Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инертные газы в процессе синтеза аммиака

Таблица 20 Влияние инертных газов на процесс синтеза аммиака Таблица 20 <a href="/info/158164">Влияние инертных газов</a> на <a href="/info/97268">процесс синтеза</a> аммиака

    Очистка от оксида углерода. Так как. раствор МЭА не поглощает оксид углерода, выходящий газ содержит СО. Как примесь его не выделяют, а превращают в метан, безвредный для катализатора и инертный в процессе синтеза аммиака. [c.406]

    Современные схемы синтеза аммиака — циркуляционные, т. е. часть азотоводородной смеси непрерывно превращается в колонне синтеза в аммиак, который и выводится из установки. В циркуляционных газах растет содержание инертных примесей — аргона, гелия, криптона, ксенона, что снижает скорость реакции, а следовательно, и технико-экономические показатели процесса. Поэтому часть циркуляционных, так называемых продувочных газов непрерывно выводится из цикла. В современных установках синтеза аммиака оптимальным считается 11— 13%-е содержание инертных примесей в циркуляционных газах, при этом расход продувочных газов, например на установке производительностью 1500 т ЫНз/сут составляет до 10 000 м /ч. Таким образом, с продувочными газами из цикла выводится (на [c.271]

    На непостоянство температуры катализатора при синтезе аммиака под высоким давлением впервые обратили внимание Введенский и Сидоров . По их расчетам, газ, поступающий на катализатор при 500° и 300 ат и на выходе содержащий 20% NHs, в адиабатических условиях должен был бы нагреться до 860°. Опытами, проведенными на катализаторе объемом 5 мл при скорости газа 30 ООО час и давлении 300 ат, эти исследователи установили, что разность температур в различных участках катализатора превышает 100°. В качестве защитной меры они предложили разбавление катализатора инертным материалом. При разбавлении катализатора зернами корунда (55 лы корунда на 5 мл катализатора) разность температур в различных участках катализатора не превышала 10° даже при 800 ат. Однако степень конверсии стала ниже, поэтому разбавление катализатора для выравнивания температуры процесса в кинетических условиях рекомендовать не следует. В этом направлении необходимы дальнейшие исследования. [c.510]

    Автоматическое управление агрегатом синтеза. Схема агрегата с автоматическим управлением процессом синтеза аммиака показана на рис. 1-26. При таком управлении агрегатом автоматически регулируются следующие параметры процесса температура в колоннах синтеза уровни жидкого аммиака в сепараторе и конденсационной колонне температура газа, выходящего из аммиачного конденсатора состав циркуляционного газа по содержанию инертных примесей (СН4 и Аг) выдача жидкого аммиака из газоотделителя на склад давление в газоотделителе. [c.296]


    Аргон получают при разделении жидкого воздуха, а также из отходов газов колонн синтеза аммиака. Применяют его в металлургических и химических процессах, требующих инертной атмосферы (аргоно-дуговая сварка алюминиевых и алюмо-магниевых сплавов), в светотехнике (флюоресцентные лампы, лампы накаливания, разрядные трубки), электротехнике, ядерной энергетике(ионизационные счетчики и камеры) и т. п. [c.584]

    Поскольку процесс синтеза аммиака осуществляется по циркуляционной схеме, при наличии инертных примесей в газовой смеси они постепенно накапливаются в циркуляционном газе. Для поддержания постоянного содержания инертных газов в цикле, соответствующего заданному эффективному давлению процесса синтеза аммиака, часть циркуляционного газа отводят из системы [c.84]

    Примером процесса, в котором в реакционную систему вводятся инертные вещества, может служить синтез аммиака. Вместе с азотом в систему поступает аргон, а также другие инертные газы и метан, которые не конденсируются с аммиаком и накапливаются в рециркулирующей газовой смеси. Это приводит к снижению парциальных давлений азота и водорода, реагирующих на катализаторе, и, следовательно, уменьшает скорость реакции. Пример при- [c.410]

    Тонкая очистка. На этой стадии осуществляют каталитическое превращение таких контактных ядов, как монооксид углерода (его в газовой смеси остается еще Oi—0,6%) в инертный, не участвующий в синтезе аммиака газ — метан, процесс ведут при 3 МПа (30 атм) и 100-150 "С  [c.342]

    Затраты в первом от конца процесса цехе (цехе синтеза аммиака) зависят от давления газа, поступающего на синтез, от содержания в нем инертных примесей (в основном метана) и примесей, отравляющих катализа-тор (в основном окиси углерода). [c.71]

    На рис. 11.16 представлена упрощенная принципиальная схема процесса синтеза аммиака. Азото-водородная смесь (AB ) поступает после подсистемы I компримиро-вания, где сжимается от 0,1 до 30 мПа, в смеситель II. Здесь происходит смешение свежей AB с потоком 15. После смешения AB поступает в катализаторную коробку ИИ колонны синтеза III, где AB подогревается за счет теплоты отходящих газов из реакционного пространства 111 колонны. Выходящий из колонны синтеза аммиака газ (поток 7) охлаждается в подсистеме IV (охлаждение и получение пара) водой. Выделение аммиака происходит в двух конденсаторах V и VIII сначала при умеренном охлаждении в конденсаторе V, а затем при глубоком охлаждении в конденсаторе VIII. Глубокое охлаждение происходит в аммиачном испарителе. Накапливающиеся инертные газы (аргон, метан) периодически частично удаляют из системы путем вывода из цикла синтеза части циркулирующего газа (поток 11) ъ аппарате VI. Параметры, характеризующие потоки, приведены в табл. II.6. [c.58]

    Для газа, поступающего на синтез после промывкп жидким азотом, а также для процесса синтеза аммиака под давлением 500 ат предпочтительнее колонны с отводом тепла посторонним теплоносителем непосредственно из зоны реакции. При работе на газе, содержащем инертные примеси, и давлении 320 ат теило реакции можно использовать для получения пара на выходе пз зоны реакции, т. е. перед поступлением конвертированного газа в теплообменник. [c.383]

    В табл. 54 сопоставлены показатели систем синтеза аммиака при давлении 320 и 500 ат и оптимальных параметрах процесса. Сравнение проведено для систем, работающих на газе, не содержащем инертных примесей (после промывки жидким азотом) и содержащем до 1 % инертных примесей (после медноаммиачной очистки). [c.240]

    Азотоводородная смесь, получаемая конверсией углеводородов и газификацией твердого топлива, содержит инертные для синтеза аммиака компоненты — аргон и метан. Аргон вносится с атмосферным воздухом, а остаточное содержание метана определяется параметрами процессов конверсии, газификации и метанирования. В цикле синтеза аммиака неизбежно постепенное накопление аргона и метана, снижающих равновесную концентрацию аммиака в значительно большей степени, чем вызванное ими уменьшение парциальных давлений водорода и азота. Поэтому содержание аргона и метана в циркулирующей смеси строго регламентируется и поддерживается на определенном уровне путем постоянной продувки части газов. [c.196]

    Единственным промышленно рентабельным способом производства мочевины является ее синтез из аммиака и оксида (IV)СОг по методу А. И. Базарова (1870). Аммиак используется для синтеза мочевины в жидком виде. Обычно ЫНз не требует очистки общее содержание примесей в нем (инертные газы, вода, масло, катализатор) составляет около 1 об.%. Оксид (IV) СОг используется в процессе синтеза мочевины в газообразном виде и перед подачей в систему компримируется до необходимого давления. [c.144]

    Простое вещество. Бесцветный газ, конденсируется в бесцветную (в отличие от О2) жидкость. Молекула содержит ковалентную а-, и-, п- связь N = М. Главная составная часть воздуха. Из жидкого воздуха азот выкипает до кислорода. Малорастворим в воде (и меньше, чем кислород). В обычных условиях химически пассивен, не реагирует с кислотами и щелочами, не поддерживает горения. При высоких температурах более реакционноспособен. Применяется для синтеза аммиака, азотной кислоты и других азотсодержащих продуктов, как инертная среда проведения химических и металлургических процессов и хранения огнеопасных веществ. В промышленности азот получают фракционной дистилляцией жидкого воздуха. [c.167]


    Аргон (Аг) при нормальных условиях одноатомный инертный газ без запаха, цвета и вкуса. Впервые выделен в 1894 г. английскими учеными Рэлеем и Рамзаем из атмосферного азота. В природе аргон встречается только в свободном виде. Его концентрация в воздухе 0,93 % (объемн.), В промышленности аргон получают в процессе разделения воздуха на азот и кислород прн глубоком охлаждении. От примесей азота аргон очищают дополнительной ректификацией, а от прнмесей кислорода-химическими методами. Аргон может быть также получен как побочный продукт из продувочных газов колонны синтеза аммиака. Химический состав газообразного н жидкого аргона для использования в металлургических процессах, а также правила его поставки, приемки, анализа н хранения определяются ГОСТ 10157—79, [c.535]

    Очищенная азотоводородная смесь, вводимая в цикл синтеза, может содержать, в зависимости от исходного сырья п способа получения синтез-газа, большие или меньшие количества аргона и метана. Из смешанного водяного газа получается чистый синтез-газ, содержащий в сз мме около 0,4—0,5% аргона и метана, причем метана обычно содержится немногим больше, чем аргона. Водород, полученный конверсией метана, может содержать 1% и более метана, азот, полз чаемый ректификацией воздуха, обычно очень чист. Аргон и метан являются инертными газами в процессе синтеза аммиака, но присутствие их нежелательно, так как они постепенно накапливаются в циркуляционном газе. При полной герметизации аппаратуры только небольшое количество циркуляиио нного газа выводится из цикла (в результате растворения газа в сепараторах жидким аммиаком). Вследствие этого Содержание аргона и метана в газе значительно возрастает, что приводит к уменьшению парциальных давленнй азота и водорода и к снижению производительности установки синтеза аммиака. [c.539]

    Для поддержания в агрегате синтеза на определенном уровне содержания инертных примесей (при наличии их в свежем газе) часть циркуляционного газа после первой сепарации жидкого аммиака постоянно выдувается (так называемые газы постоянной продувки). Кроме того, при дросселировании жидкого аммиака из конденсационной колонны в сборник жидкости, когда давление снижается с 32 МПа до 2,0—2,5 МПа, из жидкого аммиака выделяются растворенные в нем газы (Н2, N2, СН4, Аг, Не). Эта газы, обычно называемые танковыми, кроме того, содержат молярную долю NHз до 30 - 50% и могут с успехом использоваться для извлечения из них Аг, Кг, Хе и Не. Одновременно с этим может быть организовано получение из них азота и водорода с целью возврата этих компонентов в процесс синтеза аммиака. В настоящее время в ряде стран успшшо эксплуатируются установки, в которых разделение отдувочных газов осуществляется с помощью криогенной техники. Если учесть, что при производстве 1 т аммиака образуется около 200 м продувочных газов [16], то при крупнотоннажном производстве аммиака, которое в настоящее время имеет место на больншнстве химических комбинатов и азототуковых заводов, где массовая производительность отдельных агрегатов составляет 1Д—1,5 тыс. т/сут, имеется реальная возможность организации промышленного производства аргона, криптона, ксенона и гелия из отдувочных газов. По мнению авторов работы [24], к 1990 г. до 30% аргона будет производиться из отдувочных газов аммиачных производств. [c.172]

    В пром-сти технич, А. получают в процессе воздуха разделения нри глубоком охлаждении. От примесей азота А, очищают дополнительной ректификацией, а от примесей кислорода — химическими методами. А. может быть нолучен как побочный продукт из продувочных газов колонн синтеза аммиака, А. нри, те-няют в металлургических и химических процессах, требующих инертной среды (аргонно-дуговая сварка алюминиевых и алюмо-магниевых сплавов), в светотехнике (флюоресцентные лампы, лампы накаливании, разрядные трубки цвет работающих аргоновых трубок сине-голубой), в электронике (наполнение тиратронов и др.), в ядерной технике (ионизац, счетчики и камеры и т. п.). [c.140]

    Пш1 введении в равновесную систему (при р = onst) инертного газа концентрации реагентов (парциальные давления) уменьшаются. Если течение процесса связано с уменьшением объема, то равновесие сместится влево (например, при синтезе аммиака). Наоборот, для реакций, которые сопровождаются возрастанием объема реакционной смеси, разбавление инертным газом вызывает увеличение полноты реакции. Если же ЛУ = О, то система будет нечувствительна к присутствию инертного газа. [c.202]

    При введении в равновесную систему (при Р = onst) инертного газа концентрации (парциальные давления) реагентов уменьшаются. Если течение процесса связано с уменьшением объема, то равновесие сместится влево (например, в случае синтеза аммиака) наоборот, для реакций, которые сопровождаются возрастанием объема, разбавление инертным газом будет вызывать увеличение полноты реакции. Если же А1/ = О, то система будет нечувствительна к присутствию инертного газа. Эти выводы непосредственно следуют и из закона Дальтона. Действительно, из уравнения (11.18) видно, что эффект разбавления (уменьшение УУ,) подобен эффекту уменьшения общего давления Робщ в системе. [c.81]

    Наиболее общими и распространенными видами сырья являются воздух и вода. Сухой воздух состоит из (объемное содержание) 78% N2, 21% О2, 0,94% Аг, 0,03% СО2, незначительных количеств водорода, метана, неона, гелия, криптона и ксенона. Кроме того, в воздухе имеются переменные количества водяных паров, пыли и газообразных загрязнений. Кислород воздуха широко используется для процессов окисления (например, топлива), азот воздуха — для синтеза аммиака, в качестве инертной среды в промышленности и в исследовательской работе и др. Воздух используют как хладагент при охлаждении воды (в градирр ях) и других жидкостей, а также газов в теплообменниках. Нагретый воздух применяют как теплоноситель для нагрева газов или жидкостей. [c.7]

    Находящиеся в синтез-газе окислы углерода должны быть удалены либо превращены в инертные соединения прежде чем газ поступит на синтез аммиака, иначе кислород или любое кислородсодержащее соединение, попавщее в аммиачный цикл, отравят катализатор синтеза. Окислы углерода удаляются из газа химическими или абсорбционными методами они могут также вступать в реакцию с образованием воды и выводиться затем из системы в виде конденсата. Современные заводы, в которых производство основано на паровом риформинге, применяют комбинацию высоко- и низкотемпературных катализаторов конверсии СО с абсорбцией двуокиси углерода. Следующее за этим метанирование удаляет остаточные окислы углерода. Метанирование — простой процесс, осуществимый в небольшой установке и на относительно недорогом катализаторе. [c.143]

    В интенсификации производства аммиака большое значение имеет применение для очистки сырья новых прогрессивных процессов. Применение жидкого азота для очистки конвертированного газа от окиси углерода, метана и аргона на аммиачных производствах Щекинского и Невинномысского химкомбинатов показало преимущества этого метода перед медноаммиачной очисткой. Азотводородная смесь, получаемая отмывкой жидким азотом практически не содержит в своем составе ядов катализаторов и инертных примесей. Благодаря улучшению качества сырья среднечасовая производительность синтеза аммиака на указанных предприятиях повысилась на 30—50% [1]. [c.326]

    С помощью ультразвука научились получать высокостабиль-иые дисперсные системы и аэрозоли, осуществлять, синтез сложных органических соединений и многие гидрометаллургические г.роцессы. Установлено, что скорость и направление химических реакций, протекающих в жидких средах в ультразвуковом поле, з В(лсят от природы газов, содержащихся в облучаемой среде, Например, в присутствии водорода в облучаемой воде ингибируются процессы окисления ионов иода, но одновременно иод ато-мизируется и энергично взаимодействует с водородом. Течение и скорость химической реакции в ультразвуковом поле можно регулировать путем насыщения озвучиваемой среды инертными газами. Последние усиливают процессы ионизации, в частности диссоциацию молекул воды. В ультразвуковом поле можно осуществить синтез аммиака, насыщая воду предварительно азотом и водородом. Под действием ультразвука в воде, насыщенной оксидом углерода (II) и водородом, образуется формальдегид в [c.107]

    Отдельные газы, входящие в состав воздуха, получили широкое применение в ряде отраслей народного хозяйства. Так, например азот, помимо синтеза аммиака, применяется для получения цианамида кальция, для создания в ряде процессов инертной среды, при сущке легко окисляющихся продуктов и т. д. Кислород применяется для осуществления многих промыщленных процессов окисления, в том числе для получения тепловой энергии при сжигании топлива. Аргон применяется в светотехнике (вместе с азотом) неон для наполнения катодных ламп, к р и п т о н и ксенон для наполнения электроламп. [c.226]

    Очевидно, что сторона пластинки, омываемая водородом, находится Б гораздо более благоприятных условиях восстановления, чем та, которая омывается инертным газом. По окончании восстановления можно сравнить активность обеих сторон пластинки, омывая ее азотоводородной смесью с той или другой стороны. В этой установке мы надеемся получить также и другие данные по влиянию макрокинетических факторов на процесс восстановления катализаторов и синтеза на них аммиака. [c.362]

    Получаемый при этом процессе сырой синтез-газ Iаз1 т-водородна> смесь) подвергают промывке для удаления элементарного углерода (образующегося при процессе в результате побочных реакций), осте чего направляют в конверторы окиси углерода (для превращения окиси углерода в двуокись и водород при 5(Ю—600 °С в присутствии окисножелезного катализатора) и на последующую очистку от двуокиси углерода обычными методами. Поскольку любые кислородные соединения отравляют катализаторы синтеза аммиака,, а метан и аргон являются инертными разбавителями, для окончательной очистки газ промывают жидким азотом при температуре ниже —190 °С. Очищенный газ направляется в секцию синтеза в виде азот-водородной смеси чрезвычайно высокой чистоты, содержащей лишь следы окиси углерода, аргона и метана. [c.432]

    Способ Стамикарбон . В 1962 г. этот способ реализован в США фирмой Solar hemi al. Аммиак предварительно не очиш,ают, в двуокиси углерода допустимо небольшое содержание серы, кислорода и инертных газов. Реакционную смесь, выходящую из колонны синтеза, дросселируют в системе рециркуляции первой ступени до давления 15—24 ат. Путем нагревания из этой смеси отгоняют аммиак, который конденсируют и возвращают в колонну синтеза. Туда же направляют полученный при конденсации двуокиси углерода с аммиаком и водой раствор аммонийных солей. Система рециркуляции второй ступени включает подогреватель, сепаратор и конденсатор. Она работает под давлением 1,7 ат. Образующийся на этой ступени раствор аммонийных солей низкой концентрации перед поступлением в колонну синтеза подается в систему рециркуляции первой ступени, где он концентрируется. Концентрация раствора регулируется добавлением воды в систему второй ступени. Аммиак и двуокись углерода из небольшего объема отходящих газов извлекают в системе абсорбции и десорбции. Раствор мочевины упаривают до 99,7%-ной концентрации в двухступенчатом вакуум-выпарном аппарате. Конечный продукт содержит 0,6% биурета. Плав гранулируют в башне, сушку гранул не производят 47]. Позже процесс был несколько усовершенствован. [c.488]

    Азот применяется для получения азотоводородной смеси, необходимой 1В синтезе аммиака, используется в производстве цианамида кальция (стр. 606) и в других процессах азотирования, употребляется как инертный газ при тушении пожаров (стр. 260) н для создания безопасной среды в аппаратуре и коммуникациях ряда производств. [c.170]

    Из-5а высокой стоимости используемых на производство аммиака энергоносителей (природного и попутного газов) и их большого удельного расхода, определяющих себестоимость аммиака, в течение последних лет ведутся работы по интенсификации производства и усовершенствованию процессов, приводящих к снижению расхода природного газа. Возможными путями для достижения этой цели являются усовершенствование процессов конверсии метана повышение рекуперации тепла (в частности, отходящих газов трубчатой печи) создание более активных катализаторов, позволяющих работать при низких соотношении пара к газу и давлении синтеза аммиака, что позволит уменьшить расход энергии на сжатие азотоводородной смеси применение для очистки от СОг не химических, а физических растворителей, на регенерацию которых не потребуется расхода тепла замена метанирования, связанного с дополнительным расходом водорода на гидрирование и повышением содержания инертных примесей в азотоводородной смеси, селективным окислением остаточного количества СО в СОа выделение водорода из продувочных газов с помощью глубокого охлаждения и используя полунепроницаемые мембраны, улучшение способа получения глубоко обессоленной воды и др. Если на действующих установках расход энергии составляет 38—39 ГДж на 1 т аммиака, то ожидается, что эту величину можно снизить до 29,3—31,4 ГДж (7,0—7,5 млн. ккал на 1 г аммиака). [c.11]

    В случае отдувки аммиака из раствора инертным газом (азот) процесс дистилляции осуществляется следующим образом (рис. 77). Газы дистилляции поступают в абсорбер 2, орошаемый раствором моноэтаноламина (МЭА). Чтобы исключить возможность поглощения аммиака из газов дистилляции раствором ЬЛЭк, последний предварительно насыщают аммиаком, в количестве, соответствующем содержанию ЫНз в исходной газовой смеси. Благодаря этому в абсорбере 2 аммиак не извлекается из газов дистилляции раствором МЭА и целиком возвращается из абсорбера через конденсатор 1 в цикл синтеза. [c.578]


Смотреть страницы где упоминается термин Инертные газы в процессе синтеза аммиака: [c.435]    [c.96]    [c.81]    [c.120]    [c.107]    [c.313]    [c.140]    [c.178]   
Технология связанного азота Синтетический аммиак (1961) -- [ c.128 , c.539 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиак газами

Газы инертные

Инертный газ

Синтез аммиака

Синтез аммиака синтеза аммиака



© 2025 chem21.info Реклама на сайте