Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Горные галлия

    Галлий используют в высокотемпературных кварцевых термометрах, так как он, как указывалось выше, способен сохранять жидкое состояние в течение продолжительного времени. Он может быть применен для изготовления кварцевых ламп, так называемых горных солнц , а также выпрямителей переменного тока и т. п. [c.441]

    Радиоактивационным методом определяют магний в чугуне [652], алюминии [1097], цирконии, железе, меди [704], в горных породах [1282], в арсениде галлия [754], в биологических материалах [1024, 1152—1154], в воде [1160]. [c.166]


    Второй том сборника Неорганические синтезы по своему построению не отличается от ранее вышедшего в свет перевода первого тома. Так же как и в первом томе, составители приводят в библиографии ссылки на работы преимуш ественно американских исследователей, игнорируя работы советских исследователей, что уже отмечалось редактором советского издания в предисловии к первому тому. Во второй том включено большое количество новых проверенных синтезов. Значительное место уделено описанию извлечения редкоземельных элементов из горных Пород, их разделения в смесях и дробной кристаллизации. Приведен ряд новых синтезов соединений галлия, европия, германия, титана, циркония, тория, хрома и калия описано также получение карбонилов никеля, кобальта и железа и комплексных соединений с органическими аддендами. Всего во втором томе помеш ена восемьдесят одна методика. Предметный указатель к первому и второму томам будет дан в третьем томе, перевод которого будет издан в ближайшее время. [c.6]

    Открытие галлия в металлах, солях, минералах и горных породах [c.29]

    В минералах и горных породах качественное открытие галлия лучше всего проводить в дуговом спектре после отделения основных элементов химическим путем [564, 871, 1152, 1192, 1304, 1417]. [c.29]

    Метод дуги переменного тока использован для определения галлия в солях редких щелочных металлов [502], фосфиде бора [22], свинце [161], сере [505, 507], в рудах и концентратах алюминия, цинка, свинца и меди [125, 185, 1362], бокситах [185], золе углей [185], силикатах [130, 872, 873] и других горных породах 1333], в сернистых (материалах [1333], глинах [1272, 1334], угольном порошке [1286], в олове высокой чистоты [558], металлическом индии [909], г( рючих сланцах [942], двуокиси кремния и кварце [206], селене [506, 508] и в кадмии высокой чистоты (156  [c.159]

    Концентрирование отгонкой легколетучих примесей или основы (метод испарения). Описано применение метода для концентрирования примесей при анализе горных пород [447]. Для галлия чувствительность полуколичественного определения порядка 10 %. [c.165]

    Бокситы — горная порода, состоящая в основном из гидроксидов алюминия и железа с примесью алюмосиликатов, минералов титана и кальция и других примесей (магний, хром, ванадий, фосфор, галлий) в небольших количествах. [c.54]

    Русский химик, акад. Петербургской уШ (с 1815). Р. в Петербурге. Окончил Иенский ун-т (1794), Работал в ун-те в Галле (с 1800— профессор), С 1803 — профессор Дерптского ун-та, с 1804 —Медико-хирургической академии, Главного педагогического нн-та и Горного кадетского корпуса в Петербурге. [c.571]


    Германий и галлий. Элемент галлий обнаружен в железных рудах и многих алюминийсодержащих минералах и горных породах. В природе он встречается в основном с элементами (А1, Т1 и др.), расположенными рядом в периодической системе Д. И. Менделеева. Аналогия галлия с алюминием определяется близостью химических свойств и почти одинаковыми ионными ра- [c.284]

    Подробные данные о распространении галлия в горных породах и минералах и о типах месторождений, из которых может добываться галлий, приводятся в монографии [1096]. [c.412]

    Химические реакции также можно использовать для контроля процесса испарения (разд. 4.4.6). Они уже упоминались в связи с добавками угольного порошка. Как отмечалось при обсуждении разрядов в специальных атмосферах (разд. 3.2.5), наиболее обшей методикой, примененной для металлов, руд и шлаков, является хлорирование, позволяющее использовать постоянные аналитические кривые. Обычно дистилляция с носителем оказывает общее селективное действие, а хлорирование или фторирование не подавляет матричного эффекта, а только изменяет его [32]. Летучесть группы следов элементов можно увеличить с помощью галогенирующих добавок. Так, предел обнаружения некоторых элементов в порошке белого чугуна можно значительно снизить использованием в качестве добавки фторида натрия, при этом висмут, бор и алюминий можно определять в количествах 1-10 , 5-10 и 5-10 % соответственно [33]. Фторид свинца особенно подходит для увеличения чувствительности определения менее летучих элементов в минералах и горных породах, а также для термического разложения соединений с высокой температурой кипения. Добавляя к пробе фторид свинца в соотношении 1 1, можно определять элементы, образующие летучие фториды (Ве, 2г, ЫЬ, Та, W, 5с, X, некоторые редкоземельные металлы), с пределом обнаружения порядка 10 % и воспроизводимостью около 10%. Тетрафторэтилен (тефлон) также пригоден для использования в качестве фторирующего агента [34]. При анализе главным образом металлов группы железа в качестве носителя часто используется хлорид серебра. При разбавлении пробы не менее чем в 400 раз матричный эффект можно снизить до такого уровня, что становится возможным определение основных компонентов и примесей в материалах различного состава [35]. В этом случае хлорид серебра действует и как носитель. Летучие сульфиды также подходят в качестве носителя, если соответствующие термохимические реакции вызываются добавкой серы [36] или одновременно сульфата бария, серы и оксида галлия [37]. Таким способом можно увеличить чувствительность определения германия и олова в геологических пробах. Принимая во внимание термохимические свойства проб и различных добавок и составляя соответствующие смеси, можно в желаемом направлении влиять на ход испарения й создавать условия, благоприятные для группового или индивидуального определения элементов [38, 39]. Селективное испарение можно использовать в специальных источниках излучения (разд. 3.3.4) или даже в качестве предварительного способа разделения (разд. 2.3.6). [c.122]

    Он родился в Берлине в семье придворного аптекаря. В юности под руководством отца, а также друга отца — Каспара Неймана (стр. 247)—он занимался фармацией и химией. Затем в течение нескольких лет он совершенствовал свои знания в университетах Франкфурта-на-Майне и Страсбурга. Далее, он изучал медицину в университете Галле, где были еще живы традиции Шталя, и около 1734 г. переехал во Фрейберг и под руководством И. Ф. Генкеля (см. стр. 260) изучал химию, горное дело и металлургию. В 1735 г. он возвратился в Берлин и через три года стал членом Королевского общества наук. При реорганизации этого общества в Прусскую академию наук он стал членом физического класса, а с 1767 г.— директором физического класса Академии. В его распоряжение поступила академическая лаборатория, в которой он занимался напряженной исследовательской работой. Он умер в 1782 г. после продолжительной болезни . [c.277]

    Дальнейшее исследование распространения бериллия представляется крайне желательным в связи с тем, что общее количество проанализированных образцов было сравнительно небольшим, а средние результаты, полученные при помощи применявшихся до сих пор спектрографических методов, имели приблизительное значение. В связи с этим содержание бериллия было определено в ряде смесей изверженных горных пород, объединявшихся на основании примерно одинакового содержания в них кремнезема. (Эти смеси, предварительно использованные для изучения распространения галлия [12], были приготовлены путем взятия равных весов отдельных пород). [c.13]

    Монокристаллы германия, кремния, арсенида галлия, сульфида свинца и т. п. используют для изготовления полупроводниковой аппаратуры диодов, триодов и т. д. (см. разд. У.14). Монокристаллы рубина, фторида лития и некоторые полупроводники применяются в лазерах. Монокристаллы кварца, каменной соли, кремния, германия, исландского шпата, фторида лития и др. применяют в оптических узлах многих приборов физико-химического анализа. Монокристаллы кварца и сегиетовой соли используют для стабилизации радиочастот, генерирования ультразвука, изготовления основных деталей микрофонов, телефонов, манометров, адаптеров и т. д. Монокристаллы алмаза широко используются при обработке особо твердых материалов и бурении горных пород. Отходы монокристаллов рубина нашли применение в часовой промышленности. Многие монокристаллы применяются так же в качестве украшений (бриллиант, топаз, сапфир, рубин и др.). [c.38]


    Метод комплексометрического определения алюминия обратным титрованием раствором железа с применением сульфосалициловой кислоты нашел очень широкое применение в лаборатория,х. Его используют для определения алюминия в ферросплавах [160, 588, 589], бронзах [354, 976], в цинковых сплавах [976], в сплавах алюминия с торием [977], с кремнием [161], сурьмой и галлием [104], вшлака.ч [182, 350], в нефелиновых концентратах [138], в глиноземистых материалах [108], в горных породах, силикатах, огнеупорах [267,277, [c.72]

    Метод хроматографии иа бумаге используют для предварительного отделения марганца от урана при анализе последнего [771, 1299, 1гОО]. Так, при определении марганца и других примесей (Ср, Ni, Со, Си, d, Mo, Fe, Na и Au) в уране, используемом в реакторах [13001, производят отделение урана на бумаге Шлейхер — Шюлль 20 43А с помощью безводного диэтилового эфира, содержащего 5 объемн.% HNOg. Участок хроматограммы, содержащий примеси, затем облучают и производят дальнейшее разделение прпмесей с помощью бумажной хроматографии восходящим способом, используя смесь этанола, НС1 и HjO (75 20 5). Активность измеряют на у-спектрометре с кристаллом NaJ(Tl) и 128-канальном анализаторе импульсов. Аналогичный метод используют при анализе горных пород [911, 912], В активационном анализе очень часто применяют метод экстракции как самый простой и быстрый метод выделения и отделения элементов. С помощью метода экстракции произведено, например, отделение и очистка Мп с последующим у-спектрометрическим определением его в алюминии, сталях [835], уране [1205], биологических объектах [182, 649, 904, 1306], нефти [904], органических материалах [1451], трихлорметил-силане [142] (см. табл. 16). Отделение и очистку марганца проводят методами хроматографии в сочетании с экстракцией при анализах солей цинка [1319], бора [175], галлия [175] и горных пород 11317, 1386]. [c.91]

    Активационные методы с выделениед и радиохимической очисткой образовавшихся изотопов ЗЬ используются для ее определения в алюминии [639—641, 912, 1235, 1247, 1376, 848] и трехокиси алюминия [639], боре и нитриде бора [426], бериллии [523], ванадии и пятиокиси ванадия [145], висмуте [1204, 1659, 1660], вольфраме [144], галлии [1375] и арсениде галлия [640, 824, 825, 831, 1375], германии [610, 639, 640], горных породах [74, 449, 1276, 1554], железе, стали и чугуне [987, 1033, 1113, ИЗО, 1280, 1590, 1653], железных метеоритах [1539], золоте [1676], индии [828, 829] и арсениде индия [115], каменных метеоритах [1136, 1234, 1236, 1515], кремнии [38, 39,275,282,455,639, 640, 861, 1035, 1144, 1355, 1473, 1492, 1540, 1687], двуокиси кремния и кварце [282—285, 487, 639, 640], карбиде кремния [38, 276, 639, 6401, [c.75]

    ДЛЯ определения содержания хрома нашел метод активации тепловыми нейтронами. В табл. 13 приведены ядерно-физические свойства изотопов хрома и сечения реакций на нейтронах [42]. При нейтронно-активационном анализе с использованием ядер-ных реакторов хром определяют по реакции (п, y) r. Конкурирующей реакцией является Ре (п, а) Сг, однако вследствие значительно более низкого сечения данной реакции (б 100 мбарн) и низкой распространенности изотопа Ре (5,84%) ее вклад несуществен. Так, при анализе горных пород он составляет 0,1—0,2% от содержания в них хрома [642]. Анализ железных метеоритов (—92% Ре) показывает, что при двухнедельном облучении потоком 1,4 10 нейтр1 см -сек) вклад указанной реакции составляет всего лишь 1-10 г/г [1051]. При анализе свинца высокой чистоты найдено, что 3,5-10 г железа будут давать такую же активность, как и 3 10 г Сг (предел обнаружения) [63], Радиохимические методы. При радиохимическом анализе облученных мишеней используют различные наиболее селективные способы разделения и очистки фракций определяемых элементов [239]. Широкое внедрение гамма-спектрометрической техники (см., например, [224, 235, 904]) позволяет существенно сократить, число операций очистки выделяемых фракций. Во многих случаях производят только групповое разделение или отделение элемента основы [95, 175, 618, 1066]. Этому способствует и то обстоятельство, что активность Сг, имеющего большое время жизни (см. табл. 13), обычно измеряют через 2 и более дней после конца облучения, когда все короткоживущие радиоизотопы уже распались. В табл. 14 приведены некоторые примеры радиохимических вариантов нейтронно-активационного определения хрома в различных объектах. Очень часто используют экстракционные методы. Для примера приведем методику нейтронно-активационного определения микропримесей Сг, Мп, Со, N1, Си и 2п в арсениде галлия высокой чистоты [531]. [c.100]

    Из 6 М раствора соляной кислоты с родамином Б, кроме галлия, бензолом экстрагируются соединения железа (III), золота (III), сурьмы (V), таллия (III). Однако в присутствии восстановителей ( ПС1з, аскорбиновой кислоты и др.) умеренные количества этих металлов не мешают определению содержания галлия. С использованием родамина Б содержание галлия определяют в горных породах, минералах, бокситах, свинце, цинке, алюминии и др. При условии больших содержаний алюминия галлий выделяют экстракцией амилацетатом из 6 М раствора соляной кислоты. [c.217]

    Метод отгонки мышьяка в виде трихлорида прост, надежен и позволяет выделять как макро-, так и микроколичества мышьяка из самых разнообразных материалов, в том числе из железа, чугуна и стали Г374, 552, 694, 986], сплавов на основе железа [380, 986], железных руд [373, 986], свинцово-цинковых концентратов [14, 375, 376], шлаков [986], горных пород и минералов [74, 781], платиновых металлов и продуктов их переработки [219], вольфрама и вольфрамового ангидрида [921], латуней [377], бронз [381], сурьмы J837], арсенида галлия [243] и арсенида индия [464]. [c.143]

    Выделение галлия и германия из зольной пыли, образующейся при сгорании гля, и из колошниковой пыли фосфорного производства описано Р. Ф. Уотерсом и X. Кенворси в сообщении № 6940, Горное министерство США (апрель 1967). [c.157]

    Подсочка фисташки. Она произрастает в Средней Азии, главным образом в Узбекистане, особенно в горных районах Сурхан-Дарьинской области и Туркмении. Фисташка культивируется для получения семян, применяемых в пищевой промышленности. На листьях фисташки развиваются галлы, так называемая буз-гунча, из которой добывают ярко-пунцовую краску для ковров. Кроме этого, фисташку подсачивают. В 1958 г. Ленинградский завод художественных красок, решив сократить ввоз из-за границы дорогостоящего мастикса, обратился в Министерство сельского хозяйства Узбекской ССР с предложением организовать заготовку фисташкового терпентина — ценнейшего сырья для изготовления высококачественных лаков. Подсочку фисташки проводят в Бабатагском лесхозе на деревьях, приспевающих и спелых (старше 61 года) с диаметром ствола от 20 см и выше. Подсачиваются мужские особи, предназначенные к перепрививке и имеющие штамбовую форму. Подготовительные работы состоят в том, что места будущих карр очищаются от мертвой [c.211]

    Для уничтожения избыточного фона и мешающего действия циановых полос можно пользоваться установкой, в которой воздух заменяется другими газами, например смесью аргона и кислорода 1823], чистым кислородом (ли-ни.ч 4172 Д) [974, 1423], чистым аргоном 1134, 1319], или чистым гелием [1147]. Такая замена препятствует эффекту самопоглощения и упрощает технику анализа. В результате достигнутого при этом увеличения чувствительности получены надежные данные при определении галлия в глинах и минералах с применением атмосферы воздуха и аргона 823], в силикатных горных породах с дрименением струи сжатого кислорода [974] или аргона [1319], в карбиде кремния с сжиганием проб в атмосфере аргона [1134], в сплаве 1п—Оа в атмосфере гелия (линия 4172 А) (1147]. Повышение чувствительности спектрального анализа может быть достигнуто созданием у пробы искусственной основы. [c.157]

    Для определения галлия и других рассеянных элементов в горных породах к остатку, полученному после выпаривания анализируемого раствора, добавляют соляную кислоту и окисляют элементы с переменной валентностью бромом [604]. Избыток брома удаляют кипячением, пропускают раствор через колонку с анионитом амберлит IRA-400 и промывают 2 N НС1. Галлий и другие микрокомпоненты, а также железо остаются на колонке, из которой их элюируют 0,25 N H1NO3. Элюат выпаривают досуха с Na l и спектрогра-фируют. [c.164]

    ЛИ СаСЦ с родамином В бензольно-эфирной смесью и разработана методика экстракционно-фотометрического определения галлия в продуктах свинцово-цинкового производства [327]. Для определения галлия в горных породах и минералах рекомендуется экстракцию окрашенного комплекса производить смесью хлорбензола и четырехх.иористого углерода [328]. Смесь (1 3) эфира и бензола применена для экстракции при определении галлия в бокситах, сфалеритах и других галлийсодержащих минералах [329]. Для ускоренного определения галлия в нефелинах пробу разлагают фторидом аммония и к кислому раствору до экстракции добавляют ацетон [330]. [c.252]

    Один из основоположников геохимии. Основные научные работы посвящены физической химии природного минералогенезиса,. кристаллохимии и химии минералов, горных пород и земной коры. Сформулировал (1911) минералогическое правило фаз из п компонентов может совместно существовать не более п минералов. Вычислил (1914) кривую реакции образования волластонита из кальцита и кварца и применил физико-хи-мические представления к объяснению равновесных соотношений контактовых минералов. Вскрыл (1923—1927) важные соотношения между положением элементов в периодической системе и размерами их атомов и ионов. Установил законы образования различного типа кристаллических структур. Выдвинул (1923) основные положения теории геохимического распространения элементов. Разработал (1923—1924) геохимическую классификацию химических элементов. Особое внимание уделял изучению кристаллов оксидов редкоземельных элементов, а также зависимости твердости кристаллических веществ от их структуры. Исследовал (1929—1932) распространение редких элементов — германия (впервые обнаружил его в углях), скандия, галлия, бериллия и т. п. Будучи сторонником гипотезы об огненно-жидкой дифференциации Земли на геосферы, рассмотрел (1935—1937) ее в свете данных своих геохимических экспериментов о составе пород, метеоритов и оболочек Земли. Осуществлял научно-технические работы в области прикладной минералогии и химической технологии. Организовал производство алюминия из лаб-радоритовых пород Норвегии, калийных удобрений из биотитов. [c.146]

    Немецкий химик и металлург. Р. в Берлине. Учился в ун-те в Галле (1733—1734) и Фрейбергской горной академии (1735). С 1735 служил в аптеке королевского двора в Берлине, С 1754директор Химической лаборатории Берлинской АН. В 1760—1761 —директор Физико-химической секции Берлинской АН, с 1767 — директор Физического класса Берлинской АН и лаборатории при нем. [c.323]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    Выделяющийся в следующей стадии анализа осадок имеет очень слоншый состав, и в связи с этим получение его и последующая обработка связаны с большими затруднениями. Осадок должен или может содержать алюминий, железо, титан, фосфор и остаточную кремнекислоту, а также хром, ванадий, цирконий и редкоземельные элементы. В качестве возможных компонентов следует указать также бериллий, галлий и индий, хотя в результате анализа горных пород присутствие этих последних почти никогда не отмечается. [c.949]

    Способность таллия полно и избирательно экстрагироваться из хлоридных растворов широко используют для выделения этого элемента из сложных смесей при решении аналитических задач (определение таллия в арсениде галлия [830], особочистом индии [887], горных породах [1517], растворах [131, 1518, 1519] определение валентных форм таллия в растворах [1520] определение примесей в металлическом таллии и его соединениях [505, 1521, 1522] см. такн е [678, 1509]). Эта экстракция применяется и при решении задач радиохимических (выделение таллия из облученных нейтронами [1523] или протонами [1524] мишеней) и технологических (извлечение таллия из растворов свинцово-цинкового производства [1525]). При этом используют ДЭЭ [887, 1517, 1519, 1522, 1523], ДИПЭ [131, 1524], диизоамиловый эфир [1521], ДХДЭЭ [505, 830], этилацетат [1509], а также разбавленный ТБФ [678, 1520, 1525]. Вызывает удивление тот факт, что экстракцию ДЭЭ и ДИПЭ почти всегда проводят при высокой концентрации НС1 (чаще всего 6 М), когда избирательность извлечения таллия [c.257]

    Можно было бы привести примеры концентрирования, включающие использование и других экстрагентов. Микроколичества галлия извлекали из растворов НС1 с помощью ДЭЭ (или ДИПЭ) при определении его в бокситах [635], индии высокой чистоты [637], различных горных породах [633,] бутилацетатом — при определении в алюминии высокой чистоты [665] и в цинке [660]. Железо концентрировали амилацетатом из H I при определении его в Ti l4[1836], трибутилфосфатом из роданидного раствора при определении в металлическом никеле [800, 802]. Таллий, содержа щийся в рудах, выделяли бутилацетатом из 1 ilf НВг в присутствии свободного брома. Тантал экстрагировали из фторидных растворов МИБК, определяя его в серебре [1548] и циклогексаноном — при определении в цирконии [1543]. Иодидные комплексы РЬ, d, In, Bi, u и Sb концентрировали МИБК нри определении названных элементов фотометрическими методами в металлическом железе, кобальте, цинке, хлоридах алюминия и хрома н других объектах [610]. [c.313]

    Широкие исследования адсорбционных свойств горных пород были проведены В. Т. Быковым и его сотрудниками [42—511 в связи с поисками дешевых природных сорбентов для промышленного использования. Природными сорбентами являются в первую очередь высокодиоперсные породы с удельной поверхностью, достигающей десятков и сотен квадратных метров. В. Т. Быков (42—431 выделяет следующие основные типы природных сорбентов 1) пепловые туфы и продукты их выветривания 2) агломератные туфы шлаковых конусов вулканов и продукты глубокого выветривания туфов 3) глины (монтмориллонитовые, бентонитовые, каолиновые) — продукты пе-реотложеняя вещества выветривания изверженных пород 4) диатомиты. Удельная поверхность каолиновых глин колеблется от 17 до 65 м, г бентонитовых — 40—96 м г и пепловых туфов — 20— 95 м г. Эти горные породы являются хорошими адсорбентами и находят применение в промышленности. Высокая сорбционная способность равяозкевных пепловых и агломератных туфов объясняется образованием а их порах частиц глинистых минералов — галлу-нзита и монтмориллонита, — происходящим в процессе выветривании. Как показали исследования, сорбционная способность туфов [c.67]

    Эти элементы рассеяны в различных минералах и горных породах. Исходным сырьем для получения галлия, индия и таллия служат отходы руд цветных металлов, которые подвергают сложной химической переработке. Так, галяий выделяют электролизом из Оа(ОН)з в расплаве NaOH при соотношении этих гидроксидов в электролите как 1 6. [c.341]

    Экстракция дитизоном была применена для определения следов цинка в металлическом кадмии [62, 614], никеле [284, 1144], уране [684], сурьме [369], галлии высокой чистоты (галлий отделяли в виде HGa l4) [1452], солях различных элементов, не осаждаемых сероводородом [1276], в чугуне н стали [139, 602], двуокиси германия [1150], кислотах [1430], горных породах [960, 1451], метеоритах [736], при- [c.222]

    Чувствительность определения теллура методом нейтронноактивационного анализа составляет 5-10 г. Метод применен для определения теллура в арсениде галлия [59] и горных породах [60]. [c.216]


Смотреть страницы где упоминается термин Горные галлия: [c.50]    [c.6]    [c.950]    [c.388]    [c.394]    [c.8]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.603 , c.605 , c.606 ]




ПОИСК





Смотрите так же термины и статьи:

Галлай

Галлий

Галлы

Горный



© 2024 chem21.info Реклама на сайте