Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Редкоземельные металлы, аналитические

    С ВОДОЙ. Водный раствор прозрачен или только слегка мутен. Ион аммония отсутствует. Аналитические данные, приведенные в табл. 5, указывают на то, что в каждом случае продукт, полученный по описанной методике, состоит из очень чистых хлоридов редкоземельных металлов. [c.36]

    Значительный прогресс достигнут за последнее время в области аналитических разделений. Применение гомогенного осаждения значительно улучшило многие разделения, которые ранее требовали больших затрат времени. Экстракционные разделения улучшены благодаря систематическому изучению равновесий, возникающих при образовании хелатных соединений металлов и при их экстракции из водных растворов. Разделения электролизом также усовершенствованы благодаря применению электролиза с контролируемым потенциалом. Кроме того, некоторые методы разделения, которые считались еще недавно неприемлемыми для условий количественного анализа, вошли в настоящее время в практику благодаря использованию многократного повторения ряда ступеней распределительного равновесия. Ярким примером такого процесса служит применение ионитов для количественного разделения ионов редкоземельных металлов, которое ранее требовало в некоторых случаях многих тысяч отдельных перекристаллизаций. [c.15]


    В или выше, раствор непрерывно перемешивается. В этих условиях можно удалить из раствора в виде амальгамы или осадка все элементы, которые восстанавливаются до металлического состояния при меньшем потенциале, чем тот, который необходим для выделения водорода на поверхности ртути. Из 0,1—0,2 М раствора серной кислоты осаждаются Ад, Аи, В1, Сс1, Со, Сг, Си, Нд, Ре, N1, Мо, Р(1, Р1, 5п, Т1 и 2п. Ртуть отделяют от водного раствора в конце электролиза. Для того чтобы предотвратить растворение осадка в кислом растворе, который все еще может содержать многие элементы (такие, как А1, Ве,. Vlg, Т1, V, щелочноземельные и редкоземельные металлы), в процессе разделения фаз систему продолжают держать под напряжением. Аналитическое использование этого метода обычно основано на полном удалении из раствора элементов одной группы, с тем чтобы облегчить определение какого-либо элемента другой группы, остающегося в растворе. Метод предварительного разделения с применением ртутного катода был рекомендован для определения А и Мд в цинковых сплавах и А1, V, 2г, Се или Ьа в сталях. [c.429]

    Для аналитических целей до сих пор применяют цитратные буферы, дающие вполне удовлетворительное разделение следов редкоземельных металлов. Чем ниже pH, тем выше коэффициент разделения элементов, стоящих рядом в периодической таблице, но тем больше продолжительность элюирования. Поэтому при выборе условий проведения анализа следует принимать компромиссное решение. Чтобы ускорить разделение, можно использовать ступенчатое элюирование с постепенным повышением величины pH [12]. Сначала элюируются элементы с большим атомным номером, образующие с лимонной кислотой более устойчивые комплексы. Этот метод очень удобен для разделения радиоактивных изотопов и широко применяется при анализе продуктов ядерного расщепления. Для облегчения анализа элюата применяли нейтронную активацию природных редких земель [6, 41 ] однако при разделении больших количеств веществ чаще используют спектрофотометрические [30, 84] и спектрографические [18, 89] методы (ср. [47, 48, 57, 63]). [c.321]

    Гольмий относится к числу наименее распространенных редкоземельных металлов и области его применения почти не освещены в литературе. Отмечается только [406], что изотоп гольмия (Но ) используется в аналитической химии в качестве радиоактивного индикатора. [c.842]

    Аммиаком осаждаются в виде нерастворимых гидроокисей или основных солей все катионы, за исключением катионов, образуюш,их хорошо растворимые аммиакаты (Ag, d, Си, Ni, Со, Мп, Zn). В количественном анализе аммиак применяется для выделения гидроокисей металлов третьей аналитической группы, включая наряду с катионами трехвалентных железа, алюминия и хрома также катионы бериллия, титана, урана, тория и редкоземельных металлов. [c.92]


    Оксалат аммония применяют в качестве реактива при количественном определении тория, редкоземельных металлов и главным образом кальция. Кальций количественно осаждается в виде оксалата кальция в аммиачных или слабокислых растворах. К выделению кальция в виде оксалата приступают обычно после соответствующего отделения остальных аналитических групп, так как практически все катионы мешают определению кальция вследствие образования нерастворимых гидроокисей или оксалатов. Применение комплексона здесь особенно выгодно, так как в слабо кислом растворе, содержащем уксусную кислоту, все катионы связываются в прочные комплексы, не гидролизуются и не осаждаются оксалатом, тогда как кальций выделяется в виде оксалата в пригодном для фильтрования виде [82]. Простым осаждением можно надежно определить кальций в присутствии ртути, свинца, висмута, меди, кадмия, мышьяка, сурьмы, железа, хрома, алюминия, титана, урана, бериллия, молибдена, вольфрама, церия, тория, никеля, кобальта, марганца, цинка, магния и фосфатов. [c.102]

    Химические реакции также можно использовать для контроля процесса испарения (разд. 4.4.6). Они уже упоминались в связи с добавками угольного порошка. Как отмечалось при обсуждении разрядов в специальных атмосферах (разд. 3.2.5), наиболее обшей методикой, примененной для металлов, руд и шлаков, является хлорирование, позволяющее использовать постоянные аналитические кривые. Обычно дистилляция с носителем оказывает общее селективное действие, а хлорирование или фторирование не подавляет матричного эффекта, а только изменяет его [32]. Летучесть группы следов элементов можно увеличить с помощью галогенирующих добавок. Так, предел обнаружения некоторых элементов в порошке белого чугуна можно значительно снизить использованием в качестве добавки фторида натрия, при этом висмут, бор и алюминий можно определять в количествах 1-10 , 5-10 и 5-10 % соответственно [33]. Фторид свинца особенно подходит для увеличения чувствительности определения менее летучих элементов в минералах и горных породах, а также для термического разложения соединений с высокой температурой кипения. Добавляя к пробе фторид свинца в соотношении 1 1, можно определять элементы, образующие летучие фториды (Ве, 2г, ЫЬ, Та, W, 5с, X, некоторые редкоземельные металлы), с пределом обнаружения порядка 10 % и воспроизводимостью около 10%. Тетрафторэтилен (тефлон) также пригоден для использования в качестве фторирующего агента [34]. При анализе главным образом металлов группы железа в качестве носителя часто используется хлорид серебра. При разбавлении пробы не менее чем в 400 раз матричный эффект можно снизить до такого уровня, что становится возможным определение основных компонентов и примесей в материалах различного состава [35]. В этом случае хлорид серебра действует и как носитель. Летучие сульфиды также подходят в качестве носителя, если соответствующие термохимические реакции вызываются добавкой серы [36] или одновременно сульфата бария, серы и оксида галлия [37]. Таким способом можно увеличить чувствительность определения германия и олова в геологических пробах. Принимая во внимание термохимические свойства проб и различных добавок и составляя соответствующие смеси, можно в желаемом направлении влиять на ход испарения й создавать условия, благоприятные для группового или индивидуального определения элементов [38, 39]. Селективное испарение можно использовать в специальных источниках излучения (разд. 3.3.4) или даже в качестве предварительного способа разделения (разд. 2.3.6). [c.122]

    Разделение смеси солей никеля и кобальта на ее компоненты используется для иллюстрации возможности аналитического разделения посредством техники ионного обмена. Разделение осуществляется при помощи комплексообразования с цитратом и пропускания раствора через колонку с катионитом. Теория метода аналогична изложенной выше при разделении редкоземельных металлов (стр. 415). [c.488]

    Фтор образует мало растворимые соединения или устойчивые комплексы со многими элементами, например с бором, кремнием, титаном, торием, цирконием, железом, алюминием, щелочноземельными металлами, магнием, свинцом и редкоземельными металлами (стр. 246). В развитии объемно-аналитических [c.397]

    Редкоземельные металлы представляют самое тесное из естественных семейств элементов. Каждое химическое свойство одного из них повторяется в несколько усиленной или ослабленной степени у всех остальных. Поэтому разделение лантана и лантанидов друг от друга представляет собой труднейшую задачу аналитической химии. В природе редкоземельные элементы встречаются также лишь совместно. [c.665]


    Свойства простых соединений трехвалентных элементов этой группы настолько близки между собой, что не могут явиться основой для химических методов разделения в аналитических и препаративных целях. Чаще всего для этих целен пользуются различием свойств комплексных соединений редкоземельных металлов, поскольку именно в комплексных соединениях наиболее полно проявляются и находят свое отражение тонкие различия в величинах ионных радиусов и в строении электронных оболочек. Поэтому, как правило, анализ смесей редкоземельных металлов проводится физическими методами с использованием комплексообразователей. Одним из физико-химических методов, используемых для этих целей, является полярография. [c.287]

    Применяют в химической промышленности в производстве синтетического каучука в качестве активатора процесса полимеризации, в пищевой промышленности для улучшения качества и сохранности продуктов, в аналитической химии как комплексообразователь при разделении редкоземельных металлов для получения трилона Б. [c.12]

    Подобно другим редкоземельным металлам церий (111) образует оксалат, лишь слабо растворимый в избытке щавелевой кислоты, и фторид — очень мало растворимый в присутствии плавиковой кислоты. Последняя форма осаждения вообще считается лучшей для отделения церия и других редких земель от металлов третьей аналитической группы. Фторид кальция или стронция, повидимому, пригоден в качестве коллектора для фторида церия, но их осадки очень трудно фильтруются-(ср. стр. 390). Лантан, имеющий радиус иона, очень близкий к радиусу иона церия (П1), вероятно, может служить хорошим коллектором для фторида или оксалата церия (III). [c.508]

    Как видно из результатов опытов, даже при больших количествах редкоземельных металлов (отношение их окислов к окиси скандия 1 1) двукратное осаждение уже дает удовлетворительное разделение, достаточное для аналитических целей. Только для особенно точного отделения от гадолиния, гольмия и иттербия необходимо трехкратное осаждение. [c.69]

    Экспериментальным путем было доказано, что данный метод может быть использован как в аналитической химии для отделения скандия от редкоземельных металлов, так и в неорганической химии для очистки солей скандия. [c.73]

    Значительные усовершенствования аналитической хи.мии титана появились в результате открытия нами возможности осаждения ряда металлов таннином из тартратных растворов [19, 21] и последовательности при осаждении таннином из оксалатных растворов [18, 20, 23]. Таннин действует как групповой реагент для большинства трех-пяти-валентных металлов, осаждая их из нейтральных тартратных растворов некоторые элементы (например, бериллий, марганец, редкоземельные металлы и др.) осаждаются только из ам.миачных тартратных растворов. [c.155]

    Аналитическая обработка остающегося в лодочке нелетучего остатка хлоридов, кремнекислоты и т. п. не требует специальных пояснений. В этом остатке, помимо кремнекислоты, редкоземельных металлов, марганца, части железа (если температура не была достаточно высокой, чтобы оно полностью улетучилось), алюминия, кальция, магния и щелочных металлов, могут содержаться свинец и другие осаждающиеся сероводородом металлы. [c.615]

    Фториды и окислы редкоземельных металлов (РЗМ) являются основной аналитической и технологической формой этих элементов, поэтому изучение их физико-химических свойств представляет не только теоретический, но и практический интерес. Однако оптические свойства фторидов и окислов РЗМ изучены слабо, и цель настоящей работы — восполнение этого пробела. [c.128]

    Арсеназо III взаимодействует с ионами более 30 металлов с образованием окрашенных комплексов [402]. Пока что его использовали для определения и обнаружения около 25 ионов (включая ионы 16 редкоземельных металлов). Большинство аналитических методов спектрофотометрические. Наиболее важные из них обобщены в табл. 26. [c.159]

    Среди многочисленных способов выделения и разделения рзэ экстракционное фракционирование для определения индивидуальных элементов в сумме не нашло применения в анализе, хотя оно и начинает развиваться в технологии получения редкоземельных препаратов. Зато отделение рзэ от щелочных, щелочноземельных и некоторых трансурановых и редких металлов производится чрезвычайно эффективно и в технологии руд и материалов, и в препаративной и аналитической практике. Здесь будут кратко рассмотрены возможности разделения группы рзэ и более подробно — аналитические проблемы выделения церия и отделения редкоземельных металлов от посторонних элементов. [c.123]

    Осадители. В качестве осадителей для разделения н выделения отдельных компонентов анализируемых смесей применяют разнообразные химические соединения. Главнейшими из них являются сероводород, осаждающий в виде сульфидов ионы V, IV и частично III аналитических групп (см. Книга I, Качественный анализ, гл. VI—VIII), а также разлагающий при опред еленных значениях pH анионы АзОз , АзО , VOз, М0О4 , 04 и др. (см. Книга I, Качественный анализ, гл. XII) водный раствор аммиака, осаждающий катионы бериллия, железа (III), алюминия, таллия, галлия, индия, ниобия, тантала, урана, редкоземельных металлов и др. фосфаты щелочных металлов и аммония ацетат натрия едкие щелочи сульфид аммония и т. д. [c.354]

    Отличительной чертой хроматографических методов является возможность их широкого применения. Хроматография может быть использована ДЛЯ разделения как больших, так и малых количеств элементов. Она может быть с одинаковым успехом применена к органическим и неорганическим веществам, для больших и малых молекул, для анионов и катионов. Кроме того, имеется возможность применять разнообразшле растворители и элюенты. В области-аналитической химии хроматография открывает большие возможности для разделения редкоземельных металлов, для отделения ниобия от тантала, гафния от циркония и т. д. Она может приобрести также большое значение для упрощения некоторых продолжительных методов анализа. Так, например, при определении пятиокиси фосфора в апатите сначала из раствора - Саз(Р04)а извлекают хроматографически ионы Са +, а затем титруют освобожденную фосфорную кислоту. Техника хроматографии разнообразна, но для аналитических [c.183]

    По отношению к нятиокисям ниобия ц тантала некоторыми авторами применяется термин земельные кислоты . Подобно тому, как торий обычно рассматривается совместно с группой редкоземельных металлов, так и титан иногда относят к группе земельных кислот на том основании, что эти три элемента, помимо того, что тесно связаны друг с другом в природе, обладают некоторыми общими химическими свойствами, играющими важную роль в аналитической химии. Характерной особенностью этих металлов является сильная склонность их солей к гидролизу, что дает возможность отделять их от многих других элементов. Природные титанаты, свободные от ниобия и тантала, представляют собой обычное явление ниобаты и танталаты также встречаются без титана, но как будто неизвестен в природе ниобат, совершенно свободный от тантала, так же как и танталат, не содержащий ниобия. В немногих, редко встречающихся минералах фосфор (V), мышьяк и сурьма частично замещают ниобий и тантал. Вольфрам и олово в тантало-ниобиевых минералах встречаются часто, но всегда в малых количествах. [c.663]

    Применение. В микроскопии в качестве отбеливателя срезов. Эффективный ингибитор -глюкуронидазы в концентрации 10 М подавляет активность фермента [1]. В аналитической химии для осаждения кальция, тория, редкоземельных металлов и для установления титра в нерманганатометрии и алкалиметрии. [c.445]

    Применение. Соли редкоземельных металлов применяются в технике пока ограниченно, так как они сравнительно мало изучены. В аналитической химии применяют лантан азотнокислый — в качестве реактива на ацетаты в капельном анализе и для гравиметрического определения фтора иттрий азотнокислый — для титриметрического определения фтора церий сернокислый — в цери-метрии для оксидиметрического определения двухвалентного железа, трехвалентной сурьмы и многих других. [c.32]

    Хлориды серы можно использовать для хлорирования оксидов редкоземельных металлов УгОб, ЕгОг, ЫЬгОз, ТагОз, а также для разложения руд вольфрамита, шеелита и др. Брикеты из оксида циркония и кокса хлорируют смесью ЗгСЬ и СЬ при 600 °С, в то время как для хлорирования одним хлором необходима температура около 1000 °С. Количественное извлечение некоторых металлов (например, молибдена) из руд с помощью хлоридов серы применяют также для аналитических целей [38, с. 49—51]. [c.20]

    К настоящему времени синтезированы летучие соединения почти всех элементов периодической системы. На примере существующих методик газохроматографического определения бериллия, алюминия, хрома, ванадия, никеля, цинка и ряда других металлов видно, что газовая хроматография по чувствительности и точности уже теперь вполне способна конкурировать с такими традиционными аналитическими методами, как спектроскопия, нейтронно-активационный анализ и масс-спектрометрия. Однако из-за аномального поведения летучих соединений в хроматографических колонках пока еще нельзя определять газохроматографически следовые количества щелочных, щелочноземельных и редкоземельных металлов, актинидов, титана, молибдена, вольфрама и некоторых других. [c.118]

    Надежные значения Dv были получены определением (при однократном элюировании) порядка элюирования многих редкоземельных металлов и трехвалентных актиноидов. В одном эксперименте через сорбент пропускали 100 мкл 10 М слабокислого раствора Li l, содержащего четырнадцать редкоземельных элементов (кроме Рт), а также Ст ", Вк , f250-252 и Es253. Сорбент (1 X 120 мм) представлял собой дауэкс-1 с 8% ДВБ со скоростью оседания частиц в воде 8—15 мм мин. Элюирование проводилось при 87° раствором А (см. таблицу) со скоростью 0,27 мл/см - мин. Количество отобранных для аналитических целей редкоземельных элементов составляло 10% от фракции трансурановых элементов, причем каждая трансурановая фракция соответствовала 0,205 объема сорбента. [c.49]

    Определение редкоземельных металлов и иттрия в бериллии прямым спектральным методом недостаточно чувствительно, хотя бериллий и имеет несложный спектр. Предложено определение лантана и иттрия в Ве — Си-сплавах [747] после растворения сплава в азотной кислоте, выпаривания раствора и прокаливания остатка до окислов при 800° С. Возбуждение спектров производят в дуге постоянного тока (12 а). При определении иттрия в качестве внутреннего стандарта применяют лантан, а при определении лантана —иттрий. В интервале концентраций 0,01 — 0,3% Y в качестве аналитических линий используют Y 3216 — La 2808А, а в интервале 0,1—1,0% аналитической парой линий служит Y 3135 — La 3104 А. Метод применим и для определения 0,07—1,0% лантана, причем аналитическими парами линий являются La 3104 —Y 3216A и La 4333 —У 3216А. [c.190]

    Причиной мешающих влияний при определении трудноиспа-ряющихся элементов в пламени ацетилен — воздух является сдвиг равновесий химических реакций, обусловленный фугитив-ностью их оксидов, металлов и карбидов. У элементов Ве, А 1, 5с фугитивность возрастает в ряду оксид — металл — карбид, фугитивность Мо, Ti, V, У, В, 81 в той же последовательности падает, а все три формы для 2г, Nb, Та и даже в пламени ацетилен — воздух малолетучи. Взаимные помехи элементов первой группы периодической системы незначительны, так как восстановление оксидов углеродными радикалами пламени происходит без заметных посторонних влияний. У элементов второй группы в присутствии элементов левой половины периодической системы, которые образуют термостабильные карбиды, происходит усиление аналитического сигнала вследствие ограничения карбидообразования определяемого элемента. Причиной мешающих влияний может являться также сдвиг диссоциации и ионизации. Температура обычного пламени ацетилен — воздух (2600 К) бывает достаточной для значительной ионизации атомов щелочных металлов, кроме лития и частично 8г и Ва (К, НЬ, Сз ионизируются более чем на 50%). В более горячем пламени С2Н2—О2 (3000 К) сильнее ионизируются все элементы с потенциалом ионизации ниже 6 эВ наряду со щелочными, щелочноземельными металлами и редкоземельными металлами Т1, и. Другой возможностью влияния на сигнал является изменение распределения свободных атомов в пламени вследствие различий в скоростях диффузии легких и более тяжелых испарившихся частиц при повышенном содержании соли. [c.75]

    Одновременно с достижениями в области промышленного применения редких элементов успешно развиваются и новые методы их анализа. Вероятно, наиболее важными из них являются хроматографические методы определения урана, тория, земельных кислот, полярография для урана, европия, иттербия, экстракция органическими растворителями д.ля скандия и урана и спектрофотометрия д. я редкоземельных элементов и платиновых металлов. Все эти методы включены в настоящее издание наряду с больишм числом усовершенствований в части классических методов анализа. Главы, посвященные редкоземельным металлам, торию, германию, ниобию и танталу, значительно переработаны главы, посвященные скандию, урану, рению и платиновым металлам, почти полностью написаны заново и содержат много совершенно новых аналитических методов [c.6]


Библиография для Редкоземельные металлы, аналитические: [c.10]    [c.11]   
Смотреть страницы где упоминается термин Редкоземельные металлы, аналитические: [c.190]    [c.5]    [c.321]    [c.36]    [c.114]    [c.134]    [c.170]   
Эмиссионный спектральный анализ Том 2 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Редкоземельные металлы



© 2025 chem21.info Реклама на сайте