Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород симметрия орбиталей

    Если в состав молекулы входит несколько атомов, то их пространственное расположение определяется направленностью химических связей, которая зависит от ориентации атомных орбиталей в стабильном или в возбужденном атоме (гибридизация), вступающем в реакцию. В результате взаимодействия атомов могут образоваться молекулы не только линейные, но и плоские или пространственные. Простейшие слу.чаи образования молекул различной конфигурации рассмотрим на примере образования соединения с водородом элементов II периода системы Д. И. Менделеева, допуская для упрощения, что различие в злектроотрицательности не влияет на форму и симметрию орбиталей, а также не учитывая частных свойств гибридов бора (димер B Hg) и бериллия [(BeH.J ]. В табл. 22 приведены структуры молекул водородных соединений элементов 2-го периода и их геометрическая характеристика. [c.81]


    Рассмотрим образование молекулы НС1. Согласно условию 1 орбитали Is, 2s, 2р и 3s атома С1 не могут комбинировать с какой-либо орбиталью атома Н, так как их энергии намного ниже энергии орбитали типа Is атома Н. Кроме того, у атома хлора имеются три орбитали Зр , Zpy и Зр . Так как низшая АО водорода Is, то единственная атомная орбиталь С1, совместимая с ней по соображениям симметрии, орбиталь Зр . Имеются также молекулярные орбитали более высокой энергии, но они отвечают возбужденному состоянию молекулы и для данного случая интереса не представляют. [c.246]

    Сравнительно недавно было установлено, что столкновение молекул реагентов будет удачным, т. е. приведет к их взаимодействию, лишь при условии положительного перекрывания их орбиталей (если Вы забыли, что это такое, загляните в разд. 3.4). Конкретно речь идет о близких по энергии друг к другу орбиталях - нижней вакантной орбитали одной молекулы и верхней занятой - другой. Роль симметрии орбиталей при столкновении молекулы этилена с молекулой водорода показана на рис. 11.3. При этом не возникает положительного перекрывания ни между нижней вакантной п -орбиталью этилена при встрече с верхней занятой а-связывающей МО водорода (рис. 11.3, а), ни между верхней занятой я-связывающей молекулярной орбиталью этилена и нижней вакантной а -МО водорода (рис. 11.3, б). Соответственно, термодинамически выгодная реакция гидрогенизации этилена идет с заметной скоростью лишь в присутствии катализатора через образование промежуточного продукта с его участием. [c.148]

    При обсуждении возможности протекания этих сдвигов как согласованных процессов, т. е. через циклические переходные состояния, необходимо рассмотреть симметрию участвующих орбиталей. Модель переходного состояния может быть построена на допущении, что мигрирующая о-связь С—И может быть расщеплена с образованием водорода с -орбиталью и углерода с 2р-орбиталью. Для соединения (36 х = ) переходное состояние можно рассматривать как пентадиенильный радикал (38) с атомом водорода (один электрон на х-орбитали), мигрирующим между концевыми атомами углерода 5л-электронной системы (всего в системе участвует шесть электронов)  [c.395]

    Кольцо должно поворачиваться, потому что реберному расположению л-комплекса препятствуют симметрия орбиталей и стерические затруднения, вызываемые ароматическими атомами водорода. [c.109]

    Рассмотрим 1х-функцию атома водорода с точкой центрирования на протоне Н . Введем обозначение 1 )1 ( г - Кн 1) = 1 (Н ). Функции 1х(Н ) не преобразуются по неприводимым представлениям группы симметрии молекулы, этим свойством обладают линейные комбинации этих функций. Построим из орбиталей 1 (Н ) следующие симметризованные выражения  [c.211]


    Нетрудно проверить, что эти функции при преобразовании симметрии группы T ведут себя подобно орбиталям Рх, Ру, Pz атома углерода. В табл. (1.2) суммированы сведения относительно закона преобразования симметризованных волновых функций атомов водорода и различных орбиталей атома углерода. [c.212]

    Если рассматривать процесс сближения атомов, то из этих данных можно заключить, что энергетически более выгодным.будет процесс переноса электрона с лития на водород. При равновесных расстояниях о переносе заряда можно судить по значению дипольного момента. Простейший вид молекулярной орбитали симметрии а, являющейся линейной комбинацией атомных орбиталей (МО ЛКАО) - орбиталь вида [c.220]

    Примером гетеронуклеарных двухатомных молекул е ядрами, сильно отличающимися по величине эффективного заряда, могут служить молекулы гидридов. Рассмотрим молекулу НР. Электронные конфигурации атомов Н[151, Р[18 25 2р 1. Энергии 18-А0 (Н) и 2р-А0 (Р) близки, и связывающая а-орбиталь может быть представлена как линейная комбинация 15-орбитали атома водорода и 2р -орбитали атома фтора, имеющих одинаковые свойства симметрии относительно оси молекулы. Упрощая, можно считать, что все электроны фтора, кроме 2р г, сохраняют свой атомный характер 15- и 25-орбитали не комбинируют с 15-орбиталью атома Н вследствие большого отличия от нее по энергии. АО 2р и 2р не комбинируют из-за различия по симметрии относительно оси молекулы. Все эти орбитали становятся [c.83]

    Химические связи в каждой молекуле этилена состоят из имеющих цилиндрическую симметрию относительно линии, соединяющей ядра, ст-связей каждого атома углерода с атомом водорода и между собой и одной л-связи С—С. Поскольку изменений в симметрии о-связей в данной реакции не происходит, их в дальнейшем рассматривать не будем. п-Связь образуется за счет перекрывания двух 2р2-атомных орбиталей, имеющих форму гантелей, расположенных перпендикулярно плоскости молекулы (рис. 15.4). В зависимости от знака атомных орбиталей при их перекрывании возникает связывающая я-МО или разрыхляющая л -МО. В случае одинаковых знаков атомных [c.293]

    Высокая упорядоченность расположения молекул многих жидкостей, например воды, фтороводорода, аммиака и спирта не может быть объяснена только действием сил Ван-дер-Ваальса. Для объяснения структуры жидкости используется представление о водородной связи. Образование этой связи обусловлено тем, что электронная орбиталь атома водорода имеет сферическую симметрию и формирует одну связь в результате перекрывания с орбиталью другого атома, при этом у атома водорода остаются возможности для взаимодействия с другими атомами и образуется водородная связь. [c.74]

    При образовании молекулярной орбитали взаимно комбинироваться могут не любые пары электронов атомов, а лишь близкие по своему энергетическому состоянию они обязательно должны находиться на одном и том же квантовом уровне (п). Например, в двух атомах водорода Ь-электроны (п=1) могут образовать молекулярную орбиталь. Для этого необходимо максимальное перекрывание атомных орбиталей, поэтому важное значение имеет фактор симметрии. Известно, например, что атомные р-орбитали ориентированы в пространстве по осям координат Рх, р, и р . При сближении атомов между собой будут перекрываться только однотипные р-орбитали рх — Рх, Ру — Ру, Р,—рекомбинация атомных орбиталей одинаковых и разных атомов при образовании молекулярной орбитали сопровождается качественным преобразованием атомных орбиталей и всей дискретной молекулярной системы, изменением ее энергетического состояния, что отражается на прочности молекулы. Решающее значение здесь имеет характер распределения электронной плотности между ядрами атомов, образующих молекулу. [c.113]

    При построении одноэлектронной молекулярной орбитали для молекулы водорода надо использовать линейную комбинацию ls-атомных орбиталей изолированных атомов водорода. В этом случае атомы одинаковы и основные состояния их также одинаковы. Если молекула образована двумя разными атомами, то при образовании связи одинаковые орбитали не всегда будут участвовать в обоих атомах. Например, в молекуле НС1 у атома водорода в образовании связи будет участвовать орбиталь Is, а у атома хлора орбиталь Is никакого участия в образовании связи не принимает. Это обстоятельство заставляет обратить внимание на важное условие при образовании связи для того чтобы две орбитали могли образовать прочную молекулярную орбиталь, необходимо, чтобы соответствующие им энергии были сравнимы по величине. В приведенном примере ls-орбитали атома хлора соответствует гораздо меньшая энергия, чем ls-орбитали атома водорода, поэтому они комбинироваться не будут. Необходимо также учитывать степень перекрывания между комбинирующимися орбиталями, хотя само по себе перекрывание является недостаточным критерием для образования связи, тем не менее оно важно. Математически перекрывание выражается посредством интеграла перекрывания или ортогональности Если значение велико, то и перекрывание орбиталей и велико. Особую важность имеет перекрывание в направлении связи, но следует сказать, что перекрывание вообще принадлежит к тем факторам, которые необходимо учитывать при выборе атомных орбиталей, участвующих в построении молекулярной орбитали. Необходимо учитывать и симметрию комбинируемых орбиталей. Известно, что р-орбиталь имеет положительную и отрицательную [c.153]


    Видно, что сближение Hj и I2 не приводит к перекрыванию их граничных орбиталей (из-за несоответствия по симметрии). Исходя из этого реакция образования НС1 не идет при прямых встречах молекул Н2 и I2, а развивается сложным (цепным) путем. Наоборот, водород легко вступает в реакцию с палладием, образуя гидрид палладия, поскольку граничные орбитали Pd и перекрываются (соответствуют друг другу по симметрии). [c.286]

    Промежуточное взаимодействие одного из субстратов с катализатором может существенно понизить энергетический барьер реакции, устраняя запрет по орбитальной симметрии. Например, прямое взаимодействие молекул органических соединений с молекулярным водородом (гидрирование) запрещено по орбитальной симметрии точно так же, как реакция На с СЦ (см, с, 286), Однако На может взаимодействовать с переходными металлами, например с палладием, поскольку запрет не распространяется на взаимодействие с -орбиталями. Образующийся гидрид палладия без труда взаимодействует с органичен скими молекулами с освобождением металлического палладия. На этом основано широкое использование палладия как катализатора гидрирования, [c.309]

    Азимутальное квантовое число I в значительной мере определяет характер симметрии волновой функции, т. е. симметрию орбитали (форму электронного облака). При 1 = 0 орбиталь обладает сферической симметрией, т. е. в сферических координатах волновая функция зависит только от г и не зависит от угловых координат 0 и ф. Это уже демонстрировалось на примере волновой функции основного состояния электрона в атоме водорода. Сферически симметричные состояния с / = 0 называют з-состояниями и для их обозначения используют символы 15, 25, 35 и т. д., указывая цифрой значение главного квантового числа. [c.39]

    Эффективное поле, в котором находится электрон в атоме,, имеет сферическую симметрию, и поэтому одноэлектронное приближение позволяет описывать состояние электронов в многоэлектронных системах с помощью того же набора орбиталей, что и в атоме водорода. Однако межэлектронное отталкивание приводит к тому, что энергия состояния определяется не только главным квантовым числом, но и азимутальным. Обычно говорят, что происходит расщепление энергетических уровней с одним значением главного квантового числа. [c.45]

Рис. 11.3. Роль симметрии орбиталей при б "Г столкновении молекулы этилена с моле-Н Н кулой водорода - не возни1сает положи- .— тельного перекрывания Рис. 11.3. <a href="/info/1737133">Роль симметрии</a> орбиталей при б "Г <a href="/info/101405">столкновении молекулы</a> этилена с моле-Н Н кулой водорода - не возни1сает положи- .— тельного перекрывания
    Структурные данные для всех гидридов переходных металлов убедительно свидетельствуют о том, что при наблюдаемых межъ-ядерных расстояниях и симметрии орбиталей возможно значительное перекрывание орбиталей атомов металла, а также орбиталей атомов металла и водорода, т. е. образование ковалентной связи. Наиболее вероятно, что действительная полярность распределения заряда относительно пар ядер металл — водород отвечает структуре М+Н . Вклад структуры М+Н , несомненно, превышает вклад структуры М"Н+ Это положение согласуется также с данными по хемосорбции атомарного водорода. Такая обобщенная качественная трактовка в общих чертах совпадает с точкой зрения Джибба [13] (автор данной главы делает несколько меньший упор на вклад ионных структур в полный набор структур) и не противоречит установленным физическим свойствам соединений. Гидрид палладия отличается от гидридов переходных металлов начальных групп. Вызывает разногласия трактовка фазы Р(1На как гидрида. Автор предпочитает рассматривать фазу Р(1На как нестехиометри-ческий гидрид и считает, что водород в этом соединении имеет значительно меньшую плотность отрицательного заряда, чем в гидридах группы титана и ванадия. [c.30]

    Согласно правилу сохранения орбитальной симметрии, гтодобные реакции должны быть термически запрещенными. Действительно, не происходит никакой непосредственной реакции между водородом и АзКд или ЗеКз, которые содержат в качестве центрального атома непереходные элементы с неподеленной парой электронов на 5- или р-орбиталях. Однако соединения низковалентных переходных металлов довольно часто присоединяют водород или олефин с образованием соответствующих комплексов. Полагают, что в этих реакциях решающую роль играет симметрия -орбиталей металла, благодаря которой понижается энергетический барьер, налагаемый правилами орбитальной симметрии (см. рис. 38). [c.107]

    Другим важным методом получения радикалов является пеиопизирующий фотолиз молекул. Фотолизирующий свет должен иметь спектральные характеристики (видимая или близкая ультрафиолетовая область), обусловливающие диссоциацию молекул в высшем электронном состоянии. Адсорбционные полосы, связанные с диссоциацией, имеют все четыре галогена, которые таким образом могут быть атомизированы фотолитически. Происходит возбуждение одного из неподеленных (несвязывающих) ря-электронов без инверсии или с инверсией спина этот электрон переходит на разрыхляющую рст-орбиталь, т. е. на орбиталь такой же симметрии, как высшая орбиталь, описанная в гл. I, разд. 3,г, для возбужденной молекулы водорода. Эта орбиталь имеет круговую симметрию относительно связи, но узловую плоскость, находящуюся между ядрами. Точно так же, как и в случае водорода, разрыхляющий эффект электрона, находящегося на разрыхляющей орбитали возбужденных молекул галогенов, настолько велик, что происходит спонтанная диссоциация этих молекул. При диссоциации возможны синглетные и триплетные состояния. В случае легких элементов инверсия спина маловероятна (так как в этих молекулах магнитные поля, инвертирующие спин, слабы), и поэтому триплетные состояния, более устойчивые, чем синглетные, в соответствии с правилом Гунда (гл. I, разд. 3,6), в случае фтора и хлора встречаются редко. С другой стороны, нри возбуждении высших галогенов — брома и иода — преобладает инверсия. Однако независимо от того, триплет-ным или синглетным будет возбужденное состояние, оно все равно диссоциирует. [c.218]

Рис. 8-23, Контурные диаграммы в плоскости для волновых функций атома водорода, на которых показаны контурные линии, охватывающие области с 50 и 99%-ной вероятностью обнаружения электрона. Все показанные орбитали, кроме 3 ,, обладают вращательной симметрией относительно оси 2. Орбиталь -Зр отли- Рис. 8-23, <a href="/info/96409">Контурные диаграммы</a> в плоскости для <a href="/info/2419">волновых функций</a> <a href="/info/1117693">атома водорода</a>, на которых показаны <a href="/info/50772">контурные линии</a>, охватывающие области с 50 и 99%-ной <a href="/info/940097">вероятностью обнаружения электрона</a>. Все показанные орбитали, кроме 3 ,, обладают <a href="/info/98177">вращательной симметрией</a> относительно оси 2. Орбиталь -Зр отли-
Рис. 9-1. Функции радиального распределения для электронов на 3 -, Зр-и Зй-орбиталях атома водорода. Эти кривые получены вращением орбита-лей во всех направлениях вокруг ядра, позволяющим усреднить все особенности орбиталей, которые зависят от направления в пространстве. 35-Орби-таль не приходится подвергать такой процедуре усреднения, так как она обладает сферической симметрией для этой орбита.чи радиус максимальной плотности вероятности равен 13 ат.ед., кроме того, имеются еще два небольщих максимума вероятности, расположенные ближе к ядру. Для Зр-орбитали максимальная плотность вероятности приходится на г = = 12 ат.ед., имеются одна сферическая узловая поверхность с радиусом г = 6 ат. ед. и меньщий максимум плотности, расположенный ближе к ядру. Для Зс/-орбитали характерен всего один максимум плотности ве- Рис. 9-1. <a href="/info/7568">Функции радиального распределения</a> для электронов на 3 -, Зр-и Зй-орбиталях <a href="/info/1117693">атома водорода</a>. Эти <a href="/info/50783">кривые получены</a> вращением орбита-лей во всех направлениях вокруг ядра, позволяющим усреднить все особенности орбиталей, <a href="/info/685547">которые зависят</a> от направления в пространстве. 35-Орби-таль не приходится подвергать такой процедуре усреднения, так как она обладает <a href="/info/92937">сферической симметрией</a> для этой орбита.чи <a href="/info/1488307">радиус максимальной</a> <a href="/info/9296">плотности вероятности</a> равен 13 ат.ед., кроме того, имеются еще два небольщих <a href="/info/1369684">максимума вероятности</a>, расположенные ближе к ядру. Для Зр-<a href="/info/429160">орбитали максимальная</a> <a href="/info/9296">плотность вероятности</a> приходится на г = = 12 ат.ед., имеются одна сферическая <a href="/info/622322">узловая поверхность</a> с радиусом г = 6 ат. ед. и меньщий <a href="/info/503226">максимум плотности</a>, расположенный ближе к ядру. Для Зс/-орбитали характерен всего <a href="/info/574714">один максимум</a> плотности ве-
    В молекуле НР энергии атомной Ь-орбитали водорода и атомной Ь-орбитали фтора настолько различны, что в сущности между ними отсутствует взаимодействие. Слищком низкой энергией обладает также и 25-ор-биталь атома фтора. Только 2р-орбитали фтора достаточно близки по энергии к Ь-орбитали водорода, чтобы эффективное взаимодействие между ними привело к образованию настоящих молекулярных орбиталей. Но из трех 2р-орбиталей фтора две (2р и 2ру) имеют неподходящую симметрию для комбинации с Ь-орбиталью водорода, как это можно видеть из рис. 12-11. Результирующее перекрывание каждой из этих двух р-орбиталей с Ь-орбиталью сводится к нулю, если учесть знаки волновых функций. Молекулярные орбитали в НР поэтому образуются комбинациями 1х-орбитали атома водорода с 2р -орбиталью атома фтора. Эти комбинации дают две молекулярные орбитали с симметрией а-типа, одну связывающую (ст) и другую разрыхляющую (ст ). [c.532]

    Если спин направлен вдоль поля в низкоэнергетической и против поля в на атомах 1 и 3 по сравнению с атомом 2 должно наблюдаться увеличение спиновой плотности, направленной вдоль поля. В 1 /1 при спиновой плотности, направленной против поля, на атоме 2 должна быть большая величина отрицательной спиновой плотности, чем на атомах I и 3. Таким образом, мы не переводим каких-либо неспаренпых электронов на старую орбиталь ф , а только влияем на распределение неспаренных спинов на трех атомах, что приводит к отрицательной (противоположной приложенному полю) спиновой плотности на С . Эта отрицательная спиновая плотность затем спип-поляризуется под действием электронной пары связи С — Н [см. обсуждение уравнения (9.11)] так, что спиновая плотность оказывается на атоме водорода. Обменное взаимодействие неспаренного электрона, находящегося на (главным образом, на С и С ), с парой электронов, находящихся на ф,, снижает энергию v по сравнению с Два атома водорода, связанные с концевым атомом углерода, неэквивалентны по симметрии, но до сих пор мы не говорили ни о каких эффектах, которые могли бы сделать их неэквивалентными с точки зрения распределения спиновой плотности. Такая неэквивалентность выявится с введением обменной поляризации, затрагивающей заполненные молекулярные а-орбитали. [c.28]

    Можно также показать форму электронного о блака, изобразив граничную поверхность, внутри которой находится большая часть облака ( %). Если требуется показать на рисунке точное значение волновой функции, то пользуются контурными диаграммами, где линии соединяют точки, для которых гр (или 1JJ ) имеет определенное значение. На рис. 1.8 показаны различные изображения 2рг-орбитали атома водорода. Несмотря на то, что представленные здесь фигуры имеют различную форму, они обладают одинаковой симметрией, характерной для рг-орбитали. Форма орбиталей важна для понимания особенностей химической связи, и в дальнейшем мы неоднократно будем пользоваться подобными изображениями орбиталей. На схемах часто рисуют орбитали стилизованно, несколько искажая их форму и пропорции. [c.24]

    В основу построения электронных конфигураций многоэлектронных молекул с одинаковыми ядрами положена система орбиталей одноэлектроной молекулы Н5. Использовав для построения двух МО Н2 базис из двух Ь-АО, мы получили фз - и ф -орбитали. Для получения большего числа орбиталей, необходимых для размещения многих электронов гомонуклеарных молекул, надо привлечь большее число АО. Так, используя Ь-, 25-, 2р -, 2ру- и гр -орбитали двух атомов водорода, получаем систему из 10 МО молекулы Н2. Молекулярные орбитали систематизируются по энергии, связывающим свойствам и симметрии. [c.71]

    Исходя ич этих представленш , атом водорода имеет один s-элек-грон, а s-орбиталь обладает центрашзной симметрией и имеет форму шара  [c.278]

    Усложним несколько молекулярную систему и перейдем от молекулы LiH к линейной молекуле ВеНг (симметрия. Из интуитив ных соображений, основанных на каких-то предварительных сведениях, представляется очевидным возможность выделения в этой молекуле двух эквивалентных связей Н-Ве-Н каждый валентный электрон атома Ве считают взаимодействующим со своим атомом водорода. Энергия возбуждения A (2s 2р) в атоме бериллия, как и в случае атома лития, невелика, и поэтому орбиталь 2ра должна бьггь принята во внимание при построении МО. Образуя из функций Is(Hi) и ls(H2) правильную линейную комбинацию, приходим к МО  [c.228]

    По условиям симметрии (рис. 98) возможны следующие комбинации орбита-лей центрального атомй (бериллия) и групповых орбиталей (атомов водорода)  [c.177]

    Для 2ру- и 2рг-орбиталей бериллия соответствующих по симметрии групповых орбиталей атомов водорода линейной молекулы нет. Поэтому в молекуле-БеНг 2ру-й 2рг-орбитали бериллия играют роль несвязывающих одноцентровых молекулярных орбиталей — Яу, Пг- [c.177]

    Исходя из этих представлений, атом водорода имеет один з-элек-трон, а з-орбиталь обладает центральной симметрией и имеет форму шара  [c.278]

    Как отмечалось выше, уравнение Шрёдингера точно решается только для атома водорода, содержащего один электрон. Отдельный электрон в атоме, содержащем несколько электронов, находится под воздействием общего поля, создаваемого ядром и остальными электронами. Результирующее поле теряет сферическую симметрию, точное решение волнового уравнения становится невозможным н возникает необходимость в поисках приближенных решений. Наиболее эффективным приближением оказался метод самосогласованного поля (ССП), разработанный независимо английским физиком Д. Р. Хартри и советским физиком В. А. Фоком. Идея метода состоит в сведении мно-гоэлектронного уравнения Шрёдингера к одноэлектронному уравнению типа (П1.2) с использованием некоторого усредненного потенциала. Для этой цели берется набор заведомо приближенных АО и вычисляется средний потенциал, действующий на каждый электрон. Исходя из этого потенциала вычисляются новые более точные АО, которые, в свою очередь, дают улучшенные значения усредненных потенциалов. Такая процедура повторяется циклически вплоть до достижения самосогласования, т. е. состояния, в котором некоторый набор АО дает тот же потенциал, с помощью которого он был получен. Плодотворная идея ССП, созданного для многоэлектронных атомов, была с успехом перенесена на молекулы в рамках метода молекулярных орбиталей. [c.169]

    С обоими ядрами, проводя больщую часть времени между ними, что способствует связыванию атомов водорода. Поэтому функция называется связывающей орбиталью. Процесс сложения двух атомных орбиталей схематически показан на рис. П1.17, а. Знак -Ь на МО означает, что эта волновая функция всюду положительна. Такая орбиталь с цилиндрической симметрией, не имеющая узла, является ст-орбн-талью. [c.185]

    Рис. 1.8 иллюстрирует разные способы изображения 2р>-ор6итали атома водорода. Несмотря на то что представленные фигуры имеют различную форму, они обладают одинаковой симметрией, характерной для р,-орбитали. Форма орбиталей важна для понимания особенностей химической связи. [c.26]


Смотреть страницы где упоминается термин Водород симметрия орбиталей: [c.95]    [c.276]    [c.19]    [c.286]    [c.110]    [c.567]    [c.95]    [c.101]    [c.95]    [c.367]    [c.103]   
Неорганическая химия (1987) -- [ c.30 , c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Орбиталь водорода



© 2024 chem21.info Реклама на сайте