Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гибкость цепных молекул

    Приблизительно те же соображения могут быть высказаны и о влиянии гибкости цепных молекул на способность полимеров к кристаллизации. В области температур, при которых гибкость цепных молекул велика, тепловое движение нарушает ориентацию звеньев и образование кристаллов невозможно. И, наоборот, при пониженных температурах энергии теплового движения может оказаться недостаточно для перегруппировки звеньев, следовательно, кристаллизация полимера возможна только в определенном температурном интервале, обеспечивающем оптимальную гибкость цепи . [c.137]


    Влияние межмолекулярных сил и гибкости цепных молекул на газопроницаемость полимеров [c.75]

    Гибкость цепных молекул приводит к особому характеру теплового движения в полимерах, так как отдельные части длинной и гибкой молекулы участвуют в тепловом движении независимо друг от друга, в результате чего длинная цепная молекула непрерывно изменяет свою форму, переходя от одной конформации к другой. Различие конформаций молекул высокополимеров можно рассматривать, исходя нз основных структур, содержащих транс- и гош-формы . Всю цепную молекулу можно условно разделить на отдельные участки — сегменты, величина которых позволяет оценивать гибкость данной цепной молекулы. Учитывая, что некоторые свойства полимеров (вязкое течение и др.) обусловливаются поведением сегментов, можно вычислить среднюю длину сегмента, которая колеблется обычно в пределах нескольких десятков звеньев. [c.76]

    Гибкость цепных молекул, определяемая потенциальным барьером вращения, имеет решающее значение при определении диффузионной проницаемости полимеров . С ростом гибкости цепных молекул и уменьшением межмолекулярного взаимодействия коэффициенты диффузий и растворимости газов в полимерах повышаются, а сле- [c.76]

    Помимо температуры стеклования, приближенной оценкой гибкости цепных молекул может служить предэкспоненциальный множитель Оо в уравнении температурной зависимости коэффициента диффузии [c.77]

    Отсутствие количественной связи еще раз подтверждает сложный характер зависимости газопроницаемости от структуры полимеров, определяемой не только гибкостью цепных молекул и величиной межмолекулярного взаимодействия, но и плотностью упаковки, стерическими условиями, физическим состоянием полимера и другими факторами. [c.83]

    Активное поглощение воды или какой-либо другой жидкости полимером способствует ослаблению молекулярного взаимодействия и реализации гибкости цепных молекул, в результате чего газопроницаемость полимера повышается. Полимеры, содержащие в молекулах полярные группы и отличающиеся повышенной гидрофиль-ностью, характеризуются значительным увеличением газопроницаемости в увлажненном состоянии, в то время как неполярные полимеры практически сохраняют постоянную газопроницаемость как в сухом, так и в увлажненном состоянии (табл. 16) [c.169]

    Образование поперечных связей между молекулами снижает гибкость цепных молекул, обедняет конфигурационный набор и, следовательно, способствует уменьшению проницаемости полимеров . Известно, что пространственно-структурированные полимеры с большой густотой поперечных связей, например бакелит и эбонит , характеризуются весьма низкими значениями газопроницаемости. [c.92]


    Рост числа узлов пространственной сетки в полимере сопровождается повышением температуры стеклования. Температура стеклования и газопроницаемость полимеров зависят также от гибкости цепных молекул. Изменение этих величин при образовании химических связей между молекулами полимера может быть выражено графически в виде зависимости коэффициентов проницаемости от температуры стеклования вулканизатов натурального каучука с различным содержанием связанной серы, построенной по данным работ (рис 23). [c.101]

    Зависимость (7.2) обусловлена тем, что коэффициент проницаемости представляет собой произведение коэффициентов диффузии и растворимости, каждый из которых возрастает линейно с увеличением аморфной части полимера Данное заключение может быть сделано лишь при условии, если кристаллизация не вызывает дополнительного ограничения гибкости цепных молекул в аморфной части полимера, что является сомнительным. [c.141]

    Уменьшение коэффициентов диффузии при введении наполнителей в полимеры может быть обусловлено не только чисто геометрическими причинами — огибанием молекулами газа частиц наполнителя, но и факторами, зависящими от взаимодействия полимера с наполнителем. Действительно, сорбция молекул полимера на поверхности частиц активного наполнителя способствует понижению числа возможных конформаций молекул 2, что приводит к уменьшению гибкости цепных молекул полимера и соответственно к снижению скорости переноса молекул газа [c.198]

    Характерно, что температуры стеклования каучука и гуттаперчи тоже близки друг к другу по своей величине Пространственные изомеры, например атактический и изотактический полипропилен, также характеризуются одинаковыми температурами стеклования, что свидетельствует о постоянстве гибкости цепной молекулы, независимо от ее конфигурации. Поэтому можно предположить, что изменение конфигурации цепных молекул полимеров, находящихся в высокоэластичном состоянии оказывает скорее косвенное влияние на газопроницаемость, так как транс-изомеры и изотактические изомеры, обладая более прямой регулярно построенной линейной молекулой, легче образуют кристаллические структуры, как известно, способствующие снижению проницаемости. В работебыла изучена проницаемость натурального каучука, гуттаперчи и г ис-гранс-полиизо-прена (мольное соотношение 2 3) в интервале температур 323—363 К по отношению к парам н-бутана. Полученные результаты свидетельствуют о постоянстве значений Р, О а для всех трех исследованных полимеров. [c.71]

    Начиная с некоторой критической М, температура стеклования зависит только от гибкости цепных молекул и межмолекулярного взаимодействия. Тс связана с потенциальными барьерами вращения сегментов молекул вокруг одинарных связей С—С в цепи. Иначе говоря, Тс обусловлена химической природой и структурой полимера [21]. [c.10]

    ГИБКОСТЬ ЦЕПНЫХ МОЛЕКУЛ И ЕЕ СВЯЗЬ С ФИЗИКО-МЕХАНИЧЕСКИМИ СВОЙСТВАМИ ПОЛИМЕРОВ [4—6] [c.361]

    Такое аномальное поведение растворов полимеров, как и многие другие особенности этих веществ, связано с гибкостью цепных молекул, с их способностью принимать в растворе всевозможные конформации, обладающие близкими значениями внутренней энергии. Это и приводит к резкому возрастанию термодинамической вероятности и, следовательно, энтропии системы. [c.498]

    Эти эксперименты дают прямое подтверждение гибкости цепных молекул целлюлозы. [c.65]

    ГИИ будут мало изменяться. Действительно, нри низких степенях полимеризации (т. е. для низших гомологов) гибкость цепной молекулы незначительна и молекула с высокой степенью приближения сохраняет свою прямолинейную форму при плавлении кристалла. Приведенное здесь рассуждение по суш,еству аналогично хорошо известному правилу Трутона, согласно которому изменение энтропии при испарении не зависит от молекулярного веса. [c.221]

    Особенность полимеров заключается в том, что начиная с определенного молекулярного веса возникают высокоэластические свойства, связанные с деформацией самих цепных молекул. Поскольку деформация цепных молекул связана с перемещением отдельных участков, температура перехода Т из стеклообразного в высокоэластическое состояние перестает зависеть от молекулярного веса, ибо размер этого участка не связан непосредственно с длиной цепи. Это постоянство Т с, связанное с гибкостью цепной молекулы, является специфической особенностью полимерных веществ. [c.255]

    В итоге всей работы можно еще раз подчеркнуть, что размеры и гибкость цепных молекул являются основными величинами, определяющими как температурную область высокоэластического состояния, так и особенности вязкого течения полиизобутиленов. [c.268]

    На проницаемость покрытий влияет также способ их отверждения. При образовании поперечных связей между мо-лекула1йи снижается гибкость цепных молекул, что способствует уменьщению проницаемости полимера. Известно, что пространственно-структурированные полимеры с частыми поперечными связями характеризуются низкой водо- и газопроницаемостью. От структурной пористости, а также от присутствия в полимере гидрофильных групп (карбоксильных, гидроксильных, эфирных), сорбирующих влагу, зависит степень набухаемости полимерного материала. При высокой сорбционной способности полимерная пленка прочно удерживает влагу, тем самым ограничивает ее доступ к металлической поверхности. Истинные поры, образующиеся в лакокрасочном покрытии после улетучивания растворителей, служат каналами, по которым к металлической поверхности могут проникать вещества, вызывающие ее коррозию —кислород, влага, ионы и молекулы электролитов. Суммарный эффект от работы пор обоего рода определяет влаго- и газопроницаемость полимерного материала. [c.25]


    Увеличение размеров бфсовых групп способствует ослаблению межмолекулярных связей, разделению цепных молекул и повышению возможности реализации гибкости "цепных молекул полимера, что должно сопровождаться (аналогично пластификации) возрастанием проницаемости полимера. Однако в ряде случаев могут наблюдаться и обратные явления. Так, введение дополни- [c.69]

    Обычно кристаллический полимер представляют в виде поликристаллического тела, размеры отдельных кристаллитов в котором колеблются в пределах от нескольких десятков до нескольких сотен ангстрем. Участки полимера между кристаллитами не имеют упорядоченного строения и находятся в аморфном состоянии Беспорядочно расположенные кристаллические области и аморфные участки позволяют рассматривать полимер как кристаллическое тело с большим количеством дефектов кристаллической решетки. Степень общей упорядоченности звеньев цепных молекул в полимере (степень кристалличности) играет большую роль в определении свойств кристаллического полимера Благодаря правильной укладке участков цепных молекул в кристаллите невозможен переход цепных молекул из одной конформации в другую, в результате чего гибкость цепных молекул не проявляется и закристаллизованный полимер приобретает значительно ббльшую жесткость, чем жесткость данного полимера в аморфном состоянии . [c.136]

    По Каргину мерой гибкости цепной молекулы является размер сегмента. Для натурального каучука (вулка-низат с 2% серы) размер сегмента соответствует примерно 5 звеньям, в то время как для полиизобутилена 20—22 звеньям Соответственно водородопроницае-мость натурального каучука при 20°С равна 34,6- 10 , а полиизобутилена — 4,0-10 см -см/(см2.с-атм). Экспериментальные результаты, полученные при изучении газопроницаемости гидрированных полидиенов также подтверждают, что после гидрирования, приводящего к получению насыщенного полиуглеводорода, газопроницаемость полимера значительно уменьшается. [c.72]

    ВОЗМОЖНО Проявление индивидуального влияния природы связей на газопроницаемость полимеров. Для редких сеток основная роль в снижении гибкости цепных молекул и уменьшении проницаемости принадлежит мостич-ной связи, по сравнению с которой межмолекулярные силы, обусловленные химической природой этой связи, в первом приближении не имеют существенного значения. Шанин исследовал диффузию и растворимость кислорода и водорода в натрийбутадиеновом каучуке при 40—100 °С в зависимбсти от степени его окисления, которая определялась по числу молей Ог, поглощенных молем (54 г) каучука. Характер изменения коэффициен- тов диффузии и проницаемости в частном случае при изучении переноса кислорода при 40°С показан в табл. 9. [c.99]

    Переход от высокоэластического состояния полимеров к стеклообразному происходит в определенном температурном интервале, среднюю температуру которого принято называть температурой стеклования. В процессе перехода от эластомера к полимерному стеклу наблюдается постепенная фиксация отдельных звеньев цепных молекул Связи, возникающие вследствие ослабления теплового движения, имеют флуктуационный характер и не являются постоянно существующими. За-стекловывание полимера происходит в том случае, если число фиксированных звеньев становится столь большим, что расстояния между этими звеньями будут меньше, чем длина сегмента молекулы, и гибкость цепной молекулы уже не сможет проявиться . Теоретически возможны два механизма застекловывания, обуслоплен-ные либо увеличением взаимодействия мел<ду молекулами, либо возрастанием жесткости каждой отдельной молекулы полимера [c.117]

    Вопрос об изменении величины энергии активации диффузии газов и паров при переходе полимера нз аморфного состояния в кристаллическое полностью не выяснен. Так, для натурального каучука и гуттаперчи наблюдалось повышение, а для полипропилена и полиэтиленанекоторое понижение энергии активации проницаемости с ростом степени кристалличности. Брандт считает, что как энергия активации диффузии Ео, так и теплота растворения АЯ газообразных углеводородов и азота остаются постоянными независимо от плотности полиэтилена. Клют на основе развитых им теоретических представлений также предполагает, что энергия активации диффузии не должна зависеть от степени кристалличности полимера. Однако следует иметь в виду, что аморфные области, являющиеся основными путями проникновения газов через полимер, с повышением степени кристалличности могут несколько изменять свою структуру При высоких степенях кристалличности и большой гибкости цепных молекул полимера образование кристаллитов должно приводить к обеднению набора конформаций цепных молекул, в результате чего должна понижаться проницаемость и несколько возрастать энергия активации диффузии. [c.143]

    Лазоский и Гобс считают, что при ориентации происходит замораживание структуры, вызываемое снижением гибкости цепных молекул и обеднением конфор-мационцого набора. Это противоречит концепции об изменении проницаемости за счет повышения плотности структуры при ориентации полимеров. Авторы показали, что при одинаковой плотности полиэтилентерефталатные [c.150]

    Ориентация кристаллических полимеров сопровождается повышением кажущейся энергии активации газопроницаемости Это повышение может происходить одновременно за счет увеличения энергии активации диффузии и теплоты растворения газа в полимере, что связано с уменьшением гибкости цепных молекула аморфной части при его ориентации. Ослабление молекулярного движения с повышением степени ориентации при растяжении полимеров наблюдалось методом ЯМР в линейном полиэтиленеи в некоторых полиэфирах . [c.151]

    В полимерах наряду с кристаллическими всегда содержатся аморфные участки. Так, содержание кристаллической части в полиэтилене высокой плотности составляет 75—90%, а в полиэтилене низкой плотности около 60%. Кристаллические структуры, в свою очередь, тоже могут быть дефектными. Содержание аморфной части, т. е. значительная дефектность структуры кристаллических полимеров, объясняется гибкостью цепных молекул. Кристаллизация проте1иет в тех областях полимера, где сегменты макромолекул уже находятся в упорядоченном виде. Однако их идеальная укладка в какую-либо кристаллическую структуру затруднена из-за ограниченной подвижности, на которую влияет связь сегментов в макромолекулах и высокая вязкость среды. [c.28]

    При введении пластификаторов в резину проявляется одновре-меипо две стороны их действия 1) уменьшение прочности и долговечности вследствие уменьшения межмолекулярных взаимодейст вий и 2) благоприятное влияние на прочностные свойства из-за более равномерного распределения напряжений, увеличения гибкости цепных молекул и облегчения их ориентации при растяжении. Взаимное наложение этих влияний приводит к тому, что, как показано Догадкиным, Федюкиным и Гулем , зависимость между прочностью и степенью набухания имеет сложный характер. Если при малых степенях набухания преобладает положи- [c.246]

    Из оценки влияния полярности вулканизатов СКН с равной степенью поперечного сшивания на величину р, сделанной на основании эксперимента, следует, что с увеличением полярности вулканизатов при прочих равных условиях скорость самопроизвольного сокращения возрастает, а степень дополнительного растяжения уменьшается. Уменьшение р является следствием уменьшения гибкости цепных молекул. Так, усиливая межмолекулярное взаимодействие полимеров введением полярных групп в состав цепных молекул или ослабляя его введением низкомо-лекуляриого компонента, экранирующего звенья цепных молекул [59, с. 339 60, с. 11], можно существенным образом повлиять на все характеристики прочности полимерного материала. Этот прием в руках технологов является мощным орудием воздействия на такие характеристики прочности, как разрушающее [c.188]

    Как известно [9], условием получения глобулярной структуры из неорганического полимера является достаточная гибкость полимерных цеией. Гибкость цепных молекул определяется возможностью достаточно свободного вращения атомов вокруг пространственно направленных ковалентных а-связей, получающихся в результате 5р -гибридизации связей элементов, образующих цепь. В случае гетерогенных полимеров, какими являются окислы металлов, критерием, определяющим гибкость цепей, следует считать способность как металла, так и кислорода к sp -гибри-дизации связей в окислах металлов. [c.50]

    Другой важный вывод, касающийся вопроса молекулярного строения полимерных кристаллов, был сделан В. А. Каргиным на основании учета особенностей длинноцепочечпого строения полимеров. Анализируя анизотропию молекулярных сил в полимерных системах и гибкость цепных молекул, В. А. Каргин совместно с Г. Л. Слонимским приходит к выводу о том, что в процессе кристаллизации полимеров в качестве основных форм кристаллов должны возникать пластинчатые и игольчатые кристаллы, в которых главные цепи валентности макромолекул должны располагаться перпендикулярно к плоскости пластинки или оси иголки. Следует особо подчеркнуть, что эти представления были высказаны еще до открытия пластинчатых полимерных монокри( таллов. [c.8]

    Поэтому в другом предельном случае, при очень высоких степенях полимеризации (т. е. тогда, когда гибкость цепной молекулы, вследствие ее исключительно большой длины, станет весьма значительной), изменение энтронии при плавлении будет определяться в основном только той ее частью, которая обусловлена изменением конфигурации цепей при переходе из одного состояния в другое. Отсюда следует, что при достаточно больших цепях энтропийная часть изменения свободной энергии станет столь большой, что знак изменения свободной энергии будет определяться только ею, а не внутренней энергией. Таким образом, в этом предельном случае температура плавления должна убывать с ростом степени полимеризации. [c.221]

    Предварительное изучение механических свойств кристаллических полимеров показывает [1], что эти полимеры обладают весьма своеобразными ме-ханическилш свойствами, резко отличающими их от аморфных полимеров. Поэтому представления [2—4] о трех физических состояниях аморфных полимеров, о значении размеров и гибкости цепных молекул не могут быть непосредственно приложены к кристаллическим полимерам. [c.292]


Смотреть страницы где упоминается термин Гибкость цепных молекул: [c.134]    [c.94]    [c.327]    [c.73]    [c.78]    [c.81]    [c.81]    [c.112]    [c.116]    [c.137]    [c.146]    [c.171]    [c.196]    [c.145]    [c.113]   
Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]

Краткая химическая энциклопедия Том 2 (1963) -- [ c.0 ]

Высокомолекулярные соединения Издание 2 (1971) -- [ c.269 , c.305 , c.309 , c.331 , c.377 , c.430 , c.453 ]




ПОИСК





Смотрите так же термины и статьи:

Цепные молекулы



© 2025 chem21.info Реклама на сайте