Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография отделение иона

    ОТДЕЛЕНИЕ ФОСФАТ-ИОНОВ ОТ НЕКОТОРЫХ КАТИОНОВ II И III АНАЛИТИЧЕСКИХ ГРУПП МЕТОДОМ ИОНООБМЕННОЙ ХРОМАТОГРАФИИ НА АНИОНИТЕ [13J [c.102]

    Для повышения выхода олигосахаридов при частичном кислотном гидролизе предложено несколько специальных приемов, назначение которых — защитить образовавшиеся низкомолекулярные фрагменты от последующего расщепления. К ним относится гидролиз с одновременным диализом , при котором отщепившиеся олигосахариды удаляются из зоны реакции в качестве гидролизующего агента используется растворимая в воде, но не способная диализоваться полистиролсульфокислота. Применяется также гидролиз в виде нескольких последовательных обработок полисахарида кислотой, после каждой из которых проводится отделение низкомолекулярных фрагментов хроматографией на сефадексе . Наконец, предложена предварительная химическая модификация полисахаридов — получение диэтиламиноэтиловых эфиров той или иной степени замещения с последующим гидролизом полистиролсульфокислотой небольшой концентрации . Необходимость в диализе для защиты олигосахаридов от расщепления при этом очень интересном методе гидролиза отпадает мицеллы полианиона — полистиролсульфокислоты, находящиеся в растворе, создают на своей поверхности высокую концентрацию противоионов — ионов водорода там же адсорбированы и молекулы по- [c.506]


    Многообразие форм серы и большое число различных промышленных и природных объектов обусловило появление множества методов разделения. Во многих случаях методы разделения сводятся к отгонке сероводорода, получаемого предварительным восстановлением образца. Метод экстракции используется только для отделения и определения элементной серы. Успешно развиваются методы хроматографии и ионного обмена. [c.55]

    В последние годы широкое распространение получил метод хроматографического разделения веществ в тонком слое (0,1—0,5 мм) носителя, нанесенного на стеклянную пластинку. По способу проведения этот метод сходен с хроматографией на бумаге, однако вместо волокон целлюлозы в качестве носителя могут использоватьсй разнообразные сорбенты окись алюминия, активированный уголь, силикагель, ионообменные смолы, неорганические ионообменники и т. п. При разделении веществ в тонком слое в зависимости от поставленной задачи могут быть использованы принципы либо адсорбционной, либо распределительной, либо ионообменной хроматографии. По сравнению с бумажной хроматографией разделение в тонком слое в большинстве случаев проводится значительно быстрее. Например, методом тонкослойной хроматографии на смеси гипса и силикагеля отделение ионов 1102 + от смеси катионов Ре, ТЬ, АГ, Си и других было осуществлено за 10—1Б мин. [c.195]

    К разделению смесей обычно прибегают в тех случаях, когда методы прямого определения или обнаружения не позволяют получить правильный результат из-за мешающего влияния др. компонентов образца. Особенно важно т. наз. относит, концентрирование-отделение малых кол-в определяемых компонентов от значительно больших кол-в основных компонентов пробы. Разделение смесей может базироваться на различии в термодинамич., или равновесных, характеристиках компонентов (константы обмена ионов, константы устойчивости комплексов) или кинетич. параметров. Для разделения применяют гл. обр. хроматографию, экстракцию, осаждение, дистилляцию, а также электрохим. методы, напр, электроосаждение. [c.160]

    Отметим, что величина Л всего лишь постоянным множителем, равным 0,4, отличается от иногда используемого в теории динамики сорбции и хроматографии числа теоретических тарелок в колонне высотой х. Однако величина Л введена в теорию из других соображений, нежели число теоретических тарелок, и в отличие от последнего не теряет смысла ни при каких, сколь угодно малых, значениях. В то время как, по-видимому, не имеет смысла рассматривать процесс, происходящий в колонне с числом теоретических тарелок, близким к единице или меньшим ее, процессы с Л 1 и даже с Л <1 1 можно изучать не только теоретически, но и экспериментально [93]. Более того, такие процессы можно также использовать и на практике. Например, ионит может быть эффективным ионным ситом для отделения иона, у которого Л <С 1 (причем, только в этом случае ), от примесей других ионов, у которых при тех же условиях Л 1 [374.] [c.308]


    Еще на раннем этапе развития газовой хроматографии отделение олефинов от парафинов проводилось на неподвижных фазах, содержащих соли серебра [32]. Наибольщее распространение получил раствор нитрата серебра в глицерине, хотя, как отмечено в работе [33], активную роль в процессе разделения играют ионы Ag+, и поэтому более эффективны водные растворы. Однако использование водных растворов накладывает очень жесткие ограничения на диапазон рабочих температур и, следовательно, на предельную величину молекулярной массы разделяемых соединений, которая должна лежать в пределах 80—100, т. е. должна отвечать углеводородам с 6—7 углеродными атомами в молекуле. [c.392]

    Применение колоночной ионообменной хроматографии в качественном анализе позволило весьма эффективно решать задачи отделения мешающих анализу анионов (фосфат-, оксалат-, сульфат-ионов и др.) и разделение катионов. [c.140]

    Метод получения тяжелого меромиозина (ТММ) основан на частичном протеолитическом расщеплении миозина под действием трипсина. Отделение тяжелого меромиозина от миозина и от фрагмента хвостовой части миозиновой молекулы (легкого меромиозина) основано на его хорошей растворимости при низкой ионной силе, когда легкий меромиозин и миозин выпадают в осадок. Для последующей очистки полученного препарата можно воспользоваться колоночной хроматографией или высаливанием сернокислым аммонием. [c.394]

    Для разделения и обнаружения Sb(III), As(III) и Sn(II) предложен метод радиальной хроматографии на бумажных фильтрах с применением и-бутанола, насыщенного 3,5М НС1 [751]. Смесь (7 3) циклогексанола с НСООН оказалась эффективной для отделения Sb от других ионов металлов с целью последующего обнаружения Sb [1454]. [c.25]

    Ледерер [989] применил метод бумажной хроматографии для отделения рения в виде перренат-иона с использованием кислых и щелочных растворителей. Исследование выполнялось с применением радиоактивных изотопов Re и T . Перренат-, а также пертехнетат-ион хорошо отделяются от многочисленных ионов, таких, как МоОГ (i /=0,5) и Мп + (Л/= 0,1), в смесях бутанол— [c.219]

    Хроматография на бумаге часто применяется в аналитической химии золота, поскольку этот метод одновременно позволяет обнаружить золото и количественно определить его в присутствии большого числа ионов. Преимущества хроматографии на бумаге перед другими видами хроматографии — в возможности простого отделения золота от обычных спутников — платиновых металлов. [c.97]

    Сводка данных о применении хроматографии для отделения золота от сопутствующих ионов приведена ниже. [c.104]

    Для разделения других серусодержащих ионов и отделения их от мешающих элементов ионообменная хроматография используется крайне редко.  [c.58]

    Методы газовой (ГХ) и газо-жидкостной хроматографии (ГЖХ) успешно применяются для отделения и разделения многих соединений серы. Разделение смесей серусодержащих ионов на различных твердых носителях методом ГЖХ рассмотрено в работе [60]. [c.145]

    Для выделения ртути из очень разбавленных растворов и для последующего концентрирования ее широко применяют ионообменную хроматографию. Способы отделения ртути методом ионного обмена систематизированы в табл. 13. [c.58]

    Золото определяют [719] полуколичественпо в рудах, почвах и породах после отделения от сопутствуюш,их ионов методом восходяш ей хроматографии на бумаге. Растворителем является смесь этанол — этилацетат — вода — HNO3 (20 20 20 0,7). Не мешают Ag и Hg. Распределительную хроматографию на бумаге применяют До1я определения золота в силикатных, глинистых и сульфидных рудах [1168, 1169], ювелирных сплавах [1403], монетных сплавах, содержаш,их Си и Fe [795], для обнаружения золота в присутствии платиновых металлов [82J. [c.101]

    Хроматография на бумаге для разделения имеет ряд преимуществ по сравнению с колоночной хроматографией и с капельным анализом [324], так как в плоскостном варианте зоны, содержащие ионы, доступны для проявления. Имеется много работ по отделению ртути с помощью адсорбционной и осадочной бумажной хроматографии [68, 99, 143, 175, 233, 577, 775, 910, 978, 1016, [c.62]

    Для быстрого отделения мышьяка от большого числа ионов металлов использован метод восходящей распределительной хроматографии на бумаге Ватман № 1. С применением смесей муравьиной кислоты с соляной кислотой и ацетоном в отношении 3 3 4 мышьяк отделяется от многих металлов, в том числе от Ti, W, Au [1002]. С использованием бумаги Ватман № 1 и смеси (9 1) метанола с водой в качестве растворителя количественно разделяются мышьяк(1П), теллур(У1) и иодид-ион [594]. [c.135]

    Отделение магния. При разделении магния и кальция методом хроматографии на бумаге подвижной фазой служит обычно метанол или этанол с добавками кислот. Подвижность ионов магния обычно значительно выше подвижности ионов кальция, поэтому достигается четкое разделение этих ионов. Чаще всего используют как подвижную фазу смесь метилового спирта с соляной кислотой и водой (8 1 1). В этом случае значения Rf для кальция и магния равны соответственно 0,55 и 0,80 [730[. Если подвиж-. пая фаза содержит больше соляной кислоты, чем метанола, то значение Rf магния меньше, чем для кальция. Так, например, при использовании в качестве подвижной фазы смеси 8 N НС1, метанола и тетрагидрофурана (70 20 10) = 0,38—0,44, Rf = [c.180]


    Нитрат-иоиы часто мешают последующему определению рения. При спектрофотометрических определениях они окисляют восстановитель и рений в степени окисления менее семи, осаждаются при весовом определении, соэкстрагируются при экстракционнофотометрическом и флуориметрическом определениях. Для отделения или уменьшения концентрации нитрат-ионов растворы выпаривают до небольшого объема ( == 1—2 мл) иа водяной бане или нагретом блоке с температурой < 110° С более полное удаление нитрат-ионов достигается при многократном выпаривании растворов с соляной кислотой. Показана возможность применения для этой цели выпаривания с серной кислотой до начала выделения ее паров. Иногда рекомендуют применять методы ионообменной хроматографии. Нитрат-ионы можно удалить из сильнокислых растворов путем восстановления их до низших окислов формальдегидом [325]. [c.234]

    При выборе соответствующей формы комплексных соединений с помощью ионообменников возможно провести также групповое отделение нескольких элементов. Кроме уже упомянутых хлорид-ных комплексов, устойчивость которых хорошо коррелирует с концентрацией хлористоводородной кислоты и которые подходят для селективного разделения, процессы ионного обмена могут контролироваться с помощью различных органических комплексообразующих реагентов (лимонная и винная кислоты, ЭДТА и т. д.). Сильноосновные анионообменные колонки, насыщенные комплексными анионами этого типа, пригодны для одновременного выделения различных групп катионов. Колонки с анионами, образующими осадок (хлориды, сульфиды, карбонаты и т. д.), также использовались для разделения некоторых групп катионов. Как следует из приведенных примеров, селективное элюирование пригодно для разделения отдельных ионов. В общем случае на определение примесей спектральными методами не оказывает влияние неполнота отделения мешающего элемента, которая возможна из-за недостаточно благоприятных условий взаимодействия раствора со смолой. Для большинства спектральных методик нет необходимости использовать ионный обмен для полного отделения ионов одного типа, т. е. селективную хроматографию при ионном обмене. Вполне достаточно воспроизводимо концентрировать определенную группу следов примесей или удалять основную часть мешающего элемента. [c.70]

    Ионнообменная хроматография. Процесс ионного обмена широко известен в связи с его применением для умягчения воды. Впервые он был использован для разделения неорганических катионов и анионов. Позже были сделаны попытки применить хроматографическую теорию к ионнообменной адсорбции. В хроматографическом анализе диссоциирующих органических соединений в последнее время все более широкое применение получают синтетические смолы, способные к избирательной адсорбции и обладающие ионнообменными свойствами (Адамс и Холмс, 1935). Получены смолы с кислыми свойствами для катионного обмена и смолы с основными свойствами для анионного обмена. Адсорбция этими смолами в значительной мере определяется зарядом растворенного вещества (при этом надо отметить, что обменная адсорбция представляет собой очень сложный процесс), а для элюирования применяются растворы кислоты, щелочи или соли. Синтетические анионнообменные смолы (например, Амберлит IR4) применялись для хроматографического разделения аминокислот (например, глутаминовой и аспарагиновой кислот в продуктах гидролиза шерсти). Другими примерами применения ионного обмена могут служить анализ нуклеиновой кислоты, адсорбция алкалоидов и отделение свободных сульфокислот от азокрасителеЙ с ЗОзМа-группами в молекуле. Ричардсон наблюдал, что свободные сульфокислоты Небесно-голубого FF и других высокомолекулярных красителей быстро адсорбируются ионнообменной смолой Деацидит В. С уменьшением величины молекулы может быть достигнут такой предел, при котором начинается медленная диффузия в структуру смолы, юз Ионнообменная хроматография может применяться для разделения, очистки и анализа ионизирующихся красителей (кислотные красители и прямые красители для хлопка с сульфогруппами в молекуле и оспов- [c.1514]

    Под простым ионообменным разделением понимается отделение ионов, способных к ионному обмену, от непог-лощаемых ионов и неэлектролитов. Ионообменная хроматография включает в себя все процессы разделения способных к обмену ионов, основанные на их различной способности поглощатся ионитами. [c.13]

    Биологическая активность фермента в ходе хроматографии может измениться (как уменьшиться, так иногда в возрасти) в силу ряда дополнительных причин. Например, кажущееся увеличение активности фермента может быть результатом его отделения от протеаз. Снизиться активность может как в результате истинной денатурации илп окисления 8Н-групп белка, так и при отделении апофермепта от кофакторов. Иногда инактивация обусловлена разъединением двух или нескольких последовательно работающих ферментов. Такого рода кажущиеся инактивации могут быть обнаружены при объединении хроматографических фракций, когда активность фермента восстанавливается. Для сохранения биологической активности липофильных белков мембран в элюент иногда приходится добавлять спирт или ацетон. При этом может возникнуть определенная неравномерность распределения органического растворителя между жидкостью внутри и снаружи гранул — ионы сорбента, гидратируясь, оттягивают на себя воду. Следствие этой неравномерности — наложение на ионный обмен эффекта распределетельной хроматографии. Для сохранения биологической активности ферментов в элюент часто добавляют глицерин (до 25%) или этиленгликоль (до 5%). [c.292]

    В весовых кол-вах Н. не получен, его св-ва исследовались с использованием десятков атомов. Первые сведения о хим. св-вах Н. получены в 1967 в СССР. Методом фронтальной газовой хроматографии было показано, что Н. образует нелетучий хлорид, в хроматографич. колонке ведет себя подобно лантаноидам. m и, следовательно, является представителем актиноидов. В кислых р-рах в отсутствие окислителей Н. существует в виде иона No , к-рый соосаждается с BaS04, но остается в р-ре при образовании осадка ЬаРз. При экстракции с использованием триоктиламина и ди(2-этилгексил)фосфорной к-ты, ионном обмене и экстракц. хроматографии Н. ведет себя подобно Ве , Mg , Са , Сг , Ва и Ra и м.б. легко отделен от лантаноидов и актиноидов, имеющих степень окисления + 3. Действием перйодат-, пероксидисульфат- и бромат-ионов No м.б. окислен до No . Стандартный электродный потенциал для No(n)/No(ni) от - 1,4 до - 1,5 В. [c.287]

    В приложениях, направленных на выяснение того, является ли продукт синтеза тем, который ожидали или планировали, образец вводят в прибор непосредственно при помощи штока или через газовый хроматограф. Последний вариант имеет то преимущество, что можно проанализировать относительно меньшие количества образца кроме того, собственно масс-спектрометрическому анализу предшествует предварительное разделение образца. Применяя метод ГХ-МС, можно получить масс-спектры нескольких компонентов смеси за один аналитический цикл и (или) обеспечить отделение интересующего компонента от вероятных мешающих компонентов в режиме on-line. В настоящее время для решения этих задач имеются относительно простые, дешевые и легкие в использовании настольные ГХ-МС-приборы (квадрупольные или с ионной ловушкой). Наиболее распространенным типом ионизации является электронный удар, хотя исследования в области органического синтеза все в большей степени связаны с полярными и лабильными соединениями, что требует различных подходов. Идентификация и подтверждение соединений осуществляется при помощи поиска в библиотеках масс-спектров и (или) при помощи интерпретации полученных масс-спектров, как обсуждалось в разд. 9.4.3. [c.300]

    Метод хроматографии на бумаге широко используют для отделения марганца от других элементов. Миграция ионов Мп(П) на бумаге детально изучена для разнообразных систем подвижных фаз [810]. Для проявления марганца на хроматограмме используют неорганические и органические реагенты и их смеси [70, 124, 224, 310, 691, 773, 858 1002, 1070, 1071, 1177, 1214, 1318, 1333, 1427, 1430, 1517]. Из неорганических реагентов применяют аммиачный раствор AgNOg ]224], щелочной раствор HjOj ]1318], раствор KJO4 ]858] и другие из органических — бензидин [70, 691, 1002], оксихинолин [691, 1070, 1071, 1427], квер-цетин [691], хлораниловую кислоту [1517], ализарин, глицерин и другие [1517]. [c.142]

    Для отделения ЗЬ(1П) от других ионов для последующего ее обнаружения применяют хроматографию анионных хлоридных комплексов металлов на бумаге, пропитанной три-к-октиламином в качестве жидкого ионообмешшка [1631]. [c.24]

    Метод тонкослойной хроматографии применен для исследования состояния ионов в растворе [100]. При изучении разделения ионов Re(VII), Mo(VI),V(V) и W(VI) этим методом на незакрепленном слое AljOg найдено, что при использовании в качестве подвижной фазы растворов 0,03—0,75 М H2SO4 и 0,02—1,16 М Н3РО4 ионы Mo(VI) образуют две зоны с различными Rf. В уксуснокислой среде при pH 2,0—2,5 получаются две зоны ионов Re(VII) с Rf = 0,9 и 0—0,4 соответственно. Эти данные показали, что молибден находится в двух соединениях методом ионофореза на бумаге найдено, что одно соединение заряжено отрицательно, а другое — нейтрально. Найдены оптимальные условия отделения Re(VII) от других ионов. [c.225]

    Отделение урана перед обл1 мажной хроматографией разд месей после облучения осажд ракцией и ионным обменом [c.198]

    Рептгепофлуоресцентным методом можно определять кальций после отделения от других ионов методом бумажной хроматографии [763]. [c.156]

    Отделение других ионов. Для отделения Са от Ег методом хроматографии на бумаге применяется в качестве подвижной фазы дибутилфосфортионовая кислота [6601. [c.185]


Смотреть страницы где упоминается термин Хроматография отделение иона: [c.144]    [c.406]    [c.453]    [c.597]    [c.71]    [c.206]    [c.335]    [c.220]    [c.167]    [c.93]    [c.108]    [c.222]    [c.143]    [c.50]    [c.199]   
Курс качественного химического полумикроанализа 1962 (1962) -- [ c.4 , c.541 ]




ПОИСК





Смотрите так же термины и статьи:

Ионная хроматография

Хроматография на ионитах



© 2025 chem21.info Реклама на сайте