присутствие ароматических замещенных С12 — Сзо жирных кислот в битумах, обладающих хорошими эмульгирующими свойствами, — пишет автор, — упоминается, но не доказано в французском патенте . [c.318]

    Самым характерным свойством фенолов является их слабая кислотность, которая обусловлена тем, что гидроксил связан с ненасыщенным атомом углерода ароматического ядра, т. е. наличием еноль-ной группировки —СН = С(ОН)—. Сам фенол —слабая кислота, (р/Ск=10,0). Он образует соли (феноляты) с едким натром, но не с карбонатом натрия. Такое поведение типично для фенолов, и этим они отличаются от карбоновых кислот, которые реагируют даже с бикарбонатами. Таким образом, если исследуемое ароматическое соединение эастворяется в едком натре лучше, чем в воде, но его растворимость а воде не повышается в присутствии карбоната натрия, то возможно, что оно принадлежит к ряду фенолов. Константы диссоциации замещенных фенолов не подчиняются какой-либо закономерности. ИсклЮ чение представляет ряд нитрофенолов все три мононитрофенола — более сильные кислоты (р/(к = 7,2—8), чем фенол еще зыше кислотность 2,4-динитрофенола (р/(1, = 4,0) и пикриновой кислоты, кислотность которой почти равна кислотности минеральной кислоты. Увеличение кислотности фенолов при введении нитрогрупп обусловлено стабилизацией анионной формы. Стабилизация анионной формы нитрогрупп аналогична подавлению основной диссоциации аминов и точно так же может быть объяснена индукционным и резонансным эффектами. [c.278]

    Из данных, приведенных в табл. 18, следует, что остаточное содержанпе серы и степень обессеривания дизельного топлива в зависимости от количества добавки проходит через экстремум, хотя и маловыраженный. Повышение температуры и количества добавки (до 3%мас.) увеличивает степень обессеривания дизельного топлива, в результате чего снижается остаточное содержание серы в нем, или при сохранении остаточного содержания серы в дизельном топливе можно повыснть производительность установки. Стимулирование химических превращений на стадии физических превращений может быть реализовано и при осу" ществлении каталитических процессов. Сырьем каталитических процессов являются бензиновые и дизельные фракции, вакуумные дистилляты и мазуты, существенно различающиеся по содержанию ПАВ естественного происхождения, а следовательно, и по склонности к образованию НДС в условиях процесса. Естественными ПАВ в сырье каталитического крекинга являются карбоновые кислоты, содержание которых в керосиновой фракции может достигать десятых долей процента и увеличиваться (до 1,0%) по. мере перехода к более тяжелым фракциям. Поверхностно-активными свойствами обладают полициклические ароматические углеводороды, смолы и асфальтены, которые могут содержаться в сырье каталитического крекинга. [c.157]

    Как видно из данных табл. 44, свойства кислот с близким числом углеродных атомов неодинаковы это объясняется различным их строением (содержанием в молекуле алкаповых цепей, циклановых и ароматических колец, количеством и длиной алкильных цепей у этих колец). С увеличением молекулярного веса цикличность нефтяных карбоновых кислот возрастает. Ниже приведены характеристики различных партий кислот, выделенных из техасских нефтей  [c.259]

    Свойства фенолов. 1. Фенолы имеют большую кислотность, чем спирты, уступая, однако, в этом отношении карбоновым кислотам. Они растворяются в водных растворах щелочей, причем их соли, феноляты, лишь слабо гидролизуются водой. Двуокись углерода осаждает 41Снолы из водных щелочных растворов, и таким способом они могут быть отделены от карбоновых кислот. Следовательно, ароматический остаток усиливает кислотные свойства гидроксилыюй группы. Это вызывается, по-видимому, той же причинои, которая обусловливает сильно кислотный характер енолов. Более же сильную кислотность енолов по сравнению с насыщенными спиртами мы объясняли тем, что в этих соединениях гидроксильная группа находится у двойной связи в фенолах гидроксильная группа также связана с ненасыщенным атомом углерода (по формуле бензола Кекуле она находится у двойной связи ).  [c.538]

    ТРОПОЛОНЫ — семичленные циклические оксикетоны, по своему строению и химической природе относятся к ароматическим соединениям небензоидного типа Простейший из Т.— 2 окси ци клогептатр иен 2,4,6-он-1 — бесцвет ные игольчатые кри сталлы, т. пл. 50—51 С, растворя ется в воде и в органических растворителях, легко возгоняется синтезируют из пробковой кислоты. Многие природные соединения содержат в основе структуру Т. Т. обладают фунгицидными и бак-териостатическими свойствами. Для них характерны реакции присоединения, они с трудом восстанавливаются, обычными окислителями кольцо не разрушается. Как и фенолы, Т. легко подвергаются электрофильному замещению. По кислотным свойствам Т. занимают промежуточное положение между фенолами и карбоновыми кислотами. При действии щелочей кольцо Т. изомеризуется в бензольное. [c.254]

    Кислотные свойства у органических соединений, в которых атом водорода связан непосредственно с атомом углерода, проявляются исключительно редко. Обычно кислотными свойствами обладают соединения, в которых атомы водорода явно положительно поляризованы, будучи связанными, например, с атомом кислорода в гидроксо-группу. Таким образом, все органические гидроксопроизводные в той или иной мере обладают кислотными свойствами. Последние у спиртов исчезающе малы, у фенолов, т. е. у ароматических гидроксопроизвод-ных в ядре, достигают уже заметной величины, но явно проявляются у карбоновых кислот, в которых гидроксо-группа в сочетании с группой =С=0 входит в состав карбоксо-группы НО- С—О. [c.76]

    Исследование влияния ПАВ на дисперсные структуры в битумах проводилось на модельных системах и реальных битумах разных структурных типов 150, 151]. Для исследования были взяты модельные системы, дисперсионная среда которых, слабо структурированная смолами, состояла из парафино-нафтеновых углеводородов (32%), ароматических углеводородов (45%) и смол (23%). В качестве дисиерспой фазы были взяты асфальтены битумов прямой перегонки. В дисперсионную среду моделей вводились добавки ФГС — железного мыла карбоновых кислот из госсиполовой смолы (серия А) и добавка ОДА — октадециламин (серия М) в количествах, определенных в качестве оптимальных для получения хорошего сцепления. Это количество составляло для ФГС 5%, а для ОДА — 1% к дисперсионной среде. Свойства полученных модельных систем сопоставлялись со свойствами модели серии Е, в которой добавки отсутствовали. [c.209]

    Пирролы, имидазолы, пиразолы и бензоконденсированные аналоги, обладающие NH-группой, способны депротонироваться (значение рА а лежит в интервале 14-18). Следовательно, эти соединения могут быть полностью превращены в соответствующие анионы при действии сильных оснований, таких, как гидрид натрия или -бутиллитий. Незамещенный пиррол ( рК . 17,5) проявляет кислотные свойства в гораздо большей степени, чем соответствующий насыщенный аналог пирролидин (рА 44). Кислотность индола (рА 16,2) значительно выше, чем кислотность анилина (рА 30,7). Такое различие в кислотности можно объяснить возможностью делокализации отрицательного заряда в анионе ароматического гетероцикла. Введение электроноакцепторных заместителей или дополнительного гетероатома, особенно иминного атома азота, существенно повышает кислотные свойства гетероциклических соединений. Прекрасный иллюстрацией такого влияния может служить тетразол, рА которого (4,8) имеет тот же порядок, что и рК карбоновых кислот [c.47]

    По СВОИМ свойствам 5-аминопиримидины напоминают слабые ароматические амины, хотя известны и некоторые их реакции, более типичные для аминов алифатического ряда. Ацилирование 5-аминогрупп проходит очень легко при восстановлении 5-нитрозо- или 5-нитрогрупп металлом в карбоновой кислоте часто непосредственно получается ациламинопроизводное. При наличии в молекуле пиримидина нескольких аминогрупп, прежде всего всегда ацилируется [c.247]

    Оригинальную точку зрения на механизм реакции нитрования ароматических соединений выдвигает в своих работах французский исследователь Ланц [32] Он рассматривает нитрование как процесс, связанный с кислотно-основным равновесием в системе, исходя при этом из представлений Бренстедта Бренстедт [33] определяет кислоту как вещество, способное дать протоны другому веществу, которое он называет основанием Обратимая реакция, которая при этом возникает, дает начало новому основанию и новой кислоте Кислота (1) - - основание (1) 1 основание (2) + кислота (2) По Бренстедту, свойства кислоты и основания проявляются только в том случае, если кислота и основание находятся вместе Некоторые вещества в присутствии некоторых кислот имеют свойства оснований, а в присутствии некоторых оснований обнаруживают свойства кислот Например, органические карбоновые кислоты, фосфорная и азотная, которые являются кислотами по отношению к обычным основаниям, становятся уже основаниями в присутствии более энергичных кислот — серной, пиросерной и хлорной [c.139]

    Синтез хинолинов с использованием АОЭ основан на реакции Гоулда-Дже-кобса, представляющей взаимодействие ароматических аминов по пути SnVin. Полученные этим способом этиловые эфиры хннолнн-4-он-З-карбоновых кислот как сами проявляют биологическую активность, так и могут служить полупродуктами синтеза веществ с заданными свойствами. В частности, они показали противомалярийную, противоопухолевую и радиосенсибнлизнрующую активности. Их физиологически приемлемые производные применяют в лекарственных препаратах (таблетки, капсулы, растворы, суспензии, эмульсии, пасты, мази, гели, кремы) в медицине и ветеринарии. [c.241]

    Инсектицидная активность ароматических и жирноароматических карбоновых кислот, галоген- и нитропроизводных и солей со щелочными металлами и аммиаком незначительна. Более выраженными инсектицидными свойствами обладают бензило-вые эфиры замещенных бензойных кислот. Наиболее высокую инсектицидную активность проявляют 3-феноксибензиловые и [c.195]


Смотреть страницы где упоминается термин Карбоновые кислоты ароматически свойства: [c.31]    [c.487]    [c.487]    [c.506]    [c.140]    [c.96]    [c.351]    [c.248]    [c.196]    [c.255]    [c.247]    [c.62]    [c.141]   
Руководство по малому практикуму по органической химии (1964) -- [ c.242 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические кислоты

Карбоновые кислоты ароматические

Карбоновые кислоты свойства

Кислоты свойства



© 2025 chem21.info Реклама на сайте