Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностная реакция как лимитирующая стадия

    Если свойства поверхностного слоя не изменяются во времени, то протекающий через электрод ток определяется только скоростью самого электродного процесса и размерами электрода. В этом случае плотность тока является мерой скорости электрохимической реакции. Если скорость наиболее замедленной стадии электрохимической реакции определяется стадией массопереноса, то поляризация называется концентрационной. Поляризация электрода, обусловленная медленной химической реакцией (в результате разряда или ионизации), называется химической поляризацией. Если скорость электролиза лимитируется процессами образования новой фазы, как, например, при катодном выделении металлов, то возникающая поляризация называется фазовой. Зависимость скорости процесса от потенциала поляризации, т. е. /=[(АЕ), графически выражается поляризационной кривой. Она может состоять из нескольких ветвей (рис. 191), причем участки кривой (сс1, е1 и т. п.) отвечают возникновению нового электрохимического процесса. [c.458]


    Аналогом закона действующих масс, применяемым для гомогенных реакций, выступает при гетерогенном катализе закон действующих поверхностей, согласно которому скорость химической реакции пропорциональна двухмерной (поверхностной) концентрации реагентов т), (в моль/м ). При мономолекулярных реакциях лимитирующая стадия может состоять в превращении вещества на одном активном центре поверхности катализатора или во взаимодействии вещества со свободным, смежным с ним активным центром. Этим двум механизмам соответствуют такие кинетические уравнения  [c.173]

    Иногда при достижении определенной скорости растворения ингибирующее действие органического вещества на анодное растворение металла исчезает. Это связано с тем, что при значительных анодных токах адсорбированные частицы удаляются с поверхности вместе с атомами растворяющегося металла настолько быстро, что адсорбция ингибитора не успевает происходить. Механизм влияния поверхностно-активных органических веществ на скорость электрохимических реакций в значительной мере зависит от природы лимитирующей стадии. В условиях диффузионной кинетики поверхностно-активные вещества не влияют на электрохимическую кинетику. Исключение составляют системы, в которых снижение предельного диффузионного тока в присутствии поверхностно-активного вещества может быть обусловлено уменьшением числа участвующих в реакции электронов. В условиях возникновения полярографических максимумов 3-го рода неравномерная адсорбция некоторых поверхностно-активных веществ на поверхности ртутного капельного электрода вызывает перемешивание раствора и, следовательно, увеличение скорости электрохимической реакции (см. 38). Снижение тока ниже вызванное добавками поверхностно-активных веществ, означает, что стадия разряда-ионизации замедляется в такой степени, что становится лимитирующей стадией всего процесса. Ингибирование стадии разряда — ионизации [c.376]

    Аналогичных эффектов можно ожидать и для других металлов. Поэтому металлические и полиметаллические катализаторы будут требовать промотирования для сведения к минимуму отложения углерода по реакции Будуара и предотвращения дезактивации. Положительным аспектом использования полиметаллических катализаторов для реакции водяного газа явился бы способ изменения прочности поверхностных связей оксида углерода и водорода, который изменил бы скорость реакции лимитирующей стадии [66]. [c.30]


    Если в прямой реакции лимитирующей стадией является I стадия схемы (IV.30), то в обратной реакции должна быть лимитирующей III стадия схемы (IV.91). Если скорость процесса определяется скоростью поверхностного акта реакции, то в обеих схемах лимитирующей является II стадия. В случае, когда реакцию в прямом направлении лимитирует III стадия схемы (IV.30), ей отвечает I стадия реакции в обратном направлении [схема (IV.91)]. [c.151]

    Для реакции, лимитирующей стадией которой является образование поверхностного соединения, величина р выразится условием адсорбционно-химического равновесия стадии разложения этого соединения  [c.474]

    Измерены поверхность и пористость углей до и после озонирования. Определены кинетические параметры и состав продуктов окисления бурых углей озоном в газовой и жидкой средах. Процесс протекает практически в стационарном режиме, поглощение озона составляет 90%. Окисление сопровождается выделением в газовую фазу оксидов углерода СО и СО2. Показано, что среда окисления оказывает значительное влияние на скорость и механизм процесса при этом начальные скорости процесса различаются в 4 раза. Кинетические кривые озонирования бурого угля, подвергнутого карбонизации, аналогичны необработанным углям. Однако, количество выделяющегося СО2 в случае карбонизованного угля ниже более, чем в три раза что указывает на активное образование поверхностных кислородсодержащих групп. Лимитирующая стадия процесса протекает на поверхности угля, о чём свидетельствует нулевой порядок реакции. [c.91]

    Более полно изучена кинетика синтеза метаиола на цинк-хромовом катализаторе. При выводе кинетических уравнений принимались разные лимитирующие стадии хемосорбция исходных компонентов, десорбция метанола, гидрирование поверхностных соединений. В результате получались кинетические уравнения, описывающие экспериментальные данные в конкретных условиях принятой методики, но не описывающие данных, полученных в других условиях, а в отдельных случаях константы скорости реакции, например, рассчитанные по уравнениям 2.20, [c.64]

    Диффузия молекул к поверхности и от поверхности твердого катализатора обычно происходит быстро в газах и медленно в жидкостях. Поэтому для последних суммарная скорость реакции сильно зависит от размеров пор и доступности катализатора. При этом может оказаться, что реакция лимитируется диффузией (т. е. стадиями 1 и 5). Для газов этот случай является редким. На время ограничимся рассмотрением таких каталитических процессов, скорости которых определяются стадиями 2, 3 и 4. Предложены две модели строения сорбированного слоя реагентов па поверхности. Одна из них исходит из того, что сорбированный слой слабо связан с поверхностью и относительно свободно может мигрировать с одного места поверхности к другому. В предельном случае подвижный слои может быть представлен как двухмерный газ, сорбированный на поверхности. Наряду с этой моделью существует и модель сильной связи поверхностного слоя согласно такой модели, можно считать, что каждая сорбированная молекула образует химическую связь с некоторым атомом на поверхности катализатора. В таком локализованном слое миграция реагирующих веществ может медленно проходить либо за счет диффузии на иоверхности, либо за счет испарения и повторной адсорбции. Эти относительно медленные процессы могут лимитировать скорость реакции. [c.536]

    Адсорбцию и дейтерообмен метана и этана, реакции гидрогенолиза этана, гидрогенолиза и изомеризации бутанов и некоторых углеводородов состава Сг исследовали также в присутствии черней Ки, КН и 1г [43]. Более высокую каталитическую активность Ки, КЬ и 1г в реакции гидрогенолиза по сравнению с активностью Р(1, Р1, Со или N1 объясняли легкостью образования прочно связанных (многоцентровая адсорбция) поверхностных частиц, ответственных за гидрогенолиз. Предполагается, что начальная стадия быстрого многократного разрыва С—С-связей молекулы углеводорода сопровождается медленной десорбцией продуктов реакции, которая, по-видимому, и является лимитирующей стадией гидрогенолиза на Ки-, КЬ- и 1г-катализаторах. [c.96]

    Реакции нулевого порядка встречаются обычно в гетерогенном катализе и всегда указывают на протекание сложной реакции, состоящей из нескольких последовательных стадий. В данном случае лимитирующей стадией, определяющей общую скорость процесса, является поверхностная реакция, сравнительно медленная и не зависящая от концентрации реагентов этим и объясняется нулевой порядок. Однако, если концентрация реагентов достаточно мала, то стадии, зависящие от концентрации, замедляются, так что их скорость будет меньше, чем скорость лимитирующей стадии. Тогда они становятся лимитирующими и порядок реакции начинает повышаться, заметно отличаясь от нуля. [c.68]


    Следовательно, общая скорость реакции лимитируется диффузией, адсорбцией, десорбцией или взаимодействием между поверхностными комплексами в простой реакции или через некоторые промежуточные стадии в сложном процессе. [c.15]

    В реакциях (I) и (1а) могут участвовать не только ионы Н3О+, но и другие доноры протонов, например молекулы органических кислот и т. п. Вещество В, которое образуется на стадии (И1), или остается в адсорбированном состоянии, или десорбируется в раствор. В стадии разряда (И) участвует частица ВН дс. Эта частица должна восстанавливаться с более высокой скоростью, чем ионы гидроксония, так как, во-первых, она является поверхностно-активной (go>0), а во-вторых, энергия адсорбции продукта реакции ВН д или В больше, чем энергия адсорбции атомов водорода на поверхности ртути. Оба эти фактора согласно теории замедленного разряда приводят к ускорению реакции. В некоторых случаях перенос электрона на частицу ВН дс происходит настолько быстро, что скорость каталитического выделения водорода лимитируется стадией (I). Уравнение полярографической волны в условиях медленной протонизации в буферных растворах имеет вид [c.379]

    Анализ уравнения (64.26) показывает, что при определенных соотношениях между 01 и 02 как на анодных, так и на катодных поляризационных кривых могут появляться изломы, отвечающие переходу от одной лимитирующей стадии к другой. Такие изломы являются критериями стадийности электродного процесса. При наличии t 3i-эффектов установление механизма многостадийных реакций сильно усложняется. Поэтому изучение механизма таких реакций целесообразно проводить в растворах с большим постоянным избытком поверхностно-неактивного электролита. [c.348]

    В качестве основного параметра, определяющего кинетические зависимости, рассматривалась степень заполнения поверхности 0 , имеющая смысл фактора вытеснения, борьбы компонентов за места на поверхности. При этом принималось дополнительное предположение о том, что в ходе катализа процессы адсорбции реагентов и десорбции продуктов происходят значительно быстрее, чем поверхностная химическая реакция, т. е. последняя является лимитирующей стадией. (Тогда величины 0 можно считать равновесными по отношению к парциальным давлениям рг [концентрациям i ] веществ в газовой фазе, а для оценки 0 можно использовать известные изотермы Лэнгмюра.) [c.75]

    Эти равенства для реакции порядка к означают, что при к Ре режим протекания реакции на всей поверхности частицы (за исключением малой окрестности точки стекания) близок к кинетическому. Последнее объясняется тем, что нри увеличении числа Пекле диффузионный поток может увеличиваться лишь до тех пор, пока лимитирующей стадией процесса массопереноса не становится поверхностная реакция. [c.176]

    Поверхностная химическая реакция как лимитирующая стадия [c.738]

    Лимитирующая стадия как основной, так и побочной реакции—взаимодействие метанола с поверхностным кислородом, [c.61]

    Дальнейшее развитие теории катализа тесно связано с исследованием состояния катализатора во время реакции. Принципы структурного и энергетического соответствия, оставаясь решающими, должны относиться к системе катализатор — реагирующее вещество, сложившейся ко времени достижения стационарного состояния катализатора. Степень окисления поверхностных атомов катализатора, природа лигандов и состав промежуточного координационного комплекса определяют направление реакции и лимитирующие стадии. Решающую роль играют методы определения состояния катализатора и всей системы во время реакции. Одним из таких методов является измерение потенциала (или электропроводности) катализатора во время реакции. Легче всего это сделать в проводящих средах как в жидкой, так и в газовой фазе для гетерогенных и гомогенных катализаторов. В окислительно-восстановительных процессах структурным фактором являются не только размеры кристаллов и параметры решеток, но и кислотно-основные характеристики процессов. Всякая поверхность или комплексное соединение представляют собой кислоту или основание по отношению к реагирующему веществу, а это определяет направленность (ориентацию) и энергию взаимодействия вещества с катализатором. Для реакции каталитической гидрогенизации предложена классификация основных механизмов, основанная на степени воздействия реагирующего вещества на поверхность катализатора, заполненную водородом. В зависимости от природы гидрируемого вещества в реакции участвуют различные формы водорода. При этом поверхность во время реакции псевдооднородна, а энергия активации— величина постоянная и зависящая от потенциала поверхности (или раствора). Несмотря на локальный характер взаимодействия, поверхность в реакционном отношении однородна и скорость реакции подчиняется уравнению Лэнгмюра — Хиншельвуда, причем возможно как взаимное вытеснение адсорбирующихся веществ, так и синергизм, т. е. увеличение адсорбции БОДОрОДЗ ПрИ адсорбции непредельного вещества. Таким образом, созданы основы теории каталитической гидрогенизации и возможность оптимизации катализаторов по объективным признакам. Эта теория является продолжением и развитием теории Баландина. [c.144]

    Строгий вывод уравнений для случая поверхностных кинетических токов, когда одной из лимитирующих стадий электродного процесса является диффузия, наталкивается на серьезные математические трудности. Тем не менее, при введении некоторых упрощающих допущений удается вывести уравнения кинетических волн с поверхностной предшествующей реакцией. [c.164]

    Наиболее важными для жидкофазного катализа показателями кислот являются растворимости в них изобутана и олефинов. Рс створимость изобутана в Н ЗО невелика и приблизительно в 30 рс 3 ниже, чем в НР. Олефины в этих кислотах расворяются достаточно хорошо и быстро. В этой связи концентрация изобутана на поверхности раздела фаз (эмульсии типа углеводород в кислоте) Нс1 много меньше концентрации олефинов, что обусловливает боль — ш/ю вероятность протекания реакций полимеризации олефинов. Э о обстоятельство, а также высокие значения плотности, вязкости и поверхностного натяжения кислот, особенно Н ЗО , обусловливает протекание реакций С —алкилирования в диффузионной области с лимитирующей стадией массопереноса реактантов к повер — хиости раздела фаз. Для ускорения химических реакций С —алки — ЛР- рования в среде Н 50 и НР необходимо интенсифицировать п юцессы перемешивания и диспергирования реакционной массы с целью увеличения поверхности раздела кислотной и углеводородной фаз. [c.140]

    Чтобы объяснить увеличение концентрации цис-, 2-диметилциклогексана с ростом давления водорода, Сигель и Смит делают допущение, что при достаточно высоких давлениях водорода общее течение реакции определяется образованием 1а,р-диадсорбированного состояния (реакция 3). При низких же давлениях водорода лимитирующей стадией является образование полугид-рированного состояния (реакция 5). Из рассмотрения отдельных стадий следует [2], что скорость реакции 3 не зависит от давления водорода, в то же время скорости реакций 5 и 7 являются функциями поверхностной концентрации водорода, а следовательно, его давления. При этом скорость стадии 7 зависит, во-первых, от концентрации полугидрированного состояния, которая сама является функцией давления водорода, и, во-вторых, непосредственно от концентрации адсорбированного водорода. Поэтому стадия 7 должна ускоряться с ростом давления водорода быстрее, чем все другие. С этим, по-видимому связано увеличение выхода цис-1,2-диметилцик-логексана при повышении давления водорода (см. рис. 2). Специально отмечается, что структуры адсорбированных на катализаторе частиц, возникающих при реакциях 5 и 5, различны диадсорбированная частица сохраняет в основном геометрию циклоалкена, в то время как полугидрированное состояние имеет, по существу, насыщенную структуру. [c.24]

    Изучен гидрогенолиз и дегидрирование н-пентана в присутствии Ки/АЬОз (0,034—1,492% Ни) и Ки-черни при 450—490 °С и, атмосферном давлении [36—39]. Кинетический порядок реакции по углеводороду равен 0,4, порядок по водороду равен 0,7. Активность катализатора сильно зависит от топографии его поверхности максимальную удельную активность проявил катализатор, содержащий 0,085% Ки. На основании полученных данных был сделан вывод, что предварительная стадия включает в себя конкурентную адсорбцию углеводорода и водорода на одних и тех же активных центрах, состоящих, как правило, из двух-трех атомов Ки. Адсорбция алкана на таком центре приводит к образованию частично дегидрированных промежуточных частиц состава С5Н10 или С5Н9. Стадией, лимитирующей скорость реакции, является поверхностная реакция между такими ненасыщенными частицами и адсорбированным водородом. [c.95]

    Результаты алкилирования в значительной мере определяются физическими факторами, так как лимитирующей стадией процесса является скорость транспортирования реагирующих веществ к поверхностн раздела фаз, где протекают основные химические реакции. Скорость транспортирования реагирующих веществ зависит от интенсивности перемешивания эмульсии кислота—углеводороды, соотношения изобутан олефины на входе в реактор и времени их пребывания в реакционной зоне, концентрации химически инертных соединений в углеводородной фазе, объемного соотношения кислотной и углеводородной фаз. Качество применяемого сырья, состав кислоты и температура реакции оказывают существенное влияние как на скорость транспортирования, так и на скорость химических превращений. [c.168]

    Изучение механизма реакции можно начать с измерения скоростей реакций смесей различного состава при разных температурах в дифференциальном реакторе, позволяющем контролировать тепло- и массоперенос. Полезны также изотопные метки и кинетические изотопные эксперименты. Такое исследование может дать достаточно ясное представление о важнейших стадиях реакции, например может позволить определить лимитирующую стадию. Информация о лимитирующей стадии может быть полезной при попытках повысить активность селективного, но относительно мало активного катализатора. Однако глубокое понимание механизма гетерогенных каталитических реакций достигается очень редко. Но благодаря успехам последних лет в приборостроении сегодня имеется больше оснований надеяться на достижение этой цели, чем 10 лет назад. Некоторые детали механизма можно понять, если сочетать тщательные кинетические исследования с подробным описанием катализатора методами хемосорбции, температурно-программированноп десорбции (ТПД), спектроскопических исследований поверхностного слоя, которые позволяют судить и о состоянии поверхно-стп катализатора, и о промежуточных соединениях, образующихся на ней в ходе данной реакции. [c.12]

    Любая электрохимическая реакция протекает на поверхности раздела фаз электрод — раствор и является гетерогенной. Как гетерогенная химическая реакция она также является стадийной, текущей через ряд последовательных стадий 1) транспорт вещества к электроду — к зоне реакции 2) собственный электрохимический акт взаимодействия реагирующей частицы с электродом (стадия разряда — ионизация) 3) отвод образовавшихся продуктов реакции от поверхности электрода. Первая и третья стадии имеют одни и те же закономерности и. чазываются стадиями мас-сопереноса, осуществляемыми за счет малых коэффициентов миграции и конвекции. Для всех электродных процессов наличие этих трех стадий обязательно. Однако наряду с этим ряд электрохимических процессов может осложняться предшествующими и последующими химическими реакциями, протекающими в объеме раствора или на поверхности электрода. Кроме того, в ходе электрохимической реа1 ции может происходить передвижение частиц по поверхности электрода (стадия поверхностной диффузии). Скорость электрохимического процесса, состоящего из ряда последовательных стадий, определяется наиболее замедленной, лимитирующей стадией. Для установления природы лимитирующей стадии, скорости ее течения, механизма электродного процесса, необходимо знать закономерности, которым подчиняются поляризационные характеристики / и Л . [c.458]

    Диффузионная кинетика электродных реакций. Когда лимитирующей стадией электрохимической реакции является диффузионный подвод или отвод реагирующего вещества, связь между поверхностной и объемной концентрациями в (XXII. 12) устанавливается исходя из пропорциональности тока величине потока диффузии вещества. В частности, при стационарном характере электродного процесса скорость подвода или отвода вещества описывается первым законом Фика  [c.306]

    В работе [74] предпринята попытка объяснить влияние механической деформации медного электрода на его анодную и катодную поляризацию в водном растворе Си304 с позиций теории перенапряжения кристаллизации при условии, что лимитирующей стадией реакций является поверхностная диффузия ад-ионов, параметры которой зависят от расстояния между ступеньками роста, т. е. от плотности дислокаций. С учетом того, что плотность дислокаций линейно связана со степенью пластической деформации, получена прямая пропорциональная зависимость скорости реакции от корня квадратного из степени деформации. Эта зависимость приближенно соответствует результатам опытов и несколько нарушается при больших деформациях. К сожалению, в этой работе не измеряли величину механического напряжения, а поскольку в случае меди деформационное упрочнение может подчиняться параболическому закону [41 ], можно объяснить результаты опытов [74 ] без привлечения теории замедленной стадии поверхностной диффузии.  [c.89]

    Из уравнений (13, 14) следует, что в катодных реакциях восстановления О2 и ЗОз -, а также в химических стадиях разложения адсорбционных комплексов (17, 18) участвуют ионы гидроксония. Очевидно, что в случае (Сог + Сзог) >СнзО реакции (15) и (16) протекают до образования поверхностных фаз гидроксидов и сульфидов, а лимитирующей стадией коррозии становится скорость химического растворения твердофазных продуктов реакций. [c.63]

    С повышением температуры увеличивается скорость роста кристаллов. Если лимитирующей стадией является стадия подвода вещества к поверхности кристалла, то с ростом температуры увеличивается коэффициент диффузии и уменьшается вязкость. Если скорость процесса определяется скоростью поверхностной реакции, то уменьшение критического размера двухмер- [c.358]

    Здесь индекс i обозначает любой реагент или продукт реакции, отличающийся от А. Это уравнение пригодно для описания реакций разложения или изомеризации вещества А, имеющих I порядок. Оно пригодно также для описания реакции между веществами А и В, когда концентрация вещества В входит только в знаменатель, но не в числитель уравнения 1V.4. Такой случай реализуется, например, если скорость реакции определяется адсорбцией вещества А на катализаторе. Для вывода уравнения скорости в этом случае следует принять, что лимитирующей стадией является поверхностная реакция или адсорбция одного из реагентов, не сопровождающаяся диссоциацией, и (или) допустить возможность тормонгения реакции реагентами или продуктами. [c.174]

    Кинетика большинства гетерогенных каталитических реакций очень сложна, и в настоящее время нет возможности применить для ее описания общую теорию. Даже в отсутствие влияния диффузии на скорость реакции для ее кинетического описания необходимо учесть по меньшей мере адсорбцию, реакцию на поверхности и десорбцию, причем реакция на поверхности может быть многостадийной. Если одна из стадий поверхностной реакции является лимитирующей (механизмы Лэнгмю- [c.45]


Смотреть страницы где упоминается термин Поверхностная реакция как лимитирующая стадия: [c.154]    [c.112]    [c.259]    [c.277]    [c.291]    [c.408]    [c.142]    [c.484]    [c.92]    [c.10]    [c.250]    [c.119]   
Смотреть главы в:

Введение в гетерогенный катализ -> Поверхностная реакция как лимитирующая стадия




ПОИСК





Смотрите так же термины и статьи:

Лимитирующая

Лимитирующая стадия

Лимитирующая стадия реакции

Поверхностная реакция

Реакции лимитирующие



© 2025 chem21.info Реклама на сайте