Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химия, определение ядерная

    Здесь необходимо сразу подчеркнуть, что изучение подобных химических явлений не определяет полностью круг явлений, изучаемых современной химией. Наглядным примером этому может служить ядерная химия. Определение поведения и превращения атомных ядер при их самостоятельном распаде или при их бомбардировке другими элементарными частицами представляет собой задачу, рещение которой невозможно без глубоких химических знаний. [c.121]


    Применение. Метод магнитной резонансной спектроскопии применяется в основном в физике и физической химии для изучения кристаллической структуры, фазовых превращений и движений молекул в твердых телах н для определения ядерных констант [9, 10]. Он имеет большое потенциальное значение для определения молекулярной структуры веществ [4]. [c.248]

    Курс общей химии включает в себя определенный круг вопросов, для прочного овладения которым студенту необходимо самостоятельно решить достаточное число задач, В процессе их решения вырабатываются навыки в выполнении важных практических расчетов и закрепляются основные теоретические положения курса. По каждой теме дается краткое теоретическое вступление, цель которого фиксировать внимание студента на те вопросы курса общей химии, по которым предусмотрены упражнения и задачи. В тех же случаях, когда необходимый пояснительный материал в учебнике освещен недостаточно, даются более подробные объяснения (окислительно-восстановительные гальванические элементы, ядерные реакции и их уравнения и некоторые др.). [c.5]

    Строение можно изучать химическими методами — второе важнейшее положение Бутлерова — также не потеряло своего значения в наши дни. Изучение строения органических соединений — природных и синтетических — было и остается основной задачей органической химии. При этом, как и во времена А. М. Бутлерова, мы пользуемся методами химического анализа и синтеза. Однако наряду с ними в наше время широко применяются физические методы определения строения — разные виды спектроскопии, ядерный магнитный резонанс, масс-спектрометрия, определение дипольных моментов, рентгенография, электронография. Значение этих методов ныне столь велико, что, дополняя Бутлерова, в наше время мы можем сказать строение можно изучать химическими и физическими методами. [c.31]

    По определению Ан. И. Несмеянова, радиохимия — область химии, изучающая химию радиоактивных изотопов, элементов и веществ, законы их физико-химического поведения, химию ядерных превращений и сопутствующих им физико-химических процессов . Это определение включает в себя также ядерную химию и радиационную химию. Собственно радиохимия занимается изучением физико-химических закономерностей поведения радиоактивных изотопов и элементов. При этом могут быть выделены два направления исследований. [c.587]


    Замечательным примером применения радиоактивных индикаторов в аналитической химии является радиоактивационный анализ. Он основан на образовании в анализируемом материале радиоактивных изотопов или продуктов их превращений определяемых элементов под действием ядерных частиц. Его целесообразно использовать для определения малых примесей, когда обычные аналитические методы непригодны из-за ограниченной чувствительности. В табл. 19.10 приведена чувствительность активационного анализа при использовании для облучения анализируемого вещества медленных нейтронов ядерного реактора. [c.594]

    ЭЛЕМЕНТЫ ХИМЙЧЕСКИЕ, совокупности атомов с определенным зарядом ядра Ъ. Д. И. Менделеев определял Э. х. так материальные части простых или сложных тел, к-рые придают им известную совокупность физ. и хим. св-в . Взаимосвязи Э. X. отражает периодическая система химических элементов. Порядковый (атомный) номер элемента в ней равен заряду ядра, к-рый в свою очередь численно равен числу содержащихся в ядре протонов. Для каждого Э. х. известны разновидности атомов - изотопы (существующие в природе и полученные искусственно путем ядерного синтеза), различающиеся числом нейтронов в ядрах. Совокупность атомов, характеризующаяся определенной комбинацией протонов и нейтронов в ядре, наз. нуклидом. Атомная масса Э. х. рассчитывается, исходя из значений масс всех его природных изотопов с учетом их относит, распространенности, и выражается в атомных единицах массы, за к-рую принята 12 массы атома углерода Атомная единица массы равна 1,66057 10 кг. Суммарное число протонов и нейтронов в ядре равно массовому числу А. [c.472]

    В физической химии метод ЯМР нашел множество других применений, таких, как исследования структуры кристаллов, фазовых переходов, движения молекул в твердых телах, кинетики быстропротекаю-щих процессов взаимодействий в растворах и определение ядерных констант.  [c.190]

    Рассчитанные в предыдущем разделе адиабатические потенциалы электронно-вырожденных и псевдовырожденных систем позволяют, подставив эти потенциалы в вибронные уравнения ( 1.13), перейти к исследованию динамики движения ядер в таких системах. По сути своей такая процедура может быть названа решением обратной задачи квантовой химии. Действительно, наиболее общей известной до сих пор центральной задачей квантовой химии с момента ее возникновения как науки в 1927 г. было определение электронного строения молекулярной системы, имеющей определенную ядерную конфигурацию (т. е. при фиксированных ядрах). В некоторых случаях конфигурации ядер варьировали, но задачу электронного строения по необходимости решали для каждой фиксированной конфигурации. [c.223]

    Широко используемое в химии понятие ядерной конфигурации основано на классическом описании ядерной системы как совокупности тяжелых классических частиц, совершающих малые колебания вокруг некоторых определенных положений равновесия. Как показало обсуждение в главе VI, такое описание имеет физический смысл, когда электронное состояние системы невырождено и вблизи него нет других электронных состояний, с которым оно может сильно перемешиваться при ядерных смещениях. Оставляя рассмотрение этих последних более сложных случаев на раздел 111.2, остановимся здесь кратко на некоторых аспектах вопроса, свойственных главным образом невырожденным системам. [c.277]

    В примечаниях к переводу гл. XIII даются многочисленные ссылки на оригинальные статьи и монографии, посвященные всем этим новым проблемам ядерной химии, которым теперь можно было бы посвятить уже отдельную книгу, не меньшую по своему объему, чем книга Г. Фридлендера, Дж. Кеннеди и Дж. Миллера. В этой связи можно поспорить по поводу выдвигаемого в предисловии авторов книги определения ядерных химиков как людей, занимающихся свойствами и реакциями атомных ядер (а что же такое тогда ядерные физики ) и радиохимиков как людей, занимающихся применением свойств радиоактивных ядер к решению химических проблем. Предпочтительнее, по-видимому, утверждение, что ядерные химики применяют методы и представления ядерной физики к решению химических проблем, тогда как радиохимики изучают свойства, методы выделения и концентрирования радиоактивных элементов и изотопов и применяют эти методы в помощь другим наукам, в первую очередь ядерной физике (здесь-то и смыкаются оба названных выше аспекта ядерной химии). [c.6]

    Осн. работы посвящены химии горячих атомов, получению радиоактивных изотопов, меченых соед. и их применению. Разработал (1956—1965) теорию р-ций горячих атомов, позволяюп1,ую дать колич. оценку хим. последствиям ядерных превращений и выявить условия направленного синтеза меченых соед. при участии горячих атомов. Пре/уюжил (1957- 1958) эффективный метод определения давления насыщенного пара в-в с использованием явления изотопного обмена. Развил работы по использованию мессбауэровской спектроскопии неорганических в-в и выявлению продуктов ядерных превращений в тв. фазе. Установил (1975—1980) закономерности фракционирования. радионуклидов при массопереносе в-в с поверхности океана в атмосферу. [c.316]


    Данный метод нашел широкое применение для определения ст])уктуры соединений, хотя высокая стоимость четырехокиси осмия ограничивает его примои( ние в препа2)ативной химии. Мотод прти лим так/ке к ыного-ядерным и канцерогенным углеводородам [17]. [c.367]

    Уравнения типа [18] импонируют специалистам по химии комплексных соединений благодаря своей традиционности. Ведь именно эти уравнения в частных случаях ступенчатых равновесий дополнительно преобразовывали к стандартному виду одного уравнения относительно концентрации лиганда и затем использовали как при расчетах равновесий, так и при определении констант ЗДМ [16 — 18, 54—49]. Сложную программу для ЭВМ с автоматическим анализом ядерности комплексов п сиязанпой с пей возможностью изменения схем счета предложили шведские специалисты по химии комплексных соединений [50]. [c.28]

    Сама жизнь подсказывает необходимость комплексного использования замечательного дара природы — нефти, и научные разработки в данном направлении возобновились. В Институте ядерной физик АН Казахской ССР и Институте химии нефти Томского филиала СО АН СССР интенсивно изучают элементный состав нефтей и их фракций с помощью нейтронноактивационного анализа. Благодаря созданию установок экспрессного определения содержания в нефтепродуктах и сырье ванадия, серы и других неорганических примесей, появилась возможность четко определять, какие именно нефти стоит отправлять на извлечение металлов. [c.132]

    Из определения элемента, данного на атомном уровне, следует более раннее определение этого понятия элементы — это простейшие части химических соединений, комбинирующиеся различным образом, но остающиеся практически неизменными, не считая небольших изменений некоторых (Второстепенных овойств (например, заряда частиц). Это позволяет для химических явлений постулировать закон сохранения элементов, используемый цри (символическом описании химических реакций в каждом химическом уравнении количество символов всех элементов с обеих сторон должно быть одинаковым. Этот закон верен, если исключены ядерные. процессы, при протекании котс -рых меняется число протонов в ядре. Происходящее при этом превращение элементов относится к области ядерной химии. [c.344]

    Введение представления о поверхности потенциальной энергии позволяет подойти к вопросу о квантово-механическом определении молекулярной структуры. Обычно понятие молекулярной структуры относят к точке конфигурационного пространства в минимуме ППЭ, однако такое отнесение не вполне строгое, так как в результате непрерывных внутренних колебаний (следствие принципа неопределенности) ядерная конфигурация молекулы постоянно деформирована по отношению к точке минимума ППЭ. Такие деформации могут быть значительны для стереохимически нежадтких молекул и ионов. Они могут быть велики и на начальных участках химической реакции, когда в обычной сложившейся в химии терминологии исходная структура еще не разрушена. Из изложенного ясно, что геометрическое определение молекулярной структуры не исчерпывает содержания этого понятия. [c.173]

    Достижения современной ядерной физики и химии позволяют более определенно судить и о возможностях синтеза новых искусственных сверхтяжелых элементов. Эта проблема также неоднозначна. С одной стороны, последовательное увеличение числа протонов в ядре приводит к более резкому возрастанию числа нейтронов (атомная масса элементов растет быстрее, чем атомный номер ) и нестабильность тяжелых ядер должна увеличиваться с ростом числа нейтронов, вплоть до невозможности их существования. С другой стороны, оболочечная модель ядра предполагает наличие полностью завершенных нуклонных слоев (магические числа 2, 8, 14, 20, 28, 50, 126) . Такие завершенные нуклонные оболочки обладают повышенной стабильностью. На этом основано предсталение о так называемых островках стабильности среди сверхтяжелых элементов, ближайший из которых находится вблизи 2=126, т. е. соответствующие ядра должны обладать сравнительно высокой устойчивостью. [c.451]

    Теория химического строения учитывает особенности элемента углерода (см. 15.2). Изучение строения органических соединений остается основной задачей органической химии и а наше время. Дди этого кроме химических широко пр - меняются физические методы исследования, такие, как спектроскопия ядерный магнитный резонанс, масс-ч пектрометрия, определени электрических моментов дипо лей, р>ентгено- и электронография. [c.327]

    ГОМОГЕННЫЙ КАТАЛИЗ, ускорение хим р-ции в присутствии катализатора, к-рый находится в одной фазе с исходными реагентами (субстратами) в газовой фазе или р-ре При Г к, как и при гетерогенном катализе, катализатор в р-ции не расходуется, однако является ее необходимым участником, без катализатора р-ция протекает гораздо медленнее или не идет вовсе Механизм гочогенно-к аталитическ нх реакций. Можно выделить сравнительно небольшую группу процессов, в к-рых участие катализатора не связано с образованием определенного хим соед с субстратом К таким процессам относится, напр, катализ парамагн частицами синглет-триплетного превращения карбенов (изменяется электронный спин молекулы) или орто-, пара-превращение Hj (изменяется ядерный спин) Формально к Г к можно отнести газофазные р-ции рекомбинации атомов и простейших радика-тов в присут химически инертных частиц, к-рые, участв)я [c.591]

    ЗОЛЬ-ГЕЛЬ ПРОЦЁСС (гелевая технология), технология получения материалов с определенными хим. и физ.-мех. св-вами, включающая получение золя и послед, перевод его в гель. З.-г. п. используют при произ-ве неорг. сорбентов, катализаторов и носителей катализаторов, синтетич. цеолитов, вяжущих неорг. в-в, керамики со спец. теплофиз., оптич., магн. и электрич. св-вами, стекла, стеклокерамики, волокон, керамич. ядерного топлива и др. [c.173]

    Стабильные нуклиды для И. и. получают методами изог топов разделения. Важное преимущество их использования-отсутствие ионизирующих излучений недостатки высокая (в большинстве случаев) стоимость препаратов, сложная техника регистрации, низкая точность определения и сравнительно высокие пределы обнаружения (не ниже 10 -10 % по массе). В случае радиоактивных И. и. пределы обнаружения тем ниже, чем меньше радионук-лида-метки. и могут достигать чрезвычайно низких значений (10" -10" % по массе). Это определяет широкое применение радиоактивных И. и. в химии, физике, биологии, медицине и др. областях. Большинство используемых радионуклидов - искусственные, получаемые при ядерных р-циях как продукты деления, при проведении активац. анализа, радиоактивном распаде долгоживущего материнского нуклида (см. Изотопные генераторы). Для тяжелых элемен-тов-Ра, ТЬ, В1, РЬ, Т1-обычно используют их короткоживущие радионуклиды, входящие в состав прир. радиоактив- [c.196]

    Кроме того. И.а. используют при установлении происхождения пород и условий рудообразования при изучении ядерных р-ций в радиоактивных минералах, в породах Луны и метеоритах при изучении кинетики и термодинамики изотопного обмена, механ 1змов хим. р-ций при исследовании выходов продуктов ядерных р-ций, определении периодов полураспада по накоплению стабильных изотопов при анализе в-ва твэлов и установлении степени выгорания ядерного горючего. [c.198]

    Вторая задача изотопной М.-с.-определение концентрации хим. элементов изотопного разбавления методом. Преимущество масс-спектрометрич. варианта этого метода-высокая чувствительность (до 10 г твердых в-в и до 10 г газов), низкая погрешность ( + 0,1-0,5%), допустимость нек-рых потерь части образца недостаток - необходимость предварит, независимой ориентировочной оценки определяемой концентрации для дозирования оптим. кол-ва изотопного стандарта. Метод широко используют в изотопной геохронологии, ииогда-в геохимии, ядерной физике, агрохимии, аналит. химии. [c.663]

    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]

    И. м. служат для рещения разл. задач и могут иметь разную форму. Напр,, для расчета дипольного момента, энергии электронного возбуждения или распределения электронной шю-гности в молекуле при равновесной конфигурации ядер достаточно решить лишь электронную задачу. Определение равновесной конфигурации ядер молекулы требует поиска минимума на поверхности потенциальной энергии (ППЭ), к-рый производят по точкам, т.е. многократно решают электронную задачу для разл. конфигураций ядер. Для изучения динамики элементарного акта хим. р-ции необходимо не только найти ППЭ, но и решить ядерное ур-ние Шрёдингера для взаимодействующих молекул. [c.238]

    Хим. формы (состав соединения, степень окисления и т.п.), в виде к-рых существуют Р. после своего образования в ядерных р-циях, характеризуются большим разнообразием. Для их определения используют мёссбауэровскую спектроскопию, хроматографию и др. методы. Связь хим. формы Р. со св-вами среды, где происходила ядерная р-ция, т-рой и др. факторами изучает ядерная химия. [c.170]

    К настоящему времени получены искусств, радионуклиды почти всех встречающихся в природе элементов периодич. системы (кроме Не и й), все актиноидные, а также трансактиноидные элементы (по 109-й включительно). Развитие ядерного реакторостроения и практич. проблемы получения ядерного горючего привели к тому, что радиохим. исследования и произ-во приобрели характер важнейших государств. профамм мн. развитых стран. Расширяется само понятие Р. по сравнению с определением, данным А. Камероном. В. Д. Нефедов и др. радиохимнки ленинградской школы (старейшей отечественной радиохим. школы) определяют Р. как науку, объектами исследования к-рой являются радиоактивные элементы и продукты ядерных превращений-на изотопном, элементном и молекулярном уровнях. В более широком смысле Р. трактуют как науку, изучающую хим. превращения радиоактивных в-в, их физ.-хим. св-ва, химию ядерных превращений и сопутствующие им физ.-хим. процессы (Ан. Н. Несмеянов и сотрудники). Однако такое определение Р. не охватывает технол. проблем радиохим. произв-в. Четкое разграничение круга вопросов, относимых к Р., должно быть основано на радиоактивных св-вах атомов, к-рые определяют характер проводимых работ и их результаты. Однако на практике такого разграничения обычно не проводят. Так, в журнале Радиохимия публикуются работы по химии радиоактивных элементов, использованию изотопных индикаторов при исследовании гетерог. процессов (экстракции, хроматографии, адсорбции, сокристаллизации и т.п.), по химии РЗЭ как аналогов актиноидов и мн. др. проблемам. [c.172]

    Ф. а. металлов и сплавов появился впервые в кон. 19 в. как анализ осадка , т. е. нерастворенного остатка после обычной аналит. процедуры р-рения металла в к-те. Такие осадки состояли из карбидов и оксидов элементов, входящих в состав сталей. Осмысление результатов этого анализа послужило стимулом к поискам более точных и управляемых методов вьщеления как существенных фазовых составляющих - карбидов и нитридов, так и примесей неметаллич. включений -оксидов, сульфидов и т. п. В результате этого в 30-х гг. 20 в. возникли разл. варианты анодного растворения. Теория электрохим. фазового анализа сплавов была разработана только в 50-х гг. 20 в. в связи с определением интерметаллидных соед. в жаропрочных сплавах. Одновременно произошла стыковка такого Ф. а. с др. первоначально особым направлением аналит. химии в металлургии - анализом 1азообраз то-щих примесей в металлах. Для Ф. а стали использовать физ. методы, прежде всего рентгеновский фазовый анализ, электронографию, а также электронно-зондовые методы, методы эмиссионного спектрального анализа, резонансные методы (напр., ядерный магнитный резонанс). [c.56]

    При определенных условиях, в частности при невысокой скорости сталкивающихся частиц, возможно образование связанной системы - позитрония е е и мюония 1 е . Эти нестабильные системы, часто наз. водородоподобными атомами, их время жизни в в-ве в большой степени зависит от св-в в-ва, что позволяет использовать водородоподобные атомы ддя изучения структуры конденсир. в-ва и кинетики быстрых хим. р-ций (см. Мезонная химия, Ядерная химия). [c.470]

    Ядерные эффекты в химии. Превращения в-в, не стабильных относительно распада ядер, изучаются, начиная с открытия радиоактивности в 1896. Введенный в нач. 20 в. термин радиохимия в наст, время объединяет химию радиоактивных в-в и ядерных превращений и изучение сопутствующих им физ.-хим. процессов. Разработаны методы, позволяющие направленно получать, концентрировать и выделять атомы с определенными адрами, в частности радионуклиды, а также молекулы, в состав к-рых входят такие атомы (см. Ядерная химия). [c.521]

    Понятие химической связи возникло в химии раньше, чем было установлено электронно-ядерное строение атомов и молекул Это понятие в его классическом толковании отражает определенные оуюшения (взаимодействия) атомов в молекулах Среди всех таких взаимодействий в молекуле выделяются главные, обусловливающие существование молекулы как целого Эти гаавные взаимодействия и называются химическими связями, при написании структурных формул эти главные взаимодействия обозначаются валентными штрихами ЬСлассическая теория химического строения дает определение химической связи, но не раскрывает ее природы [c.107]


Смотреть страницы где упоминается термин Химия, определение ядерная: [c.321]    [c.6]    [c.3]    [c.192]    [c.85]    [c.249]    [c.707]    [c.159]    [c.214]    [c.460]    [c.108]    [c.238]    [c.168]    [c.441]    [c.512]   
Общая химия (1964) -- [ c.534 ]




ПОИСК





Смотрите так же термины и статьи:

Химия, определение

Ядерная химия



© 2025 chem21.info Реклама на сайте