Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Направление процесса и условия равновесия

    Смещение химического равновесия. Состояние химического равновесия сохраняется при данных условиях любое время. При изменении же условий равновесие нарушается. Влияние, оказываемое на равновесную систему каким-либо внешним воздействием (изменение концентрации реагентов, давления, температуры), можно предсказать, пользуясь принципом Ле Шателье. Согласно этому принципу, если находящаяся в равновесии система подвергается внешнему воздействию, равновесие смещается в таком направлении, которое способствует ослаблению этого воздействия. При нагревании равновесие смещается в сторону эндотермического процесса, при повышении давления — в сторону процесса, идущего с уменьшением объема. [c.135]


    Если в изолированной системе о направленности самопроизвольного процесса и равновесии судят по изменению энтропии в системе (см. 69), то в закрытых системах ответ на этот вопрос получают на основании величины полезной работы W. Действительно, при осуществлении любого квазистатического и нестатического процесса система в состоянии будет произвести работу [W >Q). К примеру, для химической реакции максимальную полезную работу можно получить, если ее провести при постоянных Р к Т квазистатическим путем в гальваническом элементе. Итак, условие самопроизвольного процесса в закрытой системе будет [c.231]

    Кроме тех свойств энтропии, о которых говорилось, она является критерием возможности и направления процессов, а также состояния термодинамического равновесия в изолированных или адиабатно-изолированных системах. Если в изолированной системе протекает самопроизвольный необратимый процесс, то, как следует из (II, 104), энтропия возрастает. Условие (II, 104) является условием осуществимости данного процесса в изолировашюй системе. Процессы, для которых энтропия у.мепьшаегся, т. е, Д5<0, неосуществимы в изолированных системах. Если процесс возможен в прямом и обратном направлениях, то в изолированной системе он будет протекать в том направлении, которое сопровождается увеличением эптропни. При протекании процессов в изолированной системе энтропия ее увеличивается и одновременно система приближается к состоянию равновесия. Когда система достигнет состояния равновесия, то все процессы прекратятся, и энтропия будет [c.115]

    Общие условия равновесия определяют условия возникновения, а также направление протекания самопроизвольного процесса в сложной системе при различных условиях протекания этого процесса. Условия равновесия могут быть сформулированы на основе рассмотрения перехода сложной системы из неравновесного состояния в равновесное при отсутствии немеханической работы, т. е. необратимого перехода системы из одного состояния в другое. Для получения общих условий равновесия используют обобщенное уравнение первого и второго законов термодинамики, представленное [c.78]

    Константа равновесия — важная характеристика реакции. По ее значению можно судить о направлении процесса при исходном соотношении концентраций реагирующих веш,еств, о максимально возможном выходе продукта реакции при тех или иных условиях. [c.179]


    Следовательно, в процессе реакции происходит увеличение энталь ПИИ и энергии Гиббса. Если использовать в качестве критерия направления процесса и равновесия любую из этих функций, то нетрудно видеть, что рассматриваемая реакция при данных условиях невозможна. Другими словами, при температуре 298 К не протекает реакция взаимодействия карбоната кальция с кварцем, в результате которой могли бы образоваться волластонит и диоксид углерода. [c.53]

    При рассмотрении гидромеханических процессов условия равновесия заключаются в равенстве сил или давлений и в самостоятельном рассмотрении обычно не нуждаются. Направление течения этих процессов вполне очевидно. [c.32]

    Следовательно, в процессе записанной таким образом реакции происходит увеличение энтальпии и энергии Гиббса. Если использовать в качестве критерия направления процесса и равновесия любую из этих функций, то нетрудно видеть, что рассматриваемая реакция при данных условиях невозможна. Другими словами, хлористый этил при 298° К устойчив по отношению к распаду на этилен и хлористый водород. Рассмотрим теперь термодинамические параметры этой реакции при температуре 1000° К  [c.136]

    Термодинамикой называется раздел науки, в котором изучаются законы, описывающие процессы перехода энергии из одной формы в другую, энергетические (в частности, тепловые) эффекты, которыми сопровождаются различные физические и химические процессы, зависимость этих эффектов от условий процесса, а также возмол ность самопроизвольного (т. е. без затраты работы извне) течения процессов, их направление и условия равновесия. [c.92]

    Направление и условия равновесия изотермических процессов. Подобно тому как изменение энтропии определяет направление самопроизвольных процессов в изолированных системах, изменение термодинамических потенциалов может служить для той же цели при любых изотермических процессах. Диференцирование (149) и (151) д т  [c.317]

    Термодинамический метод основан на законах термодинамики, являющихся обобщением огромного опытного материала в области взаимной связи и превращений различных форм энергии. Такой метод применяется во многих энергетических расчетах при превращении веществ и в расчетах химических равновесий. Он позволяет на основании сведений о термодинамических свойствах веществ и условиях реакций решать вопрос о возможности практической реализации реакций, направлении процесса и пределе, до которого пойдет данный процесс (условие равновесия). Применение термодинамического метода не зависит от полноты наших сведений о молекулярном механизме процессов. Это позволило изучить практически важные реакции и реализовать их в технологии раньше, чем стал известен их механизм. [c.5]

    Таким образом, этот метод может быть выражен следующим положением самопроизвольное протекание процессов взаимодействия между различными частями системы возможно только в направлении выравнивания фактора интенсивности (температуры, давления, электрического потенциала, химического потенциала и др.) для всех частей системы, достижение одинакового значения этого фактора является пределом самопроизвольного течения процесса в данных условиях и, следовательно, условием равновесия. [c.207]

    G количественной стороны равновесие ионных химических реакций характеризуют обычно константой равновесия, широко используемой для выяснения направленности процесса, условий образования тех или иных частиц, степеней превращения и многих других вопросов. С термодинамической точки зрения особый интерес представляет исследование влияния составляющих этой величины (энтальпийной, энтропийной и структурной) на протекание ионных процессов. [c.273]

    Химическое равновесие. Самопроизвольно, т. е. без затраты работы извне, каждая система может переходить только из менее устойчивого состояния в более устойчивое. При постоянных температуре и давлении такой переход всегда сопровождается уменьшением энергии Гиббса системы. Пределом протекания реакции,, т. е. условием равновесия, является равенство AG = 0. Согласно равенству (1,7) самопроизвольному течению реакции благоприятствуют большие отрицательные значения АН (т. е. значительное выделение энергии в ходе реакции) и большие положительные значения AS (т.е. возрастание энтропии). Для многих не слишком сложных реакций первый (энергетический) фактор отражает обычное повышение устойчивости системы при уменьшении запаса ее внутренней энергии, которое проявляется в тенденции к большей агрегации вещества, укрупнению частиц. Второй же фактор энтропийный отражает тенденцию к дезагрегации, к усилению всяческих процессов диссоциации на более простые частицы, происходящих под действием теплового движения частиц. В реакциях, которые приближают систему к состоянию равновесия, эти два фактора действуют в противоположных направлениях, и общее течение процесса определяется действием преобладающего фактора и сопровождается сближением значений величин АН и TAS до тех пор, пока не будет достигнуто равенство их между собой,. [c.25]


    Когда мы переходим к аномальным металлам типа железа, то их поляризуемость значительно больше. Меньшие значения тока обмена (сила тока, протекающая в обоих направлениях в условиях равновесия, когда суммарная сила тока равна нулю) дают основания считать, что в этом случае имеется существенное отличие от нормальных металлов. Отделение атомов таких металлов один от другого происходит менее легко, чем в случае нормальных металлов то же относится и к переходу ионов в процессе анодного растворения. Другими словами, энергия активации значительно выше и поляризационные кривые круче. Поэтому при работе с аномальными металлами имеется реальная возможность даже при умеренных плотностях тока достигнуть таких значений потенциала, при которых, согласно диаграмме Пурбэ, должна наступить пассивация. Это объясняет, почему аномальные металлы значительно легче пассивируются, чем нормальные металлу. Если судить по токам обмена, то в условиях, когда цинк или медь должны беспрепятственно переходить в раствор в виде ионов, подача ионов железа или никеля не обеспечивается и в силу необходимости должны возникнуть другие реакции, приводящие сначала к образованию окисла, а затем к выделению кислорода. Однако наличие хлоридов облегчает электродные реакции, и вероятность достижения потенциала пассивации понижается. [c.740]

    Принцип Ле Шателье. Влияние изменения условий на положение равновесия определяется правилом, которое получило название принципа Ле Шателье (1884 г.) или принципа подвижного равновесия-, если на систему, находящуюся в истинном равновесии, воздействовать извне, изменяя какое-либо пз условий, определяющих положение равновесия, то в системе усилится то из направлений процесса, которое ослабляет эффект этого воздействия, и положение равновесия сместится в том же направлении. Система перейдет из одного состояния равновесия в другое, отвечающее новым условиям. Это связано с тем, что внешнее воздействие в разной степени изменяет скорость двух взаимно противоположных процессов. [c.198]

    В связи с изложенным, для численного раскрытия величины Кр предпочтительнее всего обратиться к выражению (11.85), которое позволяет с требуемой точностью количественно оценить значение константы равновесия при различных величинах давления и температуры в газонефтяной системе. Отличительной особенностью выражения (П.85) по сравнению с (П.89) является то, что рекомендуемая для вычислений формула целиком и полностью опирается на информацию Д(3, Ср, с , полученную при непосредственном экспериментировании в условиях, близких к природным [10]. Это положение усугубляется также и тем, что величины А0(АФ1) и Кр характеризуют направление протекания процессов и термодинамические условия равновесия, или указывают, насколько данный процесс далек от условий равновесия, что определяет выражение (П.89). Поэтому величина АО примерно равна нулю, если процесс находится в состоянии равновесия. Когда АО большая отрицательная величина, то данная система должна еще прореагировать в значительной степени, прежде чем процесс достигнет равновесия. Однако скорость процесса не связана ни с знаком, ни с величиной термодинамического потенциала, и его нельзя предсказать, зная АО. [c.89]

    Однако в пользу классического пути построения второго начала говорят следующие соображения. Метод и границы термодинамики приводят к неизбежности концентрировать внимание на взаимных превращениях теплоты и работы, как макроскопических форм передачи энергии. Сама математическая формулировка первого закона термодинамики связана с этим обстоятельством. Всякие попытки формулировать закономерность, которой следуют все наблюдаемые взаимные превращения теплоты и работы, естественно приводят к формулировкам Клаузиуса, В. Томсона или Планка. Ограничения возможности превращения теплоты в работу приводят к общим критериям направления процесса и условиям равновесия. [c.109]

    Изохорно-изотермический и изобарно-изотермический потен циалы принадлежат к классу функций состояния системы, нося щих название термодинамических потенциалов. Это—величины которые имеют размерность энергии и стремятся к минимуму если процессы в системе протекают в определенных условиях Термодинамические потенциалы являются в этих условиях кри териями направления процесса минимальные значения их при тех же условиях отвечают равновесию системы и являются условиями равновесия. [c.122]

    Понятие равновесия играет исключительную роль в химической кинетике, поскольку оно определяет предел возможных изменений состояний реагирующей системы и зависит только от начальных условий и свойств самой системы, а не от условий проведения процесса. Несколько упрощая существо дела, термодинамику можно определить как пауку о равновесии или как учение о направленности процесса, в то время как кинетика — наука о его скорости. Более строго термодинамика — часть физики, изучающая общие свойства систем, находящихся в стационарном равновесном состоянии. Термодинамическим процессом называется всякое изменение состояния системы. Термодинамический процесс называется обратимым (равновесным или квазистатическим), если он протекает таким образом, что в ходе процесса изолированная система последовательно занимает ряд равновесных (точнее говоря, почти равновесных) состояний. Если в результате некоторого процесса система вернется в исходное состояние, то такой процесс называется циклом. Результатом обратимого цикла является возвращение системы в состояние, тождественно эквивалентное исходному. [c.21]

    Если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-нибудь из условий, определяющих положение равновесия, то в системе усилится то из направлений процесса, течение которого ослабляет влияние произведенного воздействия, и положение равновесия сместится в том же направлении. [c.14]

    Процессы, которые в природе протекают сами собой, называются самопроизвольными или естественными. Процессы, которые требуют для своего протекания затраты энергии, называются несамопроизвольными. В изолированной системе, ввиду отсутствия внешнего воздействия, могут протекать только самопроизвольные процессы. Протекание таких процессов завершается равновесным состоянием, из которого сама система без сообщения ей энергии извне выйти уже не сможет. Определение условий, при которых будет протекать самопроизвольный процесс, и условий, при которых наступает состояние равновесия в системе, представляет большой теоретический и практический интерес. Но основании первого закона термодинамики нельзя сделать каких-либо выводов о направлении процесса и состоянии равновесия. Для выяснения этих вопросов используется второй закон термодинамики. Второй закон термодинамики, как и первый, — результат обобщения человеческого опыта и является одним из фундаментальных законов природы. Он был установлен в результате исследования коэффициента полезного действия тепловых машин. [c.218]

    Эти же качественные выводы о влиянии температуры на химическое равновесие могут быть получены из общего принципа смещения равновесия, сформулированного Ле Шателье и Брауном. Если на систему, находящуюся в устойчивом равновесии, оказывать воздействие извне, изменяя какое-нибудь из условий, определяющих положение равновесия, например температуру, то в системе усилится то из направлений процесса, протекание которого ослабляет влияние произведенного воздействия. [c.256]

    При рассмотрении гидромеханических процессов пе выявляются условия равновесия, так как направление течения этих процессов вполне очевидно. [c.37]

    Условие равновесия, выраженное уравнением (16-13), позволяет определить направление процесса. [c.567]

    Движущей силой массообменных процессов является разность концентраций (градиент концентраций) фактической в данной фазе С и равновесной с фактической в другой фазе 1. Процесс протекает в направлении той фазы, в которой концентрация компонента меньше, чем это следует из условия равновесия (рис. 1-1). [c.20]

    Диффузионные процессы обратимы, т. е. направление процесса определяется законами фазового равновесия, фактическими концентрациями компонентов в обеих фазах и внешними условиями (температура, давление). Так, например, при повышении температуры и понижении давления поглощение газа жидкостью (абсорбция) может перейти в обратный процесс — в удаление газа из жидкости (десорбция). [c.20]

    В соответствии с заданием или конкретными условиями применения данного аппарата в общей технологической схеме установки выявляют или назначают исходные данные для расчета. При этом следует учитывать условия равновесия, а следовательно, и возможность проведения процесса в желаемом направлении. Эти данные в зависимости от характера рассматриваемого процесса могут быть определены в соответствии с законами термодинамики или гидравлики. [c.16]

    Процессы массопередачи избирательны в тех случаях, когда поглотитель извлекает только один компонент (или несколько компонентов) исходной смеси и практически не извлекает остальные ее компоненты. Эти процессы большей частью обратимы, т. е. могут протекать в противоположных направлениях в зависимости от температуры, давления и других условий их проведения. При этом направление перехода вещества из фазы в фазу определяется концентрациями распределяемого вещества в фазах и условиями равновесия. [c.383]

    Позднее, с открытием и исследованием электрической, лучистой, химТ1ческой и других форм энергии, постепенно в круг рассматриваемых термодинамикой вопросов включается и изучение этих форм энергии. Быстро расширялась и область практического применения термодинамических методов исследования. Уже не только паровая машина и процессы превращения механической энергии в теплоту исследуются на основе.законов термодинамики, но и электрические машины, холодильные машины, компрессоры, двигатели внутреннего сгорания, реактивные двигатели. Гальванические элементы, а также процессы электролиза, различные химические реакции, атмосферные явления, некоторые процессы, протекающие в растительных и животных организмах, и многие другие исследуются не только в отношении их энергетического баланса, но и в отношении возможности, направления и предела самопроизвольного протекания процесса в данных условиях. Они исследуются также в отношении установления условий равновесия, определения максимального количества полезной работы, которая может быть получена при проведении рассматриваемого процесса в тех или иных условиях, или, наоборот, минимального количества работы, которое необходимо затратить для осуществ- [c.178]

    Внутренняя энергия, таким образом, является изохорно-из-энтропным потенциалом, а энтальпия—изобарно-изэнтропным потенциалом. Эти функции могут служить критериями равновесия при условии постоянства энтропии. Энтропию непосредственно измерять нельзя, н контроль ее постоянства при неравновесных процессах затруднителен. Поэтому функции U и И не находят широкого применения в качестве критериев направления процесса и равновесия [c.122]

    Смесь каучуков с введенными вулканизуюпщми агентами выдерживали длительное время (больше месяца) для того, чтобы в ней прошли релаксационные процессы разделения фаз или, наоборот, граничного взаиморастворення— в зависимости от направления процесса достижения равновесия. После длительной выдержки смеси вулканизовали. В другом опыте невулканизованные смеси набухали в парах растворителя более недели, затем в вакууме из них удаляли растворитель и вулканизовали. В обоих случаях, когда были созданы условия для ускорения релаксационных процессов, отрелаксировав-шие вулканизаты имели практически те же физико-механические свойства, что и полученные обычным путем. Но лучшим доказательством высокой стабильности структуры и свойств смесей полимеров служит их повышенное сопротивление утомлению, в том числе в присутствии значительных количеств пластификаторов. Так, смесь СКИ-3 и СКН-40 в соотношении 1 1 характеризуется более высоким сопротивлением утомлению, чем индцвидуальные полимеры, даже в том случае, когда в смесь вводят 65 вес. ч. диметилфталата. При этом режим утомления полимеров и их смесей (знакопеременный изгиб) характеризовался постоянной амплитудой напряжения, когда возможное уменьшение модуля или даже увеличение ползучести образца, содержащего пластификатор, не могло привести [c.43]

    Полученные сведения о численных значениях равновесных соотношений для различных пластовых нефтегазовых систем при переменных Г и р позволяют изучить возможность применения в практических условиях принципа Ле-Шателье, направленного для выявления характера термодинамического процесса (экзотермического и эндотермического), происходящего в залежи. В связи с этим нами построены температурные зависимости константы равновесия (при р = onst) для всех рассмотренных случаев состояния пластовой жидкости. По кривым видно, что принцип Ле-Шателье в конкретных пластовых условиях для реальных нефтегазовых систем хорошо выдерживается, так как с повышением температуры константа равновесия заметно увеличивается, свидетельствуя об экзотермическом направлении процесса. [c.112]

    II.7) и (II.8) для суждения о направлении процессов.Ко-нечио, неравенства А0°< О и AG° О свидетельствуют, соответственно, о принципиальной осуществимости и неосуществимости процессов, но аналогичные однозначные выводы в отношении неравенств AG°< О и AG° >0 уже сделать затруднительно. Конечно, нельзя считать, что критерием равновесия является равенство AG° = 0. Однако анализ показывает, что в подавляющем большинстве слу чаев можно принять, что порогом реакционной способ ности служит значение AG°j isi 10 ккал/моль. Это значит что если AG° —10 ккал/моль и AG° > + 10 ккал/моль то в первом случае процесс принципиально осуществим а во втором неосуществим не только в стандартных, но и в любых реальных условиях. [c.54]

    Анализ процессов и расчет аппаратов проводят в определенной последовательности. Сначала, исходя из законов гидродинамики или термодинамики, определяют направление течения процесса и вы-яв гяют условия равновесия. По данным о равновесии устанавливают начальные и конечные значения параметров процессов. [c.13]

    Лекция 8, Характеристические функции. Изменение термодинами le KHX потаициалов в изотермических условиях, аксимальная работа и возмохность химической реакции. Химический потенциа. . Применение термодинамических потенциалов в качестве критериев направления само произвошшх процессов и равновесии в изотермических условиях. [c.209]

    Псо диффузионные процессы обратимы, и направление процессов определяется законами фазового равновесия, фактическими коицептрациями в обеих фазах и виегапими условиями (температура, давление) так, процесс абсорбции газа жидкостью может при умепь-Н101ГИН давления и увеличении температуры, сдвигающих условия равновесия, перейти в обратный процесс — десорбцию газа из жидкости. [c.14]


Смотреть страницы где упоминается термин Направление процесса и условия равновесия: [c.110]    [c.51]    [c.191]    [c.62]    [c.418]    [c.120]    [c.71]   
Смотреть главы в:

Физическая химия 1990 -> Направление процесса и условия равновесия




ПОИСК





Смотрите так же термины и статьи:

Процесс направленность

Процессы направление

Равновесие процесс

Условия равновесия



© 2025 chem21.info Реклама на сайте