Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиолиз, выход

    Для того чтобы провести сопоставление выходов геп-тильных радикалов в различных системах, необходимо рассмотреть влияние акцепторов на выход углеводородных продуктов радиолиза. Выход гептильных радикалов можно рассчитать по формуле (1) [c.372]

    Если в облучаемой -у-лучами воде содержатся акцепторы гидратированного электрона, атомов Н и радикалов -ОН, то эти акцепторы, захватывая радикальные продукты радиолиза, препятствуют их рекомбинации и разрушению ими молекулярных продуктов радиолиза. Выход окислительновосстановительных или иных превращений частиц акцептора соответствует наблюдаемому выходу разрушения воды. [c.242]


    И, используя результаты анализа состава продуктов радиолиза смесей Hj— Dj, содержащих акцепторы радикалов, оценил выход водорода в этой реакции, который оказался примерно равным единице. [c.197]

    Выход продуктов радиолиза аммиака зависит от температуры, давления, мощности дозы, а в проточных условиях — от времени контакта. [c.198]

    Конечными продуктами радиолиза смеси N —0., являются N0 , N. 0, N0 и озон (литературу см. в [71, 36]). Выходы этих продуктов зависят от давления и состава смеси. Соотношение между энергетическими выходами радиационно-химических реакций образования озона и двуокиси азота в системе N2—Од исследовалось в работе [38]. Изменение (N02) и С(Оз) [c.198]

    Выход термических радикалов при радиолизе пропана, вычисленный по выходам более высоких алканов [1511 [c.73]

    В случае неорганических веществ выход ионов при радиолизе немного превышает образование новых ловушек. [c.237]

    В связи с обнаружением сольватированных электронов при радиолизе водных растворов рассмотрим предположение о том, не является ли термоэмиссия электронов в объем раствора первичным процессом при электровосстановлении различных ионов или молекул. Образовавшиеся сольватированные электроны реагируют затем с компонентами раствора или молекулами растворителя, давая конечные продукты восстановления. Данные по работе выхода электрона из металла в раствор, полученные при помош,и электродной фотоэмиссии, позволяют оценить вероятность такого механизма реакций электровосстановления. [c.293]

    Возбужденная молекула может распасться на два радикала, что и будет актом деструкции Р - -Р + Н 2- Выделяющийся при радиолизе вторичный электрон с относительно низкой скоростью может не только рекомбинировать с образовавшимся ионом полимера (реакция в клетке ), но и реагировать с другими молекулами (выход из клетки ), образуя новые ионы. Эти изменения происходят очень быстро (10 с). Время жизни полимерных ионов или радикалов зависит от подвижности макромолекул и при низких температурах может быть порядка недель и месяцев. [c.245]

    Радиолизом называют химические превращения под действием радиоактивных излучений. Ионы, возбужденные молекулы и электроны, образующиеся при поглощении излучения, успевают претерпеть целую вереницу превращений, которые приводят к тому, что в облученном веществе появляются совершенно новые частицы— продукты радиолиза. Начальные значения радиационной энергии значительно превосходят энергию связи валентных электронов. Поэтому поглощение этой энергии происходит не только в области частот, отвечающих полосам поглощения вещества, но и за пределами этих полос, т. е. имеет неизбирательный характер. Конкретный механизм радиационно-химического процесса не зависит от вида излучения и с количественной стороны характеризуется величиной поглощенной энергии. Для оценки эффективности действия излучения вводят количественную характеристику — так называемый радиационный выход g). Радиационный выход — выход числа молекул, атомов, ионов и других продуктов реакции на ]00 эВ поглощенной энергии. Для большей части веществ радиационный выход составляет 4—10 частиц. Однако для ряда реакций разложения =0,1, а для развивающихся по цепному механизму может достигать 10 -=-10 . [c.408]


    Весьма существенным моментом является чрезвычайно высокая избирательность образования 3-метил-1-бутена при алкилировании. В продуктах низкотемпературного алкилирования углеводороды выше Сб обнаружены не были. Кроме нен-тена, в продукте присутствовали только метан, этан, этилен и пропилен. Эти последние соединения типичны для нецепного радиолиза пропана. Следовательно, при низких температурах ацетилен практически полностью взаимодействует с пропаном только по реакции алкилирования. Этот вывод подтверждается и материальным балансом реакции. Значения С для реакций превращения ацетилена составляли 50 при 20. 10 рад/ч и 20 при 70 10 рад/ч. Такие значения радиационного выхода указывают на то, что реакция алкилирования пропана ацетиленом представляет собой процесс с короткой цепью, длина которой при применявшихся интенсивностях облучения лежала в пределах 5—10. В пределах экспериментальных погреш-лостей длина цепи изменялась обратно пропорционально корню квадратному из интенсивности. [c.138]

    Для радиолиза цетана радиационный выход О оказался равным 1—3 молекулам цетана на 100 эв поглощенной энергии, что характеризует нецепные реакции. Эта чрезвычайно медленная реакция типична также в том отношении, что она совершенно неизбирательна. Обычно в опытах после 10 суток облучения образовывалось около 5% легких газообразных продуктов разложения и фракция Се и нин<е, содержащая практически все возможные алканы и алкены, выкипающие в этих пределах. Продукты разложения состояли в основном из водорода (чистота 80—90% мол.), что также типично для низкотемпературного радиолиза алканов. Состав продуктов разложения, образующихся из цетана, подробнее рассмотрен дальше. Реакция полимеризации, ведущая к продуктам тяжелее цетана, представляет еще больший интерес и кратко рассматривается здесь. [c.150]

    Большую помощь в исследовании продуктов радиолиза воды оказывают уравнения материального баланса этого процесса, связывающие радиационно-химические выходы различных продуктов радиолиза  [c.202]

    Уравнения (12.8) позволяют, определяя количество одних продуктов радиолиза, рассчитывать количество (выход) других продуктов этого процесса. [c.202]

    Радиационно-химические выходы процесса радиолиза водных растворов некоторых неорганических веществ [c.203]

    Радиолиз углеводородов имеет большое практическое значение, поскольку на его основе разработан промышленный крекинг углеводородов. Известно, что термический крекинг углеводородов на уги, помимо очевидного недостатка, связанного с необходимостью затраты большого количества энергии, обладает еще недостатком, обусловленным сравнительно невысоким выходом наиболее ценных углеводородных фракций. [c.205]

    Весьма подробно исследован радиолиз водного раствора хлороформа. С чрезвычайно большими выходами (до 30) при облучении хлороформа образуется хлористый во- [c.208]

    Радиац. стойкость орг. материалов принято определять величиной радиац.-хим. выхода продуктов радиолиза, образующихся при поглощении 100 эВ энергии ИИ (см. Радиационно-химический выход). Взаимод. ИИ с орг. соед. сопровождается образованием промежут. активных частиц, деструкцией, окислением, сшиванием, газообразованием, деполимеризацией (для полимеров) и т.д. Низкой радиац. стойкостью обладают в-ва, содержащие связи С — Г, С —5], С — О. Наличие в молекуле двойных и сопряженных связей, ароматич. колец и гетероциклов увеличивает Р. с. Наиб, значит, изменения структуры полимерных материалов под действием ИИ происходят при деструкции или сшивании молекул полимера. [c.149]

    Полиизобутилен относительно стоек к действию УФ-света. Однако, при длительном фото-облучении (Hg-лaмпa, несколько суток, 77 К с последующим нагревом до 195 К) обнаружены 5 типов свободных радикалов, свидетельствующих о разрыве как С-С-, так и С-Н-связей [15]. Первичные продукты включают образование двойных и сопряженных двойных связей, Н2 и СН4. Последующие превращения ПИБ дают изобутилен, 2,4,4-триметил-1-пентен и 2,4,4-триметилпентан. Меньшие, чем при радиолизе, выходы продуктов свидетельствуют об ограниченной роли триплетных возбужденных ионных состояний. [c.220]

    Эффективность химического действия излучения выражают числом молекул, претерпевщих то или иное радиационно-химическое превращение при поглощении энергии излучения в 100 эв. Эта величина называется радиационно-химическим выходом, причем слово радиационно-химический часто для краткости опускают. В химической литературе можно встретить такие выражения, как выход радиолиза , выход окисления или восстановления , выход образования какого-либо продукта радиолиза. Радиационнохимический выход обозначается символом 0 размерность этой величины — число молекул на 100 эв (молекул) 00 эв). Например, выражение 0(—Н20)=4,5 означает, что при действии излучения вода разлагается с эффективностью 4,5 молекул на каждую сотню электрон-вольт поглощенной энергии, а величина О (СОг) =2 характеризует эффективность образования двуокиси углерода (например, при радиолизе органических кислот). [c.256]


    Выход перекиси водорода под действием рентгеновских, у и р-лучей оказывается значительным только в том случае, если вода содержит растворенный кислород. При отсутствии кислорода указанные реак1 ии протекают с очень небольшим выходом. При радиолизе под действием а-частиц выход перекиси водорода в воде, насыщенной кислородом и полностью свободный от него, одинаков. [c.265]

    Хотя из обш,их соображений ясно, что нейтрализация ионов должна вносить вклад в выход продуктов радиолиза, прямые доказательства этого были получены сравнительно недавно в работе [81], где исследовалось влияние алсЕтрического поля на радиолпз метана. Полученные результаты показывают, что —30% всего водорода образуется вследствие рекомбинации поло 1 ителы1Ь[Х попов с электронами или отрицательными ионами. Последние возникают либо при взаимодействии электрона с молекулами метана е СН4 = СНд -h Н (или СНд + И )t либо за счет прямого прилипания электрона к частицам, обладающим положительным сродством к электрону. [c.197]

    В последнее время стала развиваться радиационная химия углеводородов и появились исследования радиол иза алканов, доложенные на симпозиуме по радиационной химии углеводородов в 1957 году [146]. Под влиянием облучения таза пучком электронов с энергией порядка 1,5 мэв при обыч-ной температуре могут свободно происходить процессы расщепления молекул алкана на радикалы и непосредственного отщепления молекул водорода и метана На основе изучения цримесей этилена и пропилена в качестве веществ, поглощающих атомы водорода и метил-радикалы, а также результатов изотопического исследования радиолиза смеси этана и полностью замещенного дейтероэтана на масспектрометре, было показано, что большая часть водорода образуется при радиолизе этана путем прямого отщепления его молекул от молекул этана в первичном процессе [146]. Изучение изото-лического распределения метана, образованного при радиолизе системы этан и дейтероэтан, дало доказательство того, что метан возникает путем непосредственного отщепления его молекулы от исходных молекул этана. Таким образом, процессы радиолиза алканов могут происходить под воздейст- вием больщой энергии облучения при обычных температурах по другому механизму, с отщеплением молекул в первичном акте, без участия радикалов. В этом отношении радиолиз несколько схож с высокотемпературным крекингом, при котором относительный вес радикально-цепных процессов снижается и возрастает роль процессов распада, проходящих по молекулярному механизму, что соответствует более высоким порядкам энергий в том и другом случаях. Интересно также, что в условиях радиолиза (25°) могут возникать горячие радикалы, энергия которых соответствует гораздо более высоким температурам, чем температура экспериментов, т. е. распределение по энергиям для таких радикалов не является Максвелл-Больцмановским. С другой стороны, при действии радиации на алканы возникают и радикалы, которые могут тшициировать процессы распада. В этих случаях важной характеристикой инициированного крекинга является общий выход радикалов, способных индуцировать крекинг, отнесенный к определенному количеству поглощенной энергии. Вследствие того, что ионизирующее излучение поглощается молекулами не избирательно, количество поглощенной энергии пропорционально общему числу электронов в единице объема и не зависит от химического строения алкана [147]. В то же время выход радикалов, отнесенный к одинаковой поглощенной энергии, весьма зависит от строения поглощающих молекул. С процессами образования радикалов конкурируют процессы спонтанной де.чактивации возбужденных молекул алканов, связанной с превращением энергии элект- [c.71]

    При радиолитических реакциях несомненно возникают, радикалы с более низкой или термической энергией, которые будут участвовать в нормальных радикальных реакциях, не специфичных для радиационной химии. Можно подойти к оценке их выходов, если учесть, что образование более высоких алканов подавляется иодом, который дает алкилиодиды (см. табл. 10). Очевидно, что более высокие алканы возникают из предшествующих простых или тепловых радикалов, которые 3 присутствии иода фиксируются в виде алкилиоди-дов, путем рекомбинации их. На основе выходов более высоких алканов, образующихся при радиолизе пропана в отсутствие йода, бЪ1ли вычислены выходы термических радикалов (табл. 11). [c.72]

    СНз + СНз = СгНб. Подтверждением этого предположения является снижение выходов Нг, СН4 и СгНб при радиолизе пропана в присутствии йода. Игнорирование реакций отрыва водорода как источника возникновения низших алканов в условиях радиолиза (низкие температуры, дозируемые скорости) для тепловых радикалов вполне естественно, так как они не могут успешно конкурировать, например, с реакциями соединения радикалов. [c.74]

    Известны отдельные исследования радиолиза бутанов [151]. Изучение продуктов радиолиза бутана под воздействием а и рентгеновских лучей [152, 151] показало, что главными продуктами радиолиза являются водород, метан, этан, пропан и пентан (табл. 13). Радиолиз в присутствии акцептора радикалов (иода) дает серию иодидов, содержащих мети-лендийодид, а также изопропил- и н. бутилиодиды. В при -сутствии иода заметно снижается выход водорода и низко -молекулярных алканов, как уже отмечалось. [c.76]

    Для увеличения выхода окисления требуется как можно рациональнее использовать продукты радиолиза поды. [c.237]

    Радиолиз метана. Выход продуктов при облучении электронами 1,7 МэВ Осн, = 7,б Сн, = 5,7 Ос.н. == 0,05 С с,н. = 2,1 Сс1Н, = 0,14 Сс,и, = 0,04. [c.210]

    Радиолиз метана. Выход продуктов при облучении электронами 1,7 МэВ <3сн4 — 7,6 Он, = 5,7 Ос,н, = 0,05 бс,н, 2,1 Ос,н, = [c.263]

    Ионизирующее излучение может отрывать электрон от молекулы воды (процесс радиолиза), и сравнение восстанавливающих частиц, полученных радиолизом и фотолизом водных растворов ионов, позволяет сделать вывод, что эти частицы — гидратированные электроны. При импульсном фотолизе (см. гл. 7) водных ионных растворов наблюдается неустойчивое поглощение около 700 нм, аналогичное наблюдаемому при импульсном радиолизе чистой воды. Идентичны также часто и скорости реакции частиц, полученных двумя путями. Более того, оптические спектры и спектры ЭПР ионных частиц и сольватированпых электронов, полученных при УФ-облучении и при радиолизе замороженных водных растворов, полностью идентичны. Поэтому, вероятно, можно ожидать, что гидратация электрона сделает его отрыв возможным при энергиях, много меньших, чем необходимо для фотоионизации в газовой фазе. Сделанные оценки показали, что квантовые выходы образования гидратированных электронов при фотолизе могут быть относительно высоки. Например, при фотолизе ионов га- [c.71]

    Прямое превращ. ядерной знергии в химическую может осуществляться в т. и. хемоядерных реакторах, в к-рых активная зона заполнена урансодёржащими металлич. волокнами или листами фольги толщиной 0,3—10 мкм. В-ва, транспортирующиеся между волокнами или листами фольги, вступают в хим. р-цию благодаря энергии излучения и отводят выделяющуюся тепловую энергию, к рая м. б. преобразована в электрическую или использована непосредственно. Возможно применение газообразного или жидкого горючего реагенты в этих случаях смешиваются с горючим. Продукты хим. р-ции выводятся из реактора через спец. устр-ва. Вследствие сложности отделения продуктов хим. р-ции от радиоакт. осколков деления и искусств, радиоакт. элементов, образующихся при поглощении нейтронов реагирующими в-вами, промышл. хемоядерные реакторы пока не построены. В лаб. масштабах изучены фиксация N2 из воздуха, получ. Нг при радиолизе воды, синтезы озона и гидразина и др. Радиационно-хим. выход для таких реакторов, т. е. число молекул, образующихся при поглощении энергии 100 МэВ, составляет от 2 до 30. [c.725]

    При радиолизе галоидуглеводородов протекают явления, во многом сходные с теми, которые характерны для химического поведения горячих атомов (см. гл. 5). Естественно, что качественный состав продуктов радиолиза галоидалканов характеризуется еще большим разнообразием, чем в случае радиолиза аналогичных алканов. Помимо различных углеводородов, образуются соответствующие их галоидпроизводные. Так, при радиолизе хлористого н-бутила образуются с различным выходом На, НО, различные изомеры бутана и хлористого бутила, а также различные дихлорбутаны, [c.205]

    Из углеводородов, радиолиз которых изучался в смесях с водою, наибольший практический интерес представляет бензол. Известно, что реакция окисления бензола в фенол относится к одному из наиболее распространенных процессов химической технологии, причем проведение этой реакции сопряжено с рядом трудностей, которые обусловлены многостадийностью процесса. Если подвергать облучению смесь бензола с водой, то в продуктах радиолиза со сравнительно большим выходом обнаруживается фенол. Образование фенола обусловлено следующими последовательными процессами ОН 4- СвН, СдНа Н2О СвНа- +ОН- СдНаОН. В присутствии кислорода выход фенола заметно возрастает, что обусловлено реакциями СвН5- + О2 СвН Ог С НаОз- 4- Нг0->СбН50Н 4-4- Н02 Наряду с фенолом при радиолизе системы бен- зол — вода образуется также дифенил. [c.208]

    Образование В. из элементов по р-ции Hj + + /2 О2 Н О (ДН бп - 242 кДж/моль для пара и - 286 кДжДюль для жидкой В.) при низких т-рах в отсутствие катализаторов происходит крайне медленно, но скорость р-цин резко возрастает прн повышении т-ры, и при 550 °С она происходит со взрывом. При снижении давления и возрастании т-ры равновесие сдвигается влево. Степень термич. диссоциации В. (%) при 100 кПа 0,034 (1015°С), 0,74 (1711 Х), 8,6 (2215°С) и 11,1 (2483 С). Под действием УФ-излучения происходит фотодиссоциация В. на ионы Н и ОН . Ионизирующее излучение вызывает радиолиз В. с образованием Нг, Н2О2 и своб. радикалов Н, ОН, НО2 радиац. выход-примерно 4 распавшиеся молекулы на каждые 1,6-10" Дж поглощенной энергии излучения. [c.396]

    Перспективен радиолиз воды и водных р-ров СО2, H2SO4, H l, НВг, H2S, Ag l и др. под действием ядерного излучения (жесткого у, нейтронного). Наиб, мощные источники такого излучения - ядерные реакторы. Для развития этого метода необходимо создать источники ядерного излучения с высокой энергонапряженностью, разработать системы, способные поглощать реагирующей средой более 50% энергии излучения и использовать ее с радиац. выходом более 10 молекул Н2 на 100 эВ. [c.405]

    Роль иоиов и различных процессах. Важная роль И. в г. в радиац. химии обусловлена их высоким радиац. выходом, равным 3-4 парам ионов на 100 эВ поглощенной энергии, и участием в разл. ионно-молекулярных реакциях, к-рые характеризуются большими скоростями и при не слишко.м больших мощностях дозы излучения успевают пройти прежде, чем произойдет рекомбинация. Так, при мощностях дозы 10 эВ-см -с , типичных для газофазного радиолиза, время жизни иона до рекомбинации 6-10 с, тогда как характерное время р-ции А + В - продукты при [В] = 2,5-10 см т,. 4-Ю с. Величины т, и т, становятся равными при уменьшении [В] на 5 порядков либо при увеличении. мощности дозы на 10 порадков. Поэтому практически любые радиациошю-хим. процессы с участием ионов протекают в такой последовательности ионизация-ионно-молекулярная р-ция-рекомбинация (причем в рекомбинации принимают участие ие только вторичные ионы, но и ионы более глубоких поколений). Образовавшиеся при рекомбинации активные частицы (радикалы, атомы, возбужденные частицы) в свою очередь участвуют в хим. превращениях, давая конечные продукты радиолиза. Основными ионно-молекулярными р-циями в радиац. химии газов являются переход тяжелой частицы (протона) и перезарядка (недиссоциативная или диссоциативная). [c.270]

    Время перехода электрона из своб. состояния в сольвати-рованное ири 295 К составляет (пс) 0,24 в воде, 5 в этиленгликоле, 11 в мегаиоле, 18 в этаноле, 51 в деканоле, 0,2 в аммиаке. При понижении т-ры это время увеличивается. Переход происходит через стадию образования локализованного (или предсольватированвого) электрона, характеризующегося меньшей энергией захвата средой. Ра-диац.-хим. выходы С. э. прп радиолизе равны 2,7-2,9 в воде, 1-1,8 в спиргах, 3,1 в аммиаке, 0,1-0,2 в нормальных углеводородах и до 1 в разветвленных углеводородах. [c.379]

    При синтезе меченых соединений можно проводить также количественный расчет радиохроматограмм, который используют для контроля хода и окончания реакции, определения ее выхода без выделения продуктов, для определения состава и возможности дальнейшего использования маточных растюров, а также для определения количества радиоактивных загрязнений, возникших в ходе синтеза или в результате радиолиза. Количественная радиохроматографиявпекоторых случаях может заменить используемый в настоящее время трудоемкий метод изучения обменных реакций по изменению удельной активности одновременно при этом можно контролировать [c.672]


Смотреть страницы где упоминается термин Радиолиз, выход: [c.190]    [c.198]    [c.198]    [c.76]    [c.247]    [c.91]    [c.489]    [c.534]    [c.205]    [c.115]    [c.214]   
Руководство к практическим занятиям по радиохимии (1968) -- [ c.256 , c.257 ]




ПОИСК





Смотрите так же термины и статьи:

Радиолиз



© 2024 chem21.info Реклама на сайте