Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость спз растворов системы

    Аномалия вязкости растворов полимеров обусловливается особенностями макромолекул, а также образованием структур в растворе при увеличении концентрации полимера. Находящиеся в растворе свернутые в клубки макромолекулы всегда удерживают внутри себя некоторое количество растворителя. Наличие связанного растворителя приводит к увеличению размеров полимерных клубков-частиц и существенно влияет на вязкость системы. [c.194]


    Однако, так как возможно, что растущая цепь на любой стадии может скорее оборваться, чем присоединить следующую мономерную единицу, то уравнения (15) дают лишь средние значения. В любой реально идущей реакции полимеризации образуются полимеры различного молекулярного веса. Ожидаемая форма функции распределения по молекулярным весам люжет быть вычислена как для диспропорционирования, так и для соединения опыты по разделению полимеров но молекулярным весам дают хорошее совпадение с ожидаемыми результатами. Имеются методы определения молекулярных весов полимеров, включающие измерение таких общих свойств, как осмотическое давление, рассеяние света (мутность) и вязкость растворов. Поскольку осмотическое давление полидисперсной системы (системы с распределением по молекулярным весам) дает обычный или численно средний молекулярный вес, а рассеяние света — средний вес, определяемые соответственно как [c.123]

    Вязкость растворов полимеров. Хотя растворы полимеров представляют собой молекулярно-дисперсные системы и этим вполне соответствуют условиям истинного растворения, для них характерна исключительно высокая вязкость. Столь высокая вязкость растворов затрудняет их детальное изучение, определение теплот растворения и набухания и величины молекулярного веса полимера. Даже при большом разбавлении (0,25—0,5%) вязкость раствора полимера в 15— 5 раз превосходит вязкость растворителя. Высокая вязкость полимерных растворов обусловлена большими размерами макромолекул и их нитевидным строением. Размеры макромолекул в сотни и тысячи раз превосходят размеры молекул растворителя и обладают значительно меньшей подвижностью. Поэтому макромолекулы оказывают сильное сопротивление движению жидкости (растворителя). Сопротивление движению жидкости возрастает с увеличением длины макромолекулы и степени ее вытянутости. Клубкообразные макромолекулы быстрее перемещаются в растворителе и не столь сильно затрудняют движение молекул растворителя. Благодаря этому уменьшается коэффициент внутреннего трения, что приводит к снижению вязкости раствора. Вязкость увеличивается и с возрастанием сил межмолекулярного взаимодействия, поскольку затрудняется скольжение цепей относительно друг друга. [c.68]

    Рас. 112. Зависимость вязкости растворов системы [c.241]


    На основании результатов исследования кинематической вязкости растворов системы уксусный ангидрид — этанол нами рассчитана свободная энергия активации вязкого течения по формуле, приведенной в работе [9]. [c.152]

    Мерой скорости химической реакции называется количество вещества, вступившего в реакцию или образовавшегося при реакции за единицу времени в единице объема системы (для гомогенной реакции) или на единице поверхности раздела фаз (для гетерогенной реакции) Мерой скорости химической реакции могут быть и другие величины, например, изменение объема выделяющегося газа, вязкости раствора, его оптической плотности и др. Но все эти способы выражения скорости реакции в конечном итоге сводятся к изменению количества вещества. [c.188]

    Исследовано [226] влияние на скорость фильтрования жидкости изменения вязкости ее тонкого слоя, непосредственно соприкасающегося со стенками пор. Опыты проведены с тонкодисперсным песком и глиной, через слои которых фильтровались вода и раствор хлорида натрия. Установлено, что граничная вязкость раствора электролита, деленная на объемную вязкость раствора, изменяется в зависимости от концентрации электролита. При этом в области концентраций до 10% указанное отношение вязкостей уменьшается, а при дальнейшем увеличении концентрации остается постоянным. Это объяснено наличием в тонкодисперсных пористых системах ориентированных граничных фаз. Отмечено, что в грубодисперсных пористых системах влияние граничной вязкости не наблюдается. [c.202]

    Решение. Вязкость раствора в системе единиц СИ  [c.127]

    Определение молекулярного веса полипропилена любым из перечисленных методов затруднено из-за необходимости проведения исследований ири высоких температурах (при нормальной температуре приготовить даже сильно разбавленные растворы, обычно применяемые ири этих методах, можно только из атактической фракции). Кристаллические полимеры растворимы только ири температурах выше 100° С, что усложняет аппаратурное оформление и создает опасность деструкции полимера при длительном нагревании. По этой причине молекулярный вес полипропилена предпочитают определять более доступными методами, в том числе измерением вязкости раствора или расплава. Вискозиметрическое определение молекулярного веса в настоящее время еще не является, однако, абсолютным методом для любой системы полимер— растворитель. Для определения величины молекулярного веса вискозиметрическим методом требуется провести предварительную калибровку ири помощи какого-либо абсолютного метода, например осмометрии пли светорассеяния. Вискозиметрический метод применим лишь для линейных полимеров. [c.74]

    Хаггинс предложил следующее уравнение для приведенной вязкости растворов полимеров, в котором коэффициенты В и С, обусловленные межмолекулярными взаимодействиями в системе, выражаются через характеристическую вязкость [г)] и константы К и К" соответственно  [c.195]

    Указанного недостатка лишена противоточная система (рис. У-16, б), в которой свежий раствор поступает в последний корпус. Вследствие низкой концентрации вязкость раствора здесь мала и коэффициент теплоотдачи относительно большой. В / корпусе, где раствор концентрируется окончательно, вследствие высокой температуры действие вязкости ослабляется и теплопередача тоже достаточно хорошая. Недостатком такой системы является необходимость перекачивания раствора из корпуса в корпус и из системы с помощью насосов (навстречу увеличивающемуся давлению). [c.385]

    Рассматривая нефтяные дисперсные системы в виде суспензий возможно предположить, что размеры растворенных частиц, в частности агрегативных комбинаций, намного превышают размеры молекул растворителя. Подвижность такой растворенной частицы, представляемой в виде макромолекулы, будет определять вязкость раствора. Очевидно, такое подвижное макроскопическое тело в растворе может характеризоваться некоторым средним размером. При этом следует обратить особое внимание на нефтяные углеводородные системы, в которых растворенным веществом являются полимеры. В этих случаях необходимо рассматривать макромолекулы в двух направлениях. Так, линейный размер макромолекулы вдоль цепи велик по сравнению с молекулами растворителя. Однако размер макромолекулы в направлении, перпендикулярном главной оси, соизмерим по величине с диаметром молекулы растворителя. [c.89]

    Наряду с фактором формы на вязкость нефтяной системы оказывают влияние масса агрегативной ассоциации, степень иммобилизации этой комбинацией жидкой фазы раствора, термодинамические условия существования системы, наличие электрических, магнитных, звуковых полей, наконец, концентрация дисперсной фазы. Повышение концентрации дисперсной фазы теоретически должно приводить к увеличению вязкости системы. Нефтяные дисперсные системы во многих случаях характеризуются аномальным поведением в отношении вязкости как функции от концентрации растворенной или дисперсной фазы. [c.89]


    Здесь — число электронов, принимающих участие в реакции на кольце бв, Ов, св — соответственно толщина диффузионного слоя для полупродукта В, его коэффициент диффузии и концентрация у поверхности диска V — кинематическая вязкость раствора со — круговая скорость вращения электрода 5 — площадь диска N — так называемый коэффициент эффективности системы диск — кольцо, зависящий только от геометрических параметров электрода и играющий фундаментальную роль в теории метода. Он характеризует долю промежуточного или конечного продукта электродного процесса на диске, доставляемую потоком жидкости к кольцевому электроду в условиях отсутствия гомогенных реакций. Если фиксируемый на кольце продукт стабилен (/22 = 0), то [c.209]

    Большое количество исследований размеров и формы молекул ВМС было выполнено методом измерения вязкости растворов. Для характеристик связи между вязкостью системы т] и вязкостью дисперсионной среды 1]о используются величины [c.441]

    В заключение характеристики причин нарушения агрегативной устойчивости растворов ВМВ кратко остановимся на явлении старения. Это явление в основном проявляется в самопроизвольном изменении вязкости раствора высокомолекулярных веществ. Ранее, когда к растворам ВМВ подходили с тех же позиций, как и к типичным коллоидным растворам, изменения вязкости объясняли медленно протекающими процессами пептизации или, наоборот, агрегирования. В настоящее время, когда доказана гомогенность растворов ВМВ, такое объяснение не может быть признано обоснованным. В данное время изменения вязкости растворов ВМВ при стоянии объясняют воздействием на молекулярные цепи присутствующего в системе кислорода. Кислород может вызвать деструкцию макромолекул либо приводить к связыванию отдельных нитевидных молекул в большие образования. В первом случае будет происходить уменьшение вязкости, во втором — увеличение. Аналогично действовать на вязкость растворов высокомолекулярных веществ способны и некоторые другие примеси. [c.365]

    По вязкости растворы высокомолекулярных веществ резко отличаются от растворов низкомолекулярных веществ и от золей. При одной и той же концентрации вязкость растворов полимеров значительно больше вязкости растворов низкомолекулярных веществ, и с увеличением концентрации она быстро возрастает (рис. 104). Такая высокая вязкость растворов высокомолекулярных соединений, даже при низкой концентрации, объясняется наличием в системе длинных гибких макромолекул. Вязкость жидкости можно определить как сопротивление жидкости передвижению одного ее слоя относительно другого. Громадные, вытянутые и гибкие макромолекулы увеличивают силу трения между слоями, т. е. увеличивают вязкость. [c.256]

    Лучше всего изучена наибольшая ньютоновская вязкость концентрированных растворов полимеров, которая являстся характеристикой течения системы с неразрушенной структурой (глава X). Поэтому ее исследование имеет большое зпачение как метод оценки структуры раствора тем более, что непосредственное изучение раствора высокой концентрации методом электронной микроскопии встречает большие экспериментальные трудности. Наибольшая ньютоновская вязкость растворов полимеров зависит от концентрации, молекулярного веса растворенного иолимера, температуры и природы растворителя. [c.417]

    В определенном температурном интервале под действием осмотических сил крахмальные гранулы сильно увеличиваются в объеме, ослабляются и разрываются связи между отдельными структурными элементами, нарушается целость гранул. При этом резко возрастает вязкость раствора — происходит клейстеризация крахмала. В. И. Назаров, а позднее М. Г. Столяр показали, что клейстеризация в отличие от набухания является эндотермическим процессом, требующим затрат тепла около 6,28 кДж на 1 г крахмала. Для крахмального клейстера характерны беспорядочное расположение макромолекул и потеря кристаллической структуры, обнаруживаемой на рентгенограммах нативного крахмала. Процесс клейстеризации сопровождается контракцией системы. Величина сжатия (4,5%) близка к величине обычных фазовых превращений. [c.79]

    Ответ. Величина АЕр имеет строгий физический смысл лищь при условии идентичности всех частиц жидкости. Вместе с тем растворы и расплавы полимеров не являются в этом смысле однородными системами частицы различаются по форме, размерам, а в случае растворов - и природой растворителя. Значение АЕр для реальных растворов и расплавов представляет собой по существу температурный коэффициент вязкости полимерной системы, выраженный в тепловых единицах, и строгого физического смысла не имеет. Это предопределяет возможность описания АЕр как кажущейся величины энергии активации процесса течения. [c.188]

    НЫХ И некоторых других реагентов п статических условиях достаточно стабильны, но в динамических процессах их реологические качества падают. Это относится не только к вязкости, но и к способности полимеров снижать потери на трение при их движении (эффект Томса). Например, при циркуляции полимерных растворов в системе, состоящей из центробежного васоса, регулировочного вентиля, трубопровода длиной 4 м и диаметром 21,3 мм и мерной емкости, коэффициент гидравлического сопротивления уменьшается в 4—б раз. Одновременно снижается и вязкость растворов. Указанные явления наблюдаются во всем исследованном диапазоне растворов (от 0,015 до 0,17о ). Механизм изменения во времени реологических свойств полимерных растворов в динамических условиях, вероятно, объясняется механической деструкцией молекулярных ассоциатов под действием повышенных напряжений в насосе и в элементах с повышенным местным сопротивлением. [c.108]

    В табл. 1,29 [95, 102] приведены данные по плотности растворов Мд(КОз)а различных концентраций. В табл. 1,30 представлена вязкость двойной системы. [c.124]

    Повышение температуры при разделении ассоциированных систем приводит к улучшению не только равновесной, но и кинетической характеристики процесса. Перестройка молекул в растворах, разрушение ассоциатов воды и растворителя при повышенных температурах приводит к ускорению адсорбции, в связи с чем в динамическом опыте выходная кривая становится более крутой, высота работающего слоя уменьшается, а время до проскока и динамическая активность увеличиваются (рис. 6,5). Улучшению кинетики способствует уменьшение вязкости раствора. Так, в системе диэтиленгликоль — вода при повышении температуры с 25 до 75 °С вязкость раствора уменьшается примерно в 6 раз, а коэффициент диффузии воды в растворителе значительно увеличивается- [c.166]

    Рассмотрим более подробно методику расчета отклонений от аддитивности на примере вязкости квазидвойной системы уксусная кислота—ацетон в бензоле при изоконцентрате растворителя 0,5 мол. доли. На рис. XXVII.5 изотерма 1 характеризует вязкость системы уксусная кислота—бензол от точки, отвечающей чистому бензолу (эта точка лежит на ординате ацетона), до точки с эквимолекулярным соотношением уксусной кислоты и бензола. Изотерма 2 отвечает вязкости системы ацетон—бензол, причем начальная точка соответствует эквимолекулярному раствору ацетона в бензоле (точка, отвечающая бензолу, для данного случая лежит на ординате уксусной кислоты) Изотерма 5, полученная алгебраическим суммированием изотерм 1 ж 2, отвечает вязкости растворов системы в бензоле в предположении отсутствия взаимодействия. Изотерма 4 — экспериментальная изотерма вязкости. Изотерма 5 отвечает разности между изотермами 4 ш 3, максимум на этой изотерме соответствует составу образующегося продукта присоединения СНдСООН-(СНз)аСО. Из приведенной диаграммы видно, что в то время как взаимодействие между компонентами системы весьма слабо отражается на экспериментальной изотерме 4, на изотерме 5 весьма четко отражается и сам факт взаимодействия, и его стехиометрия. [c.423]

    Сведения о плотности и вязкости растворов системы KNOз — ИКОз—НгО, которые могут найти применение в производстве кон-це1ггрированной азотной кислоты и сложных удобрений [12, 13], в литературе отсутствуют. Данные по бинарным системам НХЮз— НгО и КМОз—НгО имеются в работах [14—16]. Имеются некоторые сведения о плотност и вязкости растворов KNOз в 100%-ной азотной кислоте [17, 18]. [c.238]

    Как видно из рис. 112, вязкость растворов системы КЫО3— НЫЮз—НгО при изменении отношения КЫОз НЫОз проходит через максимум. На рис. 113 представлена диаграмма изовискоз для 50° С. Если в области разбавленных растворов ход линии изовискоз мало отклоняется от прямых, соединяющих соответствующие [c.241]

    Опыт, однако, показывает, что даже в идеальных растворах со отношение (I) не оправдывается. Зависимость вязкости раствора двух низкомолекулярных жидкостей от состава обычно выражается не прямой, а кривой линией В некоторыч системах при определенных соотношениях компонентов вязкость раствора может быть больше вязкости наиболее вязкого компонента и мепьше вязкости наи1ченее вязкого компонента i. В этом отношении представляет интерес вязкость водных растворов этилового спирта, изменение которой с составом показано на рпс. 175 Из рисунка видно, что вязкость раствора изменяется в зависимости от состава по [c.407]

    Иной подход был реализован з для корреляции данных по отстаиваншо и псевдоожижению в колонне диаметром 101,6 мм при работе со стеклянным (диаметром 0,711 мм) и стальными (диаметром 0,533 мм) шариками н водными растворами глицерина. Порозность слоя изменялась в пределах 0,58—0,96, значение числа Рейнольдса — от 0,001 до 585. Величины скоростей отстаивания и псевдоожижения были аппроксимированы в виде функции порозности на основе модифицированного, закона Стокса з . В расчетах использовалв значения эффективной плотности и вязкости псевдоожиженной системы. [c.52]

    Для растворенной макромолекулы характерно состояние непрерывного хаотического движения. Молекула участвует в поступательном и вращательном броуновском движении, ее звенья непрерывно смещаются и вращаются одно относительно другого. Цепь макромолекулы представляет собой непрерывно деформирующийся хаотический клубок (рис. 23.1). К размерам и формам макромолекул очень чувствительны гидродинамические характеристики раствора, в частности вязкость. На рис. 23.1 изображены отдельные макромолекулы в потоке жидкости, лами-нарно текущей в капилляре. Слои жидкости движутся с разной скоростью — у стенок капилляра скорость равна нулю, в центре капилляра скорость максимальна. На участок частицы или макромолекулы, расположенной ближе к центру, воздействует более быстрый поток жидкости, приводящий частицу во вращательное движение. В результате частица движется не только поступательно, но и вращается, замедляя скорость самого потока, или как бы повышая вязкость системы. Измеряя вязкость раствора при различных концентрациях ВМВ с помощью вискозиметра, находят характеристическую вязкость  [c.217]

    Концентрационная аномалия вязкости для растворов высокомолекулярных соединений может быть обусловлена и проявлением межмо-лскулярных взаимодействий в системах полимера с растворителем и макромолекул друг с другом. Эти взаимодействия можно учесть, если в выражение для удельной вязкости раствора ввести члены, пропорциональные квадрату, кубу и т. д. концентрации растворенного вещества. После замены концентрации раствора с степенным рядом уравнение для т1уд принимает вид [c.195]

    При коагуляции вместе с уменьшением числа частиц и их укрупнением происходит изменение свойств растворов понижается скорость диффузии и фильтрации частиц, увеличивается окорость седиментации, изменяется вязкость, плотность системы. Вое это следует учитывать при практическом использовании коллоидных систем, в том числе глинистых и цементных раствэров. [c.40]

    Методика проведения опыта соблюдалась следующая, В трехгорлую руглодонную колбу емкостью 1 л, снабженную пропеллерной мещалкой, отвешивалось определенное количество глицерина. Колба нагревалась на глицериновой бане (до 120° внутри колбы). Из делительной воронки давлением, азота подавался на лопасти мещалки раствор каучука (клей). Выделяющиеся пары растворителя — бензола — отводились через холо дильник Либиха в охлаждаемый приемник. В ряде опытов для уменьшения вязкости клея последний предварительно смешивался с глицерином в соотношении 1 1. Вязкость такой системы в 1,5 раза меньше вязкости клея, о в. статических условиях система неста бильна и для поддержания ее однородности требуется непрерывное перемешивание. [c.214]

    Т1Щ0= 1,002-Па-с при 293 К и 8,902-10- Па-с при 298 К). Некоторые коллоидные системы (золи и суспензии с асимметричными частицами, эмульсии и др.) и растворы ВМВ не подчиняются уравнениям Ньютона и Пуазейля. Их называют аномально вязкими или неньютоновскими (рис. 24.2, кривая 2). На участке АВ течение отсутствует вследствие упругого сопротивления образовавшейся в растворах ВМВ структуры и система ведет себя как твердое тело. Когда давление станет больше ре, структура разрушается и система начинает течь на участке ВС. Разрушение структуры прогрессирует, эффективная вязкость падает с ростом давления и в точке С достигает постоянного минимального значения, соответствующего наиболее полному разрушению структуры и оптимальной деформации ВМВ. По наклону линейного участка СО находят наименьшую пластическую вязкость исследуемой системы  [c.224]

    Аномалии вязкости растворов ВМВ можно объяснить тем, что крупные молекулы полимеров взаимодействуют друг с другом, образуя ассоциаты и легкоразрушаемые структуры. Структурированные растворы ВМВ во многих случаях ведут себя как пластичные системы, описываемые уравнением Бингама (23.24). Такие системы характеризуются величинами наименьшей пластической вязкости и предельного напряжения сдвига по Бингаму. [c.472]

    В дальнейшем было показано, что сольватация не играет столь важной роли при образовании растворов ВМС. Основной причиной отклонения вязкости растворов ВМС от законов, которым подчиняются растворы низкомолекулярных вещестй, является взаимодействие вытянутых и гибких макромолекул, часто образующих структурированные системы (ассоциаты). Эти ассоциаты, естественно, сильно увеличивают вязкость раствора по сравнению с раствором лиофобных коллоидов, где взаимодействием частиц можно пренебречь. При низкой концентрации растворов ВМС вероятность структурирования не так велика, и поэтому для сильно разбавленных растворов может быть использовано уравнение Эйнштейна. При высокой концентрации эти взаимодействия очень велики. Кроме того, так как макромолекулы в растворе находятся в виде клубков, включающих большой объем растворителя, то объем этого растворителя, пространственно связанного с полимером, также следует отнести к объему дисперсной фазы. [c.358]

    Влияние природы растворителя. Вопрос о влиянии природы растворителя на вязкость концентрированных растворов полимеров является наименее изученным, несмотря на очень большое его значение. Варьируя природу растворителя, мы изменяем межмолекулярное взаимодействие и можем установить его влияние на все реологические характеристики раствора. Добавление малых, легко-подвижных молекул в полимер приводит к резкому увеличению те- кучести системы и свободного объема. Однако вязкость растворов [c.421]

    Иными словами, поскольку ЯМР-переходы инициируются осциллирующим магнитным полем, а при нормальных условиях регистрации спектра полей с подходящей частотой не так уж много, спиновая система ядра не имеет хорошей энергетической связи с окружающей средой. Мы будем строить нашу теорию релаксации на оценках эффективности инициирования ЯМР-переходов подходящими полями. Основным источником таких полей в растворе для ядер со спином 1/2 служит магнитное (диполь-дипольное) взаимодействие между ядрами, которое модулируется движением молекул. Следовательно, можно предположить, что скорость релаксации будет зависеть от таких параметров, как температура, вязкость раствора, размер н структура молекул и иногда напряженность постоянного магнитного поля. Эти сложные вопросы широко обсуждаются в классических учебниках по ЯМР, например в книгах Абрагама [5] и Сликтера [1]. [c.132]

    Изменение величины /а (или ip) в неводных растворителях по сравнению с водной системой обычно связывают с изменением вязкости раствора, которая оказывает влияние на коэффициент диффузии деполяризатора. Однако это изменение может быть связано с изменением состава разряжающихся частиц и числа переносимых электронов. Так, например, в водном растворе ионы Си восстанавливаются в виде аква-ионов (или комплексных анионов), а в системе толуол - метиловый спирт - 8-оксихинолин - в форме комплексов с 8-оксихииолином. Поэтому природа и свойства растворителя оказывают заметное влияние на величину аналитического сигнала и нижнюю границу определяемых содержаний. Изменение id (или ip) может быть связано и с изменением степени сольва-458 [c.458]


Смотреть страницы где упоминается термин Вязкость спз растворов системы: [c.242]    [c.468]    [c.413]    [c.431]    [c.385]    [c.102]    [c.221]    [c.83]    [c.468]    [c.217]    [c.39]    [c.306]   
Технология экстракционной фосфорной кислоты (1972) -- [ c.2 , c.3 , c.4 , c.4 , c.20 ]




ПОИСК





Смотрите так же термины и статьи:

Воронецкая, А. М. Розен. Плотность, вязкость, поверхностное натяжение растворов и коэффициенты диффузии веществ в системе вода — уранилнитрат — азотная кислота — ТБФ

Вязкость растворов ВМС

ГЛАВА vui Вязкость и пластичность коллоидных растворов и растворов высокомолекулярных соединений Общие понятия о деформации и течении дисперсных систем

Зависимость активности ионов водорода кривая и вязкости кривая насыщенных растворов системы СаО



© 2025 chem21.info Реклама на сайте