Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо отделение от урана

    Нитраты. За последние годы развитию исследований по экстракции нитратов металлов органическими растворителями способствовало главным образом то важное значение, которое имеет этот метод для отделения уранил-нитрата. Ряд трех- и четырехвалентных нитратов металлов экстрагируется из азотнокислых растворов такими кислородсодержащими растворителям-и, как простые и сложные эфиры, кетоны, спирты. При комнатной температуре в том случае, когда исходные объемы фаз одинаковы, из 8 М азотной кислоты этиловым эфиром экстрагируются следующие количества металлов (в процентах) Сг (VI) > 15 (разложение) Zr 8 Au (III) 97 Hg (II) 4,7 Tl (III) 7,7 Bi 6,8 As (V) 14,4 e (IV) 96,8 Th 34,6 U (VI) 65 Некоторые другие элементы экстрагируются в меньшей степени. Такие высаливающие реагенты, как нитрат аммония, лития, железа (III), алюминия, увеличивают экстрагируемость урана и позволяют осуществлять экстракцию при более низких концентрациях азотной кислоты (см. подробности на стр. 811). Нитрат лития (но не нитрат аммония) способствует экстракции тория. Скандий экстрагируют из сильно концентрированных растворов нитрата лития. Для нитрата тория диэтилкетон и другие кетоны как экстрагенты более эффективны, чем эфиры. Три-н-бутилфосфат — хороший растворитель для нитратов церия, тория и уранилнитрата [c.52]


    Своеобразные химические свойства фтора и большое практическое значение многих его соединений обусловили развитие ряда методов, основанных на образовании или разложении нерастворимых и комплексных соединений. Известно, что ионы фтора образуют в водных растворах прочные комплексные (иногда нерастворимые) соединения с алюминием, железом, кремнием, цирконием, ураном, титаном и другими элементами. Некоторые соединения (например, фтористый алюминий) растворимы в воде, но очень мало диссоциируют и почти не подвергаются гидролизу. Эти свойства соединений фтора широко используются в химическом анализе для определения и отделения ряда элементов, а также для определения ионов фтора Для методов, основанных на образовании или разложении соединений фтора, характерны следующие группы реакций. [c.426]

    Фенолформальдегидные поликомплексоны применимы для отделения лантаноидов от железа (поликомплексон 2 4 3), извлечения ионов уранила в присутствии тория (поликомплексон 2 4 1) Поликомплексоны 244 и 24 5 являются перспективными коллекторами при извлечении катионов тяжелых металлов из растворов, содержащих лиганды — аммиак, ацетат-, лактат-, хлорид-ионы Конкуренция поликомплексона и мономерного лиганда в растворе при взаимодействии с катионами создает дополнительные возможности варьирования условий избирательной сорбции катионов Возможно разделение органических лигандов с помощью ионита 2 4 4, содержащего комплексно связанные катионы Си2+, N1 +, Ад+, способные координационно удерживать и селективно обменивать амины и другие лиганды [545] [c.300]

    При анализе образцов металлического плутония сильно влияло железо, содержание которого составляло 0,02—0,08%. Так как железо титруется вместе с плутонием, то определение его следует проводить другим подходящим методом. В данной работе железо определяли фотометрически. Определению мешают хром, титан, молибден, вольфрам, уран и ванадий. Нитрат-ионы мешают определению за счет их восстановления в редукторе. При отделении плутония от примесей необходимо учитывать полноту выделения. [c.183]

    Сероводород может быть применен для отделения урана от других элементов осаждением их в виде сульфидов в тех условиях, в которых уран сероводородом не осаждается. Таким путем уран можно отделить от элементов группы сероводорода осаждением их из кислого раствора. Отделение урана от элементов группы мышьяка может быть достигнуто осаждением урана сульфидом аммония. Так как в присутствии карбоната аммония уран сульфидом аммония не осаждается, то осаждением из карбонатных растворов можно отделить уран от железа, алюминия, титана и ряда других элементов. [c.279]


    Катионы трехвалентного железа и меди образуют с реагентом соединения бурого цвета, катионы двухвалентного железа— зеленого. Однако эти соединения разрушаются при нагревании с соляной или азотной кислотой, и таким путем около 1 мкг кобальта можно определить в присутствии 100 мкг меди и 1000 мкг железа [1129]. В случае очень больших количеств этих элементов их следует отделить или замаскировать. Для маскирования железа можно применять фторид натрия [1166, 1313], а для его отделения — экстрагировать диэтиловым эфиром из солянокислых растворов. Небольшие количества никеля, марганца, титана, ванадия, хрома не мешают допустимо также присутствие до 3000 мкг ионов свинца, ртути (И), олова (IV), цинка, церия (111), марганца, молибдена (VI) и уранила. [c.139]

    Для отделения урана от железа, алюминия, титана и других элементов, осаждающихся карбонатами, рекомендуется следующая методика [8]. К раствору, содержащему уран, при перемешивании прибавляют 6 N ЫН ОН до появления слабой мути, которую вновь растворяют несколькими каплями 6 N азотной кислоты. Затем этот раствор вливают в стакан, содержащий 2,5%-ный раствор карбоната аммония в 3 ЫН ОН. Количество раствора рассчитывают таким образом, чтобы на 1 мг урана приходилось по 3—4 мг карбоната аммония. Колбу из-под исходного раствора споласкивают и промывную воду присоединяют к основному раствору, который затем нагревают до 90° и при перемешивании выдерживают при этой температуре в течение 4—5 мин. Прибавляют 1—4 г диатомитовой земли или какого-либо другого индифферентного носителя и фильтруют через фильтрующий стеклянный стаканчик. Осадок промывают пять раз раствором карбоната аммония, подщелоченным небольшим количеством аммиака. В полученном фильтрате определяют содержание урана любым подходящим методом. [c.262]

    Применение щавелевой кислоты для отделения урана основано на ее способности осаждать уран (IV) из солянокислых растворов в внде труднорастворимого оксалата урана (IV) [579]. Наиболее полное осаждение урана (IV) достигается из растворов с концентрацией соляной кислоты, равной 0,12А. С целью достижения лучшего отделения урана от других элементов осаждение проводят обычно из растворов с концентрацией соляной кислоты не ниже 2//. Проведение осаждения при более низкой кислотности в присутствии цинка, железа (II), меди и некоторых других элементов приводит к частичному осаждению оксалатов этих элементов совместно с оксалатом урана (IV). Осаждение урана (IV) из растворов с кислотностью выше чем ЗМ становится уже неполным. [c.277]

    Железо и уран мешают определению, но так как их содержание вместе с некоторыми другими возможными примесями в анализируемой двуокиси не превышало 0,06%, их отделение не проводилось. При больших количествах возможно отделение этих элементов, но необходим контроль потерь плутония методами а-счета. Определение летучих примесей в анализируемой двуокиси плутония проводили по убыли веса при прокаливании PuOs при 1000—1100° С в течение 3 час. [c.193]

    Это определение в принципе проводится способом, аналогичным приведеннохму для молибдена. После отделения 02(С9Н( 0Ы)2 количественно осаждают в слабощелочной среде медь либо железо (возможно уран). Последние три элемента можно в этих условиях определить оксином даже в присутствии свинца, висмута, кобальта, никеля, марганца и цинка. Мешают только титан, бериллий и алюминий. [c.114]

    Отделение уранила от железа рекомендуется проводить следуюш,им образом к мл испытуемого раствора, находящемуся в делительной воронке (емкостью 25—50 мл) прилить 5 мл 10-процентного водного раствора трилона Б и с помощью разбавленных растворов НС1 и NH4OH установить pH 6—8, пользуясь бумажкой универсального индикатора. При малой концентрации уранила следует брать больший объем испытуемого раствора, пропорционально увеличивая объем трилона Б. [c.241]

    Объединенные фильтраты от оксалатов нейтрализуют аммиаком, вводя его в очень небольшом избытке затем добавляют 1 г таннина, растворенного в небольшом объеме воды, который осаждает в виде оксалатов, фосфатов или танниновых комплексов все присутствующие основания. Осадок смешивают с небольшим количеством бумажной массы, фильтруют под небольшим вакуумом, промывают горячим 2%-ным раствором азотнокислого аммония и прокаливают в платиновом тигле. Остаток сплавляют с 2—3 г соды, сплав извлекают горячей водой, нерастворимые вещества от( )ильтровывают, промывают 2%-ным раствором соды до удаления фосфата, возвращают обратно в стакан и напревают с концентрированной соляной кислотой. После разбавления и добавления бумажной массы и хлористого аммония железо, титан, уран и цирконий дважды выделяют двукратным осаждением аммиаком, не содержащим карбонатов в фильтрате определяют кальций. Осадок гидроокисей прокаливают и снова сплавляют с содой для отделения последних следов фосфорной кислоты нерастворимый остаток употребляют для определений железа, урана, титана и циркония обычными методами. Два содовых фильтрата содержат алюминий его выделяют и взвешивают в виде AIPO4. Содержание урана в монаците обычно очень мало и его лучше определять хроматографически из отдельной навески, как описано в гл. XXI, разд. IX. [c.150]


    O kenden Н., Foreman J.K., Analyst, 82, 592 (1957). Отделение уран от больших количеств железа и алюминия при адсорбции на анионообменных смолах из раствора нитрата алюминия — азотной кислоты. [c.824]

    Для хорошего отделения плутония от урана следует перевести четырехвалентный плутоний в трех- или пятивалентный добавлением или Н2О2, или же ионов железа и затем экстрагировать уран. Нептуний также окисляется до пятивалентного добавлением к водному раствору нитрата аммония, содержащему 0,1 моль в 1 л, ионы Ре и мочевины, а также контактом этого раствора с раствором урана и нептуния в эфире. [c.441]

    Можно отделить скандий от Y, РЗЭ, Th, U и на анионитах [34]. Скандий хорошо сорбируется анионитами из растворов, содержащих 1 моль/л HF и переменное количество НС1, что дает возможность использовать фторидные растворы для отделения скандия от Th, Al и РЗЭ. При десорбции 4—8 М растворами НС1 дополнительно удается отделить скандий от Fe +, Sn, Nb, Та, U [34]. Для отделения от V, As, Ti проводят адсорбцию на анионитах из 0,5—2,5 М растворов noHF. Десорбируют скандий 15-молярной плавиковой кислотой выход 90— 100%. Для очистки от Си +, Со +, Zn " " и d + рекомендуется адсорбировать скандий на анионитах из сильнокислой среды [35]. От тория и урана можно отделить скандий на анионитах в связи с тем, что коэффициент распределения его меньше, чем у них. Адсорбируют из 2—3 М раствора нитрата магния на сильноосновном анионите. Десорбируют скандий раствором нитрата магния, а урана и тория — 2,4 М соляной кислотой. Уран и железо отделяются от скандия также и при адсорбции из солянокислых растворов на сильноосновном анионите, обработанном предварительно 7 М НС1 [2, стр. 109]. [c.27]

    Применяется как растворитель жиров, смол и большого числа других органических соединений для кристаллизации для отделения Li от К и Na в виде хлоридов (спиртоэфирная смесь, насыщенная НС1) Са от Sr и Ва в виде нитратов для экстрагирования солей железа, молибдена и золота из солянокислых растворов для экстрагирования нитрата уранила. [c.120]

    Экстракция оксихинолината марганца Мп(С9НбОХ)2 осуществляется хлороформом [604, 1002, 1263, 1447, 1496, 1497], четыреххлористым углеродом, бензолом [196], изоамиловым спиртом [228]. Марганец количественно экстрагируется из водной фазы 0,1 М раствором оксихинолина в хлороформе при pH 6,5—11. Уменьшение концентрации реагента в 10 раз сдвигает pH начала экстракции оксихинолината Мп (II). При более высоком значении pH оксихинолинат Мп(П) окисляется кислородом воздуха до оксихинолината Мп(1П). Для предотвращения окисления Мп(И) вводят солянокислый гидроксиламин [239, 1447]. Изучено влияние различных комплексообразователей на экстракцию оксихинолината Мп(П) хлороформом [1002, 1447] (рис. 30). Метод экстракции оксихинолината Мп(И) хлороформом нашел широкое применение для отделения и определения содержания марганца различными методами (фотометрии, нейтронной активации, пламенной фотометрии) в разных объектах [344, 684, 832, 904, 1002, 1014, 1253, 1263, 1473, 1496, 1497]. При помощи экстракции окси-хинолинатов можно разделить Ге(1П), А1(1П) и Мп(П) [1263]. Железо экстрагируется хлороформом при pH 2,8, алюминий — при pH 5,6, а марганец — при pH 10. Для отделения марганца от Ха, К, Са и Зг при анализе нефтяных продуктов на содержание марганца методом пламенной-фотометрии применяют экстракцию его оксихинолината хлороформом [903]. Экстракция марганца в виде 8-оксихинолината хлороформом была применена также для определения его в уране и алюминии [1253]. [c.123]

    А. А. Чайхорский и сотр. (1954 г.) исследовали соосаждение Pu(IV) на иодате свинца для отделения от урана, железа, хрома и некоторых других элементов. Совместно с плутонием на иодат свинца соосаждается с 20% железа независимо от содержания его в пробе. Уран соосаждается приблизительно на 6% (при содержании его от 0,1 до 200 мг). В фильтрате остается только. Г 0,3% плутония. [c.282]

    Гольдщмидт, Реньо и Прево [65] предложили метод экстрагирования плутония трибутилфосфатом, разбавленным до 40% высококипящими парафиновыми углеводородами. Вначале экстрагируют смесь плутония и урана из 1,7 N азотнокислого раствора. Отношение объемов экстрагента и водного раствора при экстракции поддерживается равным 2,8. После разделения фаз органический раствор промывается 3—4 N НЫОз для более полного отделения от продуктов деления. Органическая фаза содержит весь уран, не менее 99,8% плутония, около 5% р-активных и около 1 % уЗ <тивных продуктов деления. Затем органический экстракт обрабатывают водным раствором восстановителя. При этом плутоний восстанавливается до Ри(П1) и переходит в водную фазу, а уран остается в органической фазе. При малой концентрации плутония (до 1 мкг/мл) в качестве восстановителя применяют 0,3 N раствор гидразина, содержащий 0,2 Л/ НЫОз, при концентрации же плутония выше 2 мкг/мл для восстановления используют 0,3 N раствор гидразина, содержащий 0,0025 моль/л сульфомината железа, при кислотности 0,24 N [c.323]

    Оксалатное осаждение ь кислом растворе позволяет отделить торий от Са, Sr, Ва, Mg, Со, Ni. Си, Zn, Ag, d. Sn, Pb и Bi, однако, если они присутствуют в больших количествах, то загрязняют оксалат тория, и тогда требуется либо предварительное отделение их каким-либо другим методом, либо переосаждение [1366]. У циркония имеется тенденция сооса-ждаться с торием, однако он может быть удержан в растворе избытком щавелевой кислоты. Б присутствии ионов уранила или железа в растворе должен быть избыток щавелевой киС лоты, так как значительное ее количество расходуется на комплексообразование с указанными ионами. Четырехвалентный уран осаждается вместе с торием. Оксалатным осаждением может быть достигнуто отделение от галлия [489.  [c.34]

    При осаждении гидроокиси тория носителями служат гидроокиси лантана, циркония или железа. Сообщают [945] об отделении UXi(Th" ) от урана выщелачиванием последнего карбонатом аммония из осадка, полученного при совместном осаждении гидроокиси железа и уранага аммония. Для выделения малых количеств тория из сильнокислых растворов, содержащих уран, а также для отделения от циркония , который используют в качестве носителя в концентрации 0,1 —1,0 мг/мА при осаждении иодата тория, рекомендуют осаждать фторид тория на фториде лантана. При выделении иодата тория из сильнокислых сред и промывании его раствором, содержащим иодат, достигается отделение от урана. р. 3. э. (Се предварительно восстанавливают до Се перекисью водорода) и актиния [5]. Иодат циркония растворяют в HNO3 в присутствии сернистого ангидрида и переосаждают затем в виде гидроокиси после удаления иода кипячением раствора. [c.228]

    В. М, Звенигородская и Л. П. Рудина [157, 184] использовали трудную растворимость тетрафторида урана для определения общего содержания урана. Предложенный ими метод основан на предварительном восстановлении шестивалентного урана до четырехвалентного солями двухвалентного железа в присутствии значительного избытка плавиковой кислоты. Так как образующиеся в результате реакции ионы трехвалентного железа связываются в прочный растворимый комплексный анион [РеРе ], а четырехвалентный уран выпадает в осадок в виде нерастворимого тетрафторида, то восстановление шестивалентного урана очень быстро завершается полностью. Разработанный метод, получивший название фторидного, нашел применение главным образом для отделения урана от мешающих элементов и последующего его определения другими методами, В связи с этим подробное описание метода приводится в разделе Методы отделения . [c.65]

    И. Е. Старик и А. С. Старик-Смагина [244] для определения урана в количествах 8-10" —2-10 г в различных природных объектах применили для его отделения соосаждение с алюминием в виде гидроокисей с последующим отделением урана от алюминия и железа с помощью карбоната аммония. Полярографирование урана производилось на фоне AI I3 и 0,1 УИ НС1 после повторного соосаждения его с алюминием. Если в материале содержался ванадий, уран предварительно отделяли от него осаждением фосфатом, или ванадий осаждался купфероном. Этот метод очень трудоемкий и должен приводить к потерям некоторого количества урана, вследствие большого числа осаждений и фильтрований. [c.179]

    Отделение урана осаждением перекисью водорода применяется главным образом для выделения основной его массы из растворов при определении следов других металлов (титан, никель), так как образующиеся осадки перураната уранила обладают очень небольшой способностью адсорбировать из раствора другие элементы. Только калий, щелочноземельные металлы, железо и ванадий адсорбируются осадком в заметных количествах. Сульфаты и фториды несколько снижают полноту осаждения урана. Железо и медь затрудняют осаждение вследствие каталитического разложения перекиси водорода [741]. Для устранения мешающего влияния железа и меди рекомендуется прибавление малоновой или молочной кислот, образующих с ними достаточно прочные комплексы [8], [c.266]

    Уран (IV) довольно избирательно осаждается из кислых растворов при добавлении иодата калия [94]. Улучшенный Е. С. Пржевальским, Е. Р. Николаевой и Н. И. Удальцовой [194] способ позволяет отделять уран от меди, молибдена и многих других элементов. Алюминий также отделяется полностью в том случае, если его количество не более чем в 50 раз превышает содержание урана. Получение чистых осадков иодата урана позволяет заканчивать определение непосредственным взвешиванием высушенного осадка. Однако в присутствии железа (II) полное отделение урана (IV) не достигается, что, по-видимому, связано с тем, что железо III, легко образующееся за счет окисления железа (И) кислородом воздуха, окисляет часть урана (IV) до урана (VI), неосаждающегося в условиях проведения осаждения. [c.280]

    Основное значение соосаждения—выделение невесомых количеств веш.ества. Однако соосаждение получило значительное применение также и для улучшения полноты выделения осаждаемого элемента. При отделении урана от других элементов соосаждение применяется довольно часто. Так, например, в первой половине этого раздела изложен трилонофосфатный метод отделения урана, в котором для полноты осаждения урана вводится в раствор сернокислый титан, с фосфатом которого очень полно соосаждается фосфат уранила [157]. Л. С. Василевская и Т. В. Дейкина [157] при выделении урана из пород, содержаш.их значительные количества фосфата кальция, рекомендуют осаждать уран при помош,и фосфатов совместно с алюминием и железом. П. А. Волков [184] для обеспечения большей полноты выделения урана (IV) в виде фосфата осаждает его совместно с фосфатом тория или циркония. Ю. А. Чернихов и [c.284]

    Для отделения урана от железа реэкстрагирование осуществляют при помощи насыщенного раствора карбоната аммония (двумя порциями по 10 мл). Такой прием позволяет отделять уран от 100-кратных количеств железа, меди и других элементов [184]. [c.308]

    И. П. Алимарин п Ю. А. Золотов [6] показали, что уран ( 1) количественно экстра гируется в виде а-нитрозо-р-нафтолата из водных растворов не смешивающимися с водой органическими растворителями. Наибатее эффективными экстрагентами для извлечения i-иитрозо-р-нафтолата уранила являются изоамнловый и н.бутиловый спирты и этилацетат. Так как в органическую фазу вместе с ураном переходит много других элементов, в том числе кобальт, медь и железо, то для повышения селективности экстракционного отделения урана в виде а-нитрозо- -нафтолата указанные авторы применили комплексон III. В разработанных ими условиях уран может быть полностью отделен от ванадия и железа. Для отделения урана от ванадия (V) последний восстанавливают до ванадия (IV) с помощью двуокиси серы или самим комплексоном III при pH 1—2 [184]. Затем добавляют не менее чем четырехкратное по отношению к ванадию количество комплексона III, нейтрализуют аммиаком до pH в пределах 6,5—9,0 и экстрагируют несколько меньшим или равным объемом изоамилового спирта, к которому предварительно прибавляют не менее чем 100-кратный избыток а-нитрозо- -нафтола. (в молярном отношении в расчете на UgOg) в виде 2%-ного раствора в этаноле. Для выделения урана из полученного экстракта его упаривают досуха и прокаливают при 900°. Определение урана может быть закончено непосредственным взвешиванием прокаленного остатка. Отделение урана от ванадия становится неполным, если содержание ванадия более чем в 3 раза превышает содержание урана. [c.310]

    Изучено [338] отделение цинка от ряда элементов при помощи анионного обмена. 5—50 мг цинка в 2 н. НС1 полностью адсорбируются на 15-сантиметровой колонке, содержащей 3 з сильноосиовного анионита амберлит IPiA-400 (в С1-форме). При последующем пропускании 50 мл 2 н. НС1 практически весь алюминий, магний, медь, кобальт, никель, марганец, хром, трехвалентное железо, торий, цирконий, четырехвалентный титан,шестивалентный уран, бериллий и кальций находятся в элюате. Кадмий, четырехвалентное олово, трехвалентная сурьма и висмут ведут себя подобно цинку. Удерживается некоторое количество свинца и индия. Цинк, кадмий и индий элюируются водой и 0,25 н. азотной кислотой, которая также удаляет 20% олова и некоторое количество сурьмы, висмута и свинца. Если применять только воду, то на колонке упорно удерживается небольшое количество цинка. Описаны методы выделения цинка из растворов, свободных от индия и кадмия. [c.86]


Смотреть страницы где упоминается термин Железо отделение от урана: [c.88]    [c.260]    [c.268]    [c.280]    [c.320]    [c.331]    [c.157]    [c.268]    [c.280]    [c.320]   
Химико-технические методы исследования (0) -- [ c.476 , c.477 ]




ПОИСК





Смотрите так же термины и статьи:

Выделение полуторных окислов и отделение урана от железа и ванадия

Железо отделение

Осаждение титана и отделение его от железа, алюминия, хрома, индия, бериллия и урана

Осаждение циркония и отделение его от железа, алюминия, хрома, индия, галлия, бериллия, урана, редкоземельных элементов и иттрия

Отделение железа, алюминия, хрома, урана, циркония и титана от марганца, кобальта, никеля, цинка, кальция, стронция, бария, магния и щелочных металлов

С т а р и к, Ф. Е. С т а р и к, А.Н. Аполлонова. Карбонатный метод отделения микроколичеств урана от железа

Скандий отделение тяжелых металлов, железа, марганца, урана, цинка, других двухвалентных металлов



© 2025 chem21.info Реклама на сайте