Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюмосиликаты свойства

    Крекинг-процесс предъявляет строгие требования к свойствам катализатора. Катализатор должен обеспечить не только требуемые выходы продуктов, но также и удовлетворительное качество их. Он должен противостоять действию высокой температуры при регенерации, а также обладать достаточной устойчивостью к истиранию как в процессе крекинга, так и при регенерации. Катализатор, кроме того, должен обладать определенным сочетанием химических и физических свойств. Эти требования ограничивают выбор материала, который может быть использован в качестве катализатора крекинга. Из большого числа исследованных катализаторов лишь немногие имеют требуемые свойства и, кроме того, недороги в производстве. С точки зрения сырья, используемого для приготовления катализаторов, последние делятся на два класса естественные и синтетические. В качестве естественных катализаторов могут быть использованы природные бентонитовые глины [11, 12] типа монтмориллонита и другие природные алюмосиликаты, такие как каолин и галлуазит. Синтетические катализаторы могут быть приготовлены из окиси кремния в комбинации с окисями алюминия, циркония или магния. Химия производства катализаторов обоих типов очень сложна и здесь обсуждаться не будет. Большинство катализаторов каталитического крекинга различаются по их активности и стабильности и при сравнимой активности обеспечивают лишь незначительные различия в распределении и качестве продуктов крекинга. В табл. И приводится сравнение действия катализаторов синтетического алюмосиликатного шарикового, двух типов природных глинистых и синтетического катализатора из окисей магния и кремния. [c.154]


    Новый этап начался в 1949 г., когда был разработан процесс каталитического риформинга с широким применением бифункциональных катализаторов. Это послужило толчком для разработки процессов изомеризации парафиновых углеводородов при давлении водорода в паровой фазе, температурах 350-500 °С на окисных, сульфидных катализаторах и металлах VIH группы, нанесенных на носители, обладающие кислотными свойствами — оксид алюминия, промотированный фтором, и алюмосиликаты [5—9]. [c.5]

    Для улучшения качества пластичных смазок в них вводят присадки и наполнители. Присадки используются обычно те же, что и в маслах, однако вводятся они в смазки в повышенных количествах. Наполнители — порошкообразные графит, дисульфид молибдена, алюмосиликаты, мягкие металлы (медь, свинец, алюминий) — служат для улучшения смазочной способности, повышения герметизирующих и высокотемпературных свойств, увеличения прочности смазки. [c.298]

    Каталитический крекинг, в котором нары нефтепродукта нри температуре около 500° и выше пропускают над катализатором, состоящим в основном из алюмосиликатов, дает в результате примерно столько же бензина, как и термический крекинг. Преимущество каталитического процесса в более высоких антидетонационных свойствах получаемого бензина. [c.38]

    Ценнейший вклад в науку о нефти и методах ее переработки внес выдающийся химик-нефтяник Л. Г. Гурвич. В своей книге Научные основы переработки нефти , выдержавшей четыре издания, переведенной на многие иностранные языки, Л. Г. Гурвич критически сопоставил и обобщил литературные и экспериментальные данные по химии и переработке нефти. Оригинальными являются воззрения Л. Г. Гурвича о действии водяного пара и роли вакуума при перегонке мазута, о роли серной кислоты и щелочи при очистке нефтепродуктов. Он исследовал обесцвечивающую способность отбеливающих глин по отношению к нефтепродуктам, обнаружил при этом помимо адсорбционных свойств каталитическое (полимери-зующее) действие естественных алюмосиликатов и разработал теоретические основы адсорбционной очистки масел. Л. Г. Гурвич установил закономерности, лежащие в основе современной хроматографии и каталитического крекинга на алюмосиликатных катализаторах. [c.12]

    В последнее время в качестве катализаторов изомеризации олефинов используют твердые окисные катализаторы окись алюминия и окись кремния с примесью окиси алюминия, кристаллические и аморфные алюмосиликаты, а также смешанные катализаторы, приготовленные на основе перечисленных соединений. Поскольку во все эти катализаторы входит окись алюминия, рассмотрим ее каталитические свойства. [c.145]


    Природа активных центров алюмосиликата, ответственных за структурную изомеризацию олефинов. В большом числе исследований (например, [55]) установлена связь каталитической активности алюмосиликатов с числом и силой кислотных центров на их поверхности. В табл. 52 представлены кислотные свойства алюмо-силикатных катализаторов, приготовленных путем постепенного отравления катализатора пиридином и различающихся силой кислотных центров. Из табл. 52 ясно, что только сильнокислотные [c.164]

    Работы, проведенные рядом советских ученых, показали, что ьа каталитические свойства алюмосиликатов влияет также химический состав последних. [c.12]

    Цеолиты представляют собой гидрированные алюмосиликаты кальция и натрия, реже — бария, калия и других металлов. Это кристаллические вещества, которые встречаются в природе в виде минералов (шабазит, нат-ролит, гейландит). Практическое применение получили в основном синтетические цеолиты, имеющие однородную кристаллическую тонкопористую структуру и одинаковые размеры пор, соизмеримые с размерами молекул поглощаемых веществ. Это свойство цеолитов позволяет с их помощью разделять и очищать вещества на [c.123]

    При пропускании топлив через слой алюмосиликата они освобождаются от значительной части гетероатомных соединений (обессмо-ливаются), при этом противоизносные свойства их значительно ухуд- [c.65]

    Сульфиды и оксиды молибдена и вольфрама с промоторами являются бифункциональными катализаторами (с п — и р — прово — дикостями) они активны как в реакциях гидрирования-дегидри— рования (гомолитических), так и в гетеролитических реакциях гидрогенолиза гетероатомных углеводородов нефтяного сырья. Однако каталитическая активность Мо и W, обусловливаемая их дырочной проводимостью, недостаточна для разрыва углерод — угл зродных связей. Поэтому для осуществления реакций крекинга углэводородов необходимо наличие кислотного компонента. Следовательно, катализаторы процессов гидрокрекинга являются по существу минимум трифункциональными, а селективного гидрокрекинга — тетрафункциональными, если учесть их молекулярно — ситовые свойства. Кроме того, когда кислотный компонент в катализаторах гидрокрекинга представлен цеолитсодержащим алюмосиликатом, следует учесть также специфические крекирующие свойства составляющих кислотного компонента. Так, на алюмоси — ЛИР ате — крупнопористом носителе — в основном проходят реакции первичного неглубокого крекинга высокомолекулярных углеводо — ро ов сырья, в то время как на цеолите — реакции последующего бо/ ее глубокого крекинга — с изомеризацией среднемолекулярных углеводородов. Таким образом, катализаторы гидрокрекинга можно отвести к полифункциональным. [c.227]

    МО оксидов кремния и алюминия в состав цеолитов входят оксиды Ыа, Са, К. Цеолиты имеют кристаллическую трехмерную каркасную структуру. Простейшей структурной единицей является правильный тетраэдр, в центре которого находится кремний. Структура цеолита напоминает ряд птичьих клеток , связанных друг с другом со всех шести сторон. Каждая клетка открывается в соседнюю клетку отверстием, позволяющим небольшим молекулам пройти внутрь клетки. Благодаря этой особенности структуры, цеолиты способны адсорбировать большие количества веществ с малыми молекулами, при этом молекулы поглощаются не поверхностью полости, а объемом. Цеолиты, кроме того, обладают катионообменными свойствами и являются хорошими катализаторами. Алюмосиликаты широко распространены в природе (шабазит, ферроврит, мордеиит и т. д.), кроме того, их легко получить искусственным путем. Промышленно производятся искусственные цеолиты марок КА, МаА, СаА, ЫаХ, СаХ. Первая часть марки фиксирует название катиона, вторая — тип структуры. Цеолиты типа А относятся к низкокремнистым формам, в них отношение 5 02 А12О3 не превышает 2, а диаметр входного окна составляет 0,3— [c.90]

    Роль носителя в реакции гидрогенолиза циклопентана и его простейших гомологов в присутствии различных платиновых катализаторов исследована в работах [143, 151, 189—191]. Оказалось, что селективность гидрогенолиза метил- и этилциклопентанов по связям а, б и в (см. с. 123) и соответствующие им значения кажущихся энергий активации (Е) в значительной мере зависят от носителя. Наиболее низкие энергии активации получены нри применении (10% Pt)/Si02 [190], наиболее высокие —на (20% Pt)/ [143, 151]. На Pt/ энергии активации гидрогенолиза метил- и этилциклопентанов, а также самого циклопентана довольно близки (155—163 кДж/моль). При использовании в качестве носителей AI2O3, SIO2 и алюмосиликата энергии активации гидрогенолиза различаются сильнее метилциклопентан < этилциклопентан < циклопентан. Предполагают [190], что найденная закономерность связана с заметным проявлением электронодонорных свойств алкильных радикалов под влиянием кислотных свойств оксидных носителей использованных бифункциональных катализаторов. По-видимому, в случае СНз-группы это влияние сказывается сильнее, чем для СаНз-группы, что и приводит к найденным последовательностям энергий активации. Энергии активации гидрогенолиза этих трех углеводородов в присутствии названных катализаторов, а также относительные выходы продуктов гидрогенолиза [c.140]


    Влияние природы, количества и способа нанесения металлического компонента катализатора на его каталитические и физико-химические свойства. Современные катализаторы изомеризации парафиновых углеводородов готовят осаждением металлов на носители, обладающие кислотными свойствами. Для катализатора высокотемпературной изомеризации необходимо, чтобы металл обладал дегидрирующей активностью в условиях реакции изомеризации. Не менее ражны гидрирующие свойства металлического компонента, которые обеспечивают защиту поверхности носителя от отложения полимеров. В связи с этим аибольшее распространение получили катализаторы, приготовленные нанесением металлов VIII группы на оксид алюминия или алюмосиликаты. [c.51]

    Известны органические иониты — природные (целлюлоза, желатина, шерсть, древесина, торф, сульфированные угли) и синтетические, а также неорганические — природные алюмосиликаты (аналь-цит, бентонит и др.), искусственные алюмосиликаты (пермутиты), гидроокиси алюминия, железа, бария и др. Широкое распространение получили синтетические высокомолекулярные органические иониты благодаря их высоким ионообменным свойствам, механической прочности и химической тoйкo ти " . [c.142]

    Кремний в природе. Получение и свойства кремния. Кремний — один из самых распространенных в земной коре элементов. Он составляет 27% (масс.) доступной нашему исследованию части земной коры, занимая по распространенности второе место после кислорода. В природе кремний встречается только в соединениях в виде диоксида двуокиси) кремния SiOa, называемого также кремниевым ангидридом или кремнеземом, и в виде солей кремниевых кисло г (силикатов). Наиболее широко распространены в природе алюмосиликаты, т. е. силикаты, в состав которых входит алюминий. К ним относятся полевые шпаты, слюды, каолин и др. [c.507]

    В. С. Гутыря высказал предположение о связи установленной закономер-пости с воздействием на нефть природных алюмосиликатов (глип), залегающих на пути ее миграции или ограничивающих толщи нефтецосных пород. Влияние алюмосиликатов на свойства нефтей отмечал уже И. М. Губкин, однако связывал его только с адсорбционной снособностью глин. В частности, низкое содержание смол в нефтях Сураханского месторождения И. М. Губкин объяснил наличием в местах залегания большого количества природных глин и адсорбцией на глинах смолистых компонентов нефти. В. С. Гутыря на основании изучения каталитических свойств активированных и природных алюмосиликатов пришел к выводу о возможности реализации каталитической способности глин при контакте с нефтью в природных условиях. Наиболее вероятной представлялась возможность протекания в условиях залегания нефтепасыщенных алюмосиликатных пород медлеттого низкотемпературного жидкофазного крекинга и процессов гидрирования ароматических углеводородов. [c.8]

    В своих раб )Т ь но изучению каталитических свойств алюмосиликатов в направлении пизк()те1мнсратурных процессов полимеризации, расщепления и изомеризации олефинов С. В. Лебедев исследовал кроме флоридина каолины и кавказскую глину [35]. С. В. Лебедев, как и Л. Г. Гурвич 119], употреблял флорндин торговой марки Венсмен [22] следующего состава 55,3 % SiO 21 % А ,Оз + Fe Og 4,3 % aO -f MgO 1,9 % К.,0 + Na O 17,9 % Н О. [c.47]

    Особое место среди катализаторов занимают молекулярные сита — цеолиты. Их свойства, как указывалось в главе I, обусловливают большую перспективность этого типа катализаторов. Принцип получения цеолитов заключается в рекристаллизации аморфных гелей щелочных или щелочноземельных алюмосиликатов путем гидротер- [c.186]

    В. Лебедев комплексно исследовал каталитические свойства природных алюмосиликатов в термических реакциях превращения олефинов и ди-олефипов и исчернив поще осветил вопросы искусственной активации алюмосиликатов и ич по.11имеризующего, изомерирующего и расщепляющего действия на ненределмшые углеводороды в интервале темнератур от —80 [c.47]

Таблица 19. Выход и свойства бензиновых фракций до 1100 ""С, полученных при жидкофазном крекинге очищенного газойля сураханско ( тборной нефти над природными и активированными алюмосиликатами (температура 420 Таблица 19. Выход и <a href="/info/309752">свойства бензиновых</a> фракций до 1100 ""С, полученных при <a href="/info/315514">жидкофазном крекинге</a> очищенного газойля сураханско ( тборной нефти над природными и активированными алюмосиликатами (температура 420
    Для полного представления о свойствах алюмосиликатных катализаторов следует учесть данные А. А. Михновской и А. В. Фроста [55], установивших, что алюмосиликатные катализаторы ускоряют и реакцию гидрирования. Уже говорилось о том, что образование бутана и гептана в экспериментах С. В. Лебедева нри деполимеризации полимернь[х форм изобутилена и амиленов обусловлено, по-видимому, непосредственным гидрированием соответствующих олефинов, причем это допущение сделано по аналогии с комплексным действием на олефины алюмосиликатов в области умеренных температур (150—250 °С) и таких реаге11тов, как НоЗО и А1С1д, в интервале относительно низких температур (0—20 °С). В условиях работы [51] такн<е получалось до 9 % бутана при каталитическом крекинге бутиленов. [c.50]

    Нельзя также достаточно уверенно предсказать каталитические свойства алюмосиликата, опираясь на каталитические свойства активированных глинозема (А12О3) и кремнезема (8102), так как новые каталитические свойства активной поверхности синтетического алюмосиликата могут возникнуть в результате формирования поверхности в процессах соииестного осаждения гидрогелей А12О3 и 8102, их сушки и термической обработки, в то время как [c.52]

    Наличие в составе алюмосиликатных катализаторов 3—5 % щелочноземельных металлов (Са, Mg), а также небольших количеств по-видимому, не влияет на каталитические свойства алюмосиликата. Триоксид лгелеза в совокупности с А1зОа и 310.2 может усиливать катализ реакций дегидрогенизации. Искусственное введение в состав алюмосиликатных катализаторов кислородных соединений бора, марганца, тория, циркония и т. д., рекомендуемое многими патентами, вероятно, связано с повышением термической устойчивости катализатора или с понижением его обуглероживаемости за счет каталитического торможения реакций глубокого распада углеводородов либо, наконец, со смягчением окислительных процессов на поверхности катализатора при его регенерации горячим воздухом. [c.58]

    Однако с точки. чрения протекания реакции изомеризации олефинов, которая, согласно [Г), 16], должна играть значительную роль в каталитической очистке пад алюмосиликатами дистиллятов, обогащенных олефинами, представляет интерес анализ результатов каталитической очистки риформинг-дистиллятов. В табл. 21 приводятся наиболее характерные результаты каталитической очистки различных образцов риформинг-дистиллятов, свойства сырых фракций которых с концом кипения 150 °С показаны в табл. 17. Эти результаты взяты выбо])очно из табл. 18 и 1O. [c.109]

    Дальнейшие систематические исследования каталитических свойств природных алюмосиликатов (флоридина и кавказской активной глины) проводит С. В. Лебедев [12, 13]. Он последовательно вскрывает глубокие возможности низкотемпературных каталитических преобразований углеводородов над природными катализаторами — флоридинами, кавказскими глинами и каолинами — в температурном интервале от —80 до 260 С [14—22]. С. В. Лебедев придавал особое значение активности катализатора. Он первый применил искусственную тепловую активацию природных г.тии и изучил механизм изомеризации олефипов под воздействием алюмосиликатов, показав способность алюмосиликатов вызывать по только неремоп ение двойной связи в цепи молекулы, но и скелетньсе изменення, приводящие к переходу несимметричной структуры олефипов в симметричную. Наконец, с исчерпывающей полнотой С. В. Лебедев доказал, что в области температур выше 250 °С парофазный процесс катализа над природными алюмосиликатами является по существу типичным сложным процессом каталитического крекинга, когда гладкая деполимеризация полимерных олефинов переходит в совокупность реакций дегидрогенизации, распада на элементы и глубокого дегидроуплотнения молекул с одновременным образованием парафинов. [c.158]

    В последние годы в химической, нефтеперерабатывающей и нефтехимической промынгленности широкое распространение получили высокоэффективные сорбенты — синтетические цеолиты. Дегидратированные цеолиты представляют собой пористые кристаллы. В решетке цеолита, как и в других алюмосиликатах, часть ионов четырехвалентного кремния замещена трехвалентными ионами алюмипия, благодаря чему реснетка цеолита обладает некоторым остаточным отрицательным зарядом. Катионы, компенсирующие отрицательную валентность анионных каркасов, располагаются во внутренних полостях решетки, чем обусловлены ионообменные свойства цеолитов. Эффективные диаметры окон, соединяющие большие полости решетки цеолитов, в значительной степени зависят от природы и размеров катионов, расположенных в непосредственной близости к этим окнам. [c.310]

    Природные активированные алюмосиликатные катализаторы крекинга представляют собой главным образом монтмориллонито-вые глины, обработанные серной кислотой, сформованные и прокаленные. Применялись и другие природные алюмосиликаты — каолин, галлуазит. В процессе кислотной обработки из природного алюмосиликата удаляются кальций, натрий и калий, часть содержащихся в его структуре железа и алюминия. В катализаторах, полученных на основе различных глин, содержание алюминия (считая на АЬОз) составляет от 17,5 до 45%. Катализаторы этого типа обладают относительно низкой устойчивостью к действию высоких температур. Высокое содержание железа отрицательно влияет на их свойства, так как железо катализирует паразитную реакцию распада на углерод и водород. Антидетонационные свойства бензинов, получаемых при крекинге с катализаторами из природных алюмосиликатов, существенно ниже, чем при применении синтетических катализаторов. В настоящее время катализаторы на основе природных алюмосиликатов практически не применяют. [c.209]

Таблица 52. Кислотные свойства и каталитическая активность алюмосиликатиых катализаторов Таблица 52. <a href="/info/99477">Кислотные свойства</a> и <a href="/info/382792">каталитическая активность алюмосиликатиых</a> катализаторов
    Созданию высокоселективных, активных и стабильных катализаторов крекинга способствует также оптимизация состава и поровой структуры матрицы. В качестве матрицы чаще всего используют аморфный алюмосиликат с диаметром пор > 500A (50 нм), так называемы мезопор. При этом большие молек улы асфальтенов, смол и фракций, выкипающих выше 500 °С, подвергаются в крупных порах матрицы на опротонных центрах легкому крекингу с получением продуктов с молекулами меньших размеров без образования заметных количеств газа и кокса. Соотношение свойств матрицы и цеолита должно быть таким, чтобы на матрице подвергались крекингу фракции, кипящие выше 500 °С с образованием фракций тяжелого газойля, а на цеолите - фракции, кипящие в пределах 300-500 С с образованием бензина. Схематически это.можно изобразить следующим образом  [c.111]

    Известно, что расщепляющая активность катализаторов гидрокрекинга определяется числом и силой кислотных центров. Результирующая эффективность, как отмечалось выше, определяется сочетанием гидрирующей и расщепляющей функций. Носителями кислотных свойств цеолитсодержащих катализаторов в основном являются В-центры, число и сила которых зависят как от количества цеолита в катализаторе, так и от способа его предварительной обработки. Аморфные алюмосиликаты обладгдат как В-, так и L-центрами. Катализаторы, содержащие металлосиликаты в качестве расщепляющего компонента, содержат в основном L-центры (табл. 7.6). [c.181]

    Функция кислотности Гаммета На для ЗЮг составляет от +4 до -+-6,8, окись алюминия также имеет очень слабые кислотные свойства (Яо -[-4), а алюмосиликаты имеют Яо —8,2, их кислотность близка к кислотности серной кислоты, нанесенной на силикагель. Сила кислотных центров на поверхности алюмосиликатов различна, часть центров обладает очень высокой кислотностью (Яо —12,5). С изменением соотнощения ЗЮа А Оз в алюмосиликатах изменяется кислотность и по Бренстеду, и по Льюису. Кислотность по Льюису максимальна для чистой окиси алюминия и с увеличением содержания 5102 уменьшается, для чистой двуокиси кремния они приблизительно равна нулю. Кислотность по Бренстеду в расчете на единицу поверхности алюмосиликата максимальна при содержании 30—40% АЬОз и 70—60 /о 5Юг. Аморфные синтетические алюмосиликаты такогв" состава имеют максимальную активность при каталитическом крекинге (при одинаковой технологии приготовления). Из нижеприведенных данных видно, что при нагревании алюмосиликатов протонная кислотность [c.210]


Смотреть страницы где упоминается термин Алюмосиликаты свойства: [c.209]    [c.5]    [c.11]    [c.13]    [c.52]    [c.53]    [c.54]    [c.80]    [c.89]    [c.153]    [c.156]    [c.158]    [c.159]    [c.159]    [c.370]    [c.266]    [c.154]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2 (1959) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Алюмосиликаты



© 2025 chem21.info Реклама на сайте