Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллизация полимеров при растяжении

    Физико-механические свойства вулканизатов, их стойкость к старению и воздействию агрессивных сред в значительной степени определяются типом полимера. Например, сопротивление разрыву ненаполненных вулканизатов повышается при увеличении вязкости по Муни и уменьшении непредельности бутилкаучука. Способность бутилкаучука к кристаллизации при растяжении обусловливает получение вулканизатов с высокой прочностью без применения [c.350]


    Примером влияния морфологии полимеров на их химические свойства может служить снижение скорости окисления кристаллизующихся полимеров при нх ориентации и кристаллизации при растяжении. В качестве примера зависимости кинетики реакции от наличия надмолекулярных образований можно привести термоокислительную деструкцию полипропилена. Эта реакция идет преимущественно в аморфных областях. Еслн же сравнивать кинетику реакций в образцах с разной кристаллической структурой, то оказывается, что крупно-сферолитный полипропилен окисляется медленнее, чем мелко-сферолитный. [c.161]

    В высокомолекулярных веществах охлаждение до температур, при которых сохраняются только колебания звеньев около положений равновесия, также соответствует обычно состоянию их застеклования, а не кристаллизации. В полимерах при охлаждении резко возрастает внутренняя вязкость, а укладка длинных цепей в правильную решетку встречает дополнительные затруднения (см. ниже) поэтому кристаллизация полимеров при охлаждении наблюдается гораздо реже, чем их переход в застеклованное состояние, в котором в полимере не только цепи, но и все звенья находятся в фиксированном состоянии (сохраняются лишь колебательные движения звеньев), деформация материала сильно затруднена, он становится неэластичным и хрупким, как обычное стекло например, известно, что каучук при замораживании теряет свою способность к растяжению и становится хрупким. Так как морозостойкость полимерных материалов заключается в сохранении ими эластичности при низких температурах, то температура стеклования определяет морозостойкость эластичных материалов и имеет большое техническое значение. Переход полимеров в застеклованное состояние также характеризуется температурами Tg , тех- [c.224]

    Явления кристаллизации каучука при сильном растяжении и охлаждении представляют большой интерес, так как они наглядно характеризуют особенности высокополимеров по сравнению с низкомолекулярными веществами. Кристаллизация низкомолекулярных веществ происходит путем правильной укладки молекул в трехмерную решетку, имеющую правильные периоды повторяемости по всем трем направлениям. В высокомолекулярных веществах укладываются лишь отдельные участки цепей. Для полной кристаллизации полимера потребовалось бы такое выпрямление цепей, которое статистически мало вероятно  [c.231]

    БК является аморфным в широком интервале температур продуктом кристаллизация полимера происходит при больших (свыше 500%) растяжениях. Склонность БК к кристаллизации в значительной мере определяется содержанием звеньев изопрена в цепи. При содержании до 1% (мол.) двойных связей возможна кристаллизация БК без растяжения. При увеличении ненасыщенности склонность к кристаллизации уменьшается. [c.259]


    Ориентация ряда аморфных полимеров при определенной степени деформации сопровождается кристаллизацией полимера. Поэтому по изменению газопроницаемости натурального каучука при растяжении можно вначале судить о влиянии ориентации, а затем при последующем растяжении о совместном влиянии ориентации и кристаллизации каучука Изменение коэффициента газопроницаемости каучука при растяжении наблюдается лишь при его кристаллизации, что соответствует повышению его плотности. [c.151]

    Из уравнения (7.8) следует, что уменьшение энтропии системы, например в процессе кристаллизации полимера, соответствует уменьшению проницаемости. Применяя концепцию Флори о зависимости внутренней энергии полимера от растяжения и используя выражение [c.153]

    Существенным является образование кристаллов и ориентация материала в процессе деформации. Поэтому факторы, препятствующие, например, кристаллизации при растяжении, отрицательно влияют на прочность. При быстрых деформациях кристаллизующихся каучуков, когда кристаллизация не успевает произойти в должной мере, наблюдали [368, с. 565] уменьшение работы разрыва. Если полимеры лишены способности к кристаллизации в процессе деформирования, то для их прочности особое значение приобретают факторы, влияющие на ориентацию. [c.210]

    Во-первых, деформации при высоких степенях растяжения могут повлечь за собой кристаллизацию полимера, аналогичную наблюдаемой при больших степенях вытяжки эластомеров.- Можно полагать, что морфологически этот процесс соответствует кристаллизации выпрямленных цепей [53]. Возможность осуществления кристаллизации при растяжении, по-видимому, должна зависеть от локального повышения температуры до уровня, достаточного для реализации необходимой молекулярной подвижности, которая бы привела к структурной перестройке материала. [c.298]

    Расхождение теоретических и экспериментальных кривых в области малых деформаций не может быть целиком объяснено кристаллизацией, поскольку аналогичное расхождение имеет место при расчете напряжений в области убывающих деформаций для некристаллизую-щегося бутадиенакрилонитрильного каучука (см. [5]). По-видимому, этот эффект не связан ни с вязкоупругими свойствами полимера, ни с кристаллизацией прн растяжении и объясняется описанным выше процессом размягчения каучука под действием приложенного напряжения. Тот факт, что в последовательных циклах нагру- [c.196]

    Связь между влиянием скорости деформации и температуры на напряжения, развивающиеся при растяжении натурального каучука так же, как и синтетических каучуков, описывается с помощью принципа температурно-временной суперпозиции только в том случае, когда при деформации ие происходит кристаллизации полимера. При отсутствии кристаллизации напряжения могут быть представлены в виде произведения динамического модуля и некоторой деформационной функции. Полученные экспериментальные результаты подтверждают применимость принципа суперпозиции вязкоупругих эффектов, но для области убывающих деформаций теоретически рассчитанные напряжения оказываются выше, а механические потери за цикл деформации ниже, чем определенные экспериментально. Хорошее соответствие теории и эксперимента наблюдается только в области высоких скоростей деформации и низких температур. [c.204]

    Принцип температурно-временной суперпозиции оказывается неприменимым к энергетическим эффектам даже в той области скоростей деформации и температур, в которой он применим по отношению к напряжениям. Следовательно, потери энергии объясняются не только вязкоупругими свойствами полимера или его кристаллизацией при растяжении, но и другими механизмами в качестве одного из таких возможных механизмов предлагается эффект размягчения каучука под воздействием напряжений. [c.204]

    Во ВНИИСК коллективом сотрудников под руководством А. А. Короткова осуществлен синтез изопренового каучука СКИ, близкого до структуре и свойствам к НК. Полимер содержит 90—95% г ис-1,4-звеньев и обладает, способностью к кристаллизации при растяжении. Сопротивление разрыву ненаполненных вулканизатов СКИ достигает 300 кг см . Вулканизаты СКИ характеризуются более низким модулем и более высоким относительным удлинением по сравнению с НК. По динамическим и эластическим свойствам СКИ в ненаполненной смеси практически равноценен, а в сажевой смеси несколько превосходит НК. СКИ уступает НК по сопротивлению раздиру и температуростойкости. [c.535]

    Кристаллизация при растяжении. Характерная особенность мн. аморфных полимеров, находящихся в высокоэластич. состоянии (каучуки, резины),— способность кристаллизоваться при растяжении. Напр., натуральный каучук, в отсутствие внешних воздействий кристаллизующийся чрезвычайно медленно, при растяжении на 300% и больше исключительно быстро переходит в кристаллич. состояние. Однако после прекращения действия внешних сил такой кристаллич. каучук сразу же аморфизуется (если темп-ра пе слишком низка). Легкость К. при растяжении объясняется тем, что в результате распрямления макромолекул уменьшается энтропия системы и поэтому переход к кристаллич. состоянию связан с меньшим (по сравнению с К. в нерастянутом состоянии) ее изменением. В результате кристаллич. состояние оказывается равновесным для нек-рой области темп-р лишь при наличии напряжения. [c.590]


    П. кристаллич. полимеров приводит, как уже отмечалось, к понижению их без существенного изменения Гдл, т. е. интервал их нехрупкого поведения расширяется по мере увеличения концентрации пластификатора (для ряда кристаллич. полимеров, напр, полистирола и полипропилена, Т . близка к Гхр)-Однако специфич. особенностью П. кристаллич. полимеров, находящихся при темп-рах выше является уменьшение прочности и удлинения при разрыве по сравнению с исходным полимером, находящимся в том же состоянии, т. е. при темп-рах, равноудаленных от темп-ры стеклования системы полимер—пластификатор. Это м. б. связано как с образованием более крупных надмолекулярных структур при кристаллизации полимера в присутствии пластификатора, так и с уменьшением степени ориентации пластифицированных образцов по сравнению с исходным при одинаковых степенях растяжения. [c.314]

    При 85—100°С полиэтилентерефталат переходит в высокоэластич. состояние и легко поддается растяжению. Ориентация сопровождается кристаллизацией полимера. Используют два способа двухосной ориентации пленки. Ио первому из них пленка одновременно растягивается вдоль движения полотна и в перпендикулярном направлении. По второму способу движущуюся пленку растягивают сначала поперек полотна, а затем— вдоль. [c.57]

    Как известно, полимеры регулярного строения способны кристаллизоваться как при охлаждении, так и при растяжении [5]. Для получения когезионнопрочных смесей необходимо, чтобы скорость кристаллизации при растяжении (в области обычных температур) не была бы очень низкой. Так, например, смеси на основе стереорегулярного 1,4-полибутадиена — кристаллизующегося каучука — имеют низкую когезионную прочность из-за недостаточной скорости кристаллизации этого каучука при растяжении смеси. [c.75]

    Когда сетка полиуретана подвергается деформации растяжения, то противодействие внешнему напряжению оказывают ориентированные участки между сшивками. Оборванные цепи релак-сируют независимо от приложенного напряжения. При строгом соблюдении требований по функциональности исходных соединений обычно получается уретановый эластомер с пространственной структурой, близкой к идеальной. Но в реальных системах наблюдаются отклонения от оптимально сформированной сетки. Возникают полусвязанные и даже вообще свободные цепи, создающие неэффективную часть сетки [58]. Здесь уместно еще раз напомнить данные по сопротивлению разрыву полиуретанов на основе поли-оксипропиленгликолей. Несомненно, что низкие физико-механические показатели этих полиуретанов есть следствие нерегулярности структуры и отсутствия обратимой кристаллизации при растяжении. Кроме того, промышленный полиэфир молекулярной массы 2000 обычно содержит 4—5% (мол.) монофункциональных молекул, образующих не несущие нагрузки цепи и золь-фракцию полимеров [33, с. 33]. Наличие монофункциональных соединений в пространственной структуре уретановых эластомеров влияет не только на изменение соотношения эффективных и неэффективных цепей, но в некоторой степени определяет молекулярную массу и молекулярно-массовое распределение сегментов. При этом свободные [c.543]

    Кристаллические полимеры нельзя представлять как большие, хорошо сформированные кристаллы. Их надо представлять как мелкие кристаллики, распределенные в аморфной фазе того же вещества. В кристаллических полимерах до 40—60% вещества остается в аморфном состоянии объем их кристаллической фазы зависит от внешних условий. Упорядочени о структуры и кристаллизации способствуют растяжение и низкая температура. [c.190]

    Выше было показано, что гибкие макромолекулы простого или регулярного строения при растяжении или охлаждении сравнительно легко укладываются отдельными участками цепей в кристаллиты напротив, для жестких мак-ромолекул процессы точной взаимной укладки отрезков цепей крайне затруднены. Отрезки цепи подобны пачке карандашей, расположенных приблизительно параллельно, но различным образом сдвинутых по длине и повернутых вокруг своей оси. Здесь вновь можно подчеркнуть характерное для полимеров различие между поведением цепей и звеньев молекул. При ориентированном расположении цепей (измеряемом, например, по двойному лучепреломлению) расположение звеньев остается все же неупорядоченным (что видно по рентгенограммам) при охлаждении полярных полимеров с жесткими цепями уже при высоких Tg (стр. 225) происходит застывание как цепей, так и звеньев в стеклообразном, а не в кристаллизованном состоянии. По Каргину, процессы взаимной ориентации цепных молекул не следует смешивать с кристаллизацией полимеров в частности, полимеры типа целлюлозы и ее эфиров, поливинилового спирта и др., несмотря на высокую ориентаиию цепей, следует считать не кристаллическими, а аморфными. Многие исследователи (Марк, Германе, Зайдес, Роговин, и др.), однако, полагают, что целлюлоза обладает ми- [c.236]

    Таким образом, ориентация полимеров в высокоэластическом состоянии при температурах, превышающих Тс, существенно не влияет на растворимость и диффузию малых молекул, пока растяжение не вызывает кристаллизацию. Влияние растяжения частично кристаллических полимеров на растворимость и диффузию зависит от исходной степени кристалличности неориентированного полимера. В полимерах с низкой степенью кристалличности (10—15%), например в полиэтилентерефталате, влияние ориентации заключается в уменьшении проницаемости до величин меньших, чем в неориентированных образцах с такой же степенью кристаллич- ности . Влияние ориентации на проницаемость посте-"пенно снижается по мере увеличения исходной степени кристалличности полимера. При средних степенях кристалличности (40—50%) дополнительное упорядочение структуры в процессе растяжения вследствие ориентации мало и не приводит к существенному различию в проницаемости [c.152]

    Высокие прочности ненаполненных вулканизатов на основе г с-1,4-изопреновых каучуков зависят от кристаллизации полимера при растяжении. При вулканизации НК и СКИ-3 фенолоспиртами и АФФС образуются хромановые структуры в поперечных [c.175]

    В случае кристаллизации из сильнополярных растворителей образуется третья уформа кристаллитов ПВДФ, которая при растяжении переходит в -форму [157]. Возникновение укон-формации кристаллитов ПВДФ наблюдается [158] при кристаллизации полимера в области высоких давлений около 500 МПа (5000 кгс/см ) и в пределах температур 200—290 °С. При [c.83]

    Кристаллизация полиизобутилена, которая не может быть достигнута нн при каких температурах и выдержках, легко осуществляется при помощи растяжения. Что касается натурального каучука, то он кристаллизуется как при растяжении, так и вследствие длительной выдержки при пониженных температурах (при " ом-натной температуре для этого требуются годы). Кристаллизация, вызванная растяжением, представляет собой такое же фазовое превращение, как обычный процесс, протекающий в oT yT tBHe внешних сил, с тем различием, что кристаллы ориентируются в направлении напряжения. Рентгенограммы полимеров, закристаллизованных подобным образом, представляют собой типичные фазер-диаграммы. Кроме того, в этом случае кристаллизация и плавление происходят сравнительно быстро, хотя плавление может быть задержано путем охлаждения закристаллизовавшегося образца вследствие резкого возрастания времени релаксации. [c.448]

    Если молекулярная масса фракции снижается до М=М , то пространственная сетка не образуется и прочность низка. Опыт показывает, что при М =сопз1 между прочностью и величиной (М+М существует линейная зависимость. Однако оказалось, что для бутилкаучука прочность близка к нулю не при М.=М , а тогда, когда доля активных цепей составляет 40% от массы всего полимера. Флори связывает это отклонение с влиянием степени кристалличности, полагая, что кристаллизация при растяжении сшитого бутилкаучука начинается только при определенном минимальном количестве материала, способного к ориентации. [c.130]

    Прочность вулканизатов кристаллизующихся каучуков зависит от содержания высокоориентированной (кристаллической) части образца, образующейся при растяжении к моменту разрыва, и, следовательно, от регулярности молекулярной структуры каучука [73, с. 199 96 97 98, с. 202]. Поэтому нарушение регулярности строения кристаллизующихся каучуков при вулканизации в результате образования внутримолекулярных серосодержащих циклов (обычно при распаде полисульфидных связей [98, с. 222 99 100]), присоединения к молекулярным цепям радикалов ускорителя или специальных модификаторов [99], а также цис-гранс-изомеризации главных цепей (которое может достигать 8% под влиянием серы, ускорителей класса бензтиазолов и сульфенамидов [73, с. 121 98, с. 224]) приводит к уменьшению прочности вулканизатов. Таким же образом влияют на прочность факторы, препятствующие кристаллизации при растяжении, например, увеличение скорости или повышение температуры испытания. Однако цис-Т(0йнс-изомеризация при вулканизации НК обычно невелика, а другие виды модификации сравнительно мало влияют на степень кристаллизации в образце к моменту разрушения. Поэтому считают [99 100], что модификация является фактором, который в значительно меньшей степени влияет на прочность, чем тип поперечных связей. Прямая связь между содержаниб1М ориентированной части и прочностью характерна и для некристаллизующихся полимеров, но влияние модификации главной цепи на ориентацию материала обнаруживается в заметно меньшей степени, [c.54]

    Рассмотрим аргументы, выдвинутые Маршаллом и Томпсоно м в обоснование своей точки зрения. Исходным моментом их теории были изотермические диаграммы нагрузка — деформация, построенные для полиэтилентерефталата на рис. 11.13. Далее предполагалось, что процесс растяжения с высокой скоростью осуществляется в адиабатических условиях. Зависимость нагрузки от деформации подсчитывалась для адиабатического растяжения, исходя из предположения, что вся работа деформирования, производимая приложенной силой, переходит в тепло, рассеиваясь в образце, т. е. эта работа не затрачивается ни на накопление упругой энергии, ни на фазовые переходы, связанные с кристаллизацией полимера при растяжении. Практически расчет выполнялся для каждых 10% удлинения путем подсчета повышения температуры, обусловленного тепловыделениями при такой деформации проверка правильности расчета состояла в вычислении полной работы деформирования и сравнении ее с затратами энергии на суммарное повышение температуры образца. [c.267]

    Недавно Келлер и Мэчин [5] обобщили известные работы но кристаллизации полимеров, происходящей при течении расплавов, объединив факты, до того казавшиеся весьма разнородными. Они показали, что во всех известных случаях (включая такие крайние варианты, как кристаллизация натурального каучука при растяжении и расплава полиэтилена при течении) имеет место один и тот же первичный процесс линейного зародышеобразования. Они высказали предположение, что этот процесс обусловлен особенностями строения полимера, а не присутствием инородных включений. Первичный акт зародышеобразования, согласно их представлениям, состоит в механическом распрямлении молекулярных цепей. [c.122]

    Такой же механизм может быть предложен для объяснения кристаллизации при растяжении натурального каучука, наблюдавшегося Эндрюсом [15]. Он обнаружил увеличивающееся в процессе деформации количество фибриллярных образований (у-филаменты) в полимере. Увеличение числа фибрилл происходило до тех пор, пока не было заполнено вс 2 сечение образца. Как и в случае описанного выше явления образования шашлыкоподобной структуры в полиэтилене, эти волокна в каучуке являлись первичными центрами, на которых происходило формирование ламелярных кристаллов (а-филаменты), причем рост этих кристаллов происходил перпендикулярно оси фибриллы. Судя по микрофотографиям, представленным Эндрюсом, при малых степенях удлинения можно было наблюдать изменение длины и даже распрямление наиболее коротких фибрилл. Измеряя длину этих фибрилл, можно получить приближенные оценки эффективного диаметра перепутанных кластеров. [c.139]

    Ненанолненный вулканнзат натурального каучука обладает высоким сопротивлением разрыву в растянутом состоянии. Это непосредственно обусловлено кристаллизацией полимера при его растяжении. В том случае, когда от вулканизата требуется высокое сопротивление истиранию и раздиру, в резиновую смесь вводят тонкоизмельченный наполнитель, например сажу. Подобным образом путем добавления антиоксидантов улучшают стойкость натурального каучука к окислению. Однако было найдено, что во многих случаях экономически более целесообразно использовать синтетические каучуки. [c.279]

    При полимеризации пиперилена в р-ре на катализаторах Циглера-Натта высокомолекулярные полимеры получены только из транс-пзоиера. В частности, из этого изомера синтезированы синдиотактич. полимеры, содержащие 80 —94% звеньев 1,А-цис, способные к кристаллизации при растяжении. Ненаполненные вулканизаты на основе таких П. характеризуются высокой прочностью при растяжении и эластичностью. [c.301]


Смотреть страницы где упоминается термин Кристаллизация полимеров при растяжении: [c.250]    [c.660]    [c.112]    [c.127]    [c.276]    [c.255]    [c.269]    [c.269]    [c.112]    [c.122]    [c.255]    [c.589]    [c.593]    [c.122]    [c.586]   
Физико-химия полимеров 1963 (1963) -- [ c.145 ]

Структура и механические свойства полимеров Изд 2 (1972) -- [ c.206 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллизация полимеров



© 2025 chem21.info Реклама на сайте