Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллическая структура соединений графита

    Такие соединения в некоторой степени аналогичны цеолитам, в которых кристаллический алюмосиликатный каркас заменен кристаллической структурой углерод — графит полостям цеолита соответствуют пространства между углеродными сетками графита, заполненные различными добавками. [c.69]

    Наиболее широко применяют на практике химическую очистку газо-образными галоидами, так как хлорирование и фторирование являются наиболее эффективными методами удаления большинства примесей из графита, поскольку сам графит не реагирует ни с хлором, ни с фтором, а образующиеся летучие соединения имеют более низкую температуру кипения, чем металлы и их карбиды. Кроме того, хлориды и фториды большинства элементов не диссоциируют при температуре графитации. Применение хлорирования, как отмечалось выше, способствуя графитации, улучшает степень совершенства кристаллической структуры графита. [c.177]


    Окислительные свойства у углерода выражены слабо. Вследствие различия в структуре алмаз, графит и карбин по-разному ведут себя в химических реакциях. Для графита характерны реакции образования кристаллических соединений, в которых макромолекулярные слои Сг  [c.426]

    Все химические соединения в зависимости от условий кристаллообразования принимают ту или иную кристаллическую структуру. Это свойство соединений называется полиморфизмом. Каждая структурная вариация соединения постоянного состава именуется полиморфной модификацией, являясь особым минеральным видом. Например, углерод, при кристаллизации которого может возникать либо координационная структура кубической сингонии, либо слоистая структура гексагональной сингонии, образует соответственно либо алмаз, либо графит свойства этих минеральных видов резко отличны. В других случаях различия в свойствах полиморфных модификаций могут быть незначительными. [c.23]

    Как показано на рис. 3.5, графит имеет слоистое строение, кристаллическая структура образует две разновидности гексагональную и ромбическую, В первой положение чередующихся слоев и атомов углерода по вертикали повторяется череа один слой, а во второй — череа два слоя. Гексагональная кристаллическая структура является стабильной формой. При пропускании электрического тока графит обнаруживает поразительную анизотропию удельное сопротивление вдоль слоев составляет от 4-Ю" до 7-10 Ом-см, а в направлении, перпендикулярном слоям,— от 1-10 до 5-10- Ом-см. Как считают, это объясняется тем, что атомы углерода образуют между собой зр -гибридизованные а-связи, а в направлении, перпендикулярном слоям, электроны (л-электроны) свободно перемещаются вдоль поверхности слоя. Химически графит более реакционноспособен, чем алмаз, при высокой температуре он соединяется с кислородом, медленно превращаясь в диоксид углерода. Графит окисляется также такими сильными окислителями, как азотная кислота и др. образующийся так называемый окисленный графит представляет собой химическое соединение сложной структуры, содержащее кислород и водород. Кроме того, графит способен включать в промежутки между слоями атомы, молекулы и ионы, давая соединения, многие из которых проявляют замечательные свойства (гл. 5, разд. 2). [c.102]

    Мы видели, что кристаллическая структура алмаза определяется в значительной степени тетраэдрической гибридизацией орбиталей sp это подтверждается тем, что межатомное расстояние в алмазе 1,54 А почти такое же, как в молекуле этана и в более тяжелых углеводородах. Естественно связать тригональную гибридизацию, рассмотренную в гл. 9 для ароматических молекул, со структурой графита. Действительно, строение графита (рис. 11.5), где каждый слой образован из шестиугольников, сильно напоминает высокомолекулярные ароматические соединения. Расстояние между соседними плоскостями слоев, равное 3,35 А, настолько велико, что может быть объяснено лишь действием сил Ван-дер-Ваальса. В каждой из плоскостей имеется набор локализованных а-связей, образованных тригонально гибридизованными sp -орбиталями остальные электроны (которые мы называли подвижными при рассмотрении бензола в гл. 9) занимают МО типа двойных баллонов , простирающихся на всю плоскость. Такая структура еще ближе к металлической структуре. Действительно, графит проявляет небольшую электропроводность вдоль своих базисных плоскостей, но не поперек их. Точные расчеты показывают, что порядок связи С—С равен [c.329]


    Третью область соединений по аналогии с предыдущими можно было бы составить из неметаллических элементов. Однако по свойствам эти элементы значительно резче отличаются друг от друга, чем металлы. Поэтому для выделения более однородных частей приходится провести еще диагональную границу , идущую от бора к астату (№ 85). Справа от этой границы расположены элементы, у которых кристаллические структуры хотя бы для одной модификации молекулярные (или сложные, где <8 — например графит). Некоторые авторы называют их элементами-органогенами. Соединения этих элементов составляют область молекулярных, или органических, соединений в более щироком смысле слова, чем это обычно принято, т. е. в эту область попадают соединения элементов-органогенов не только с углеродом, но и друг с другом. Область этих соединений мы будем называть областью органических соединений и их аналогов. [c.265]

    При обычной температуре элементарный углерод весьма инертен. При высоких же температурах он непосредственно взаимодействует с многими металлами и неметаллами. Углерод проявляет восстановительные свойства, что широко используется в металлургии. Окислительные свойства углерода выражены слабо. Вследствие различия в структуре алмаз, графит и карбин по-разному ведут себя в химических реакциях. Для графита характерны реакции образования кристаллических соединений, в которых макромолекулярные слои Сг , играют роль самостоятельных радикалов. [c.394]

    Существенным открытием, в результате которого стала ясной важность магнитной анизотропии для исследования кристаллической структуры [48], явилось установление магнитной анизотропии ароматического кольца. Его диамагнитная восприимчивость в направлении, перпендикулярном к плоскости кольца, гораздо больше, чем в плоскости кольца. Количественная теория этого явления была развита Паулингом [49]. Ранее было известно, что графит обладает анизотропией даже в большей степени, чем оединения с ароматическими кольцами. Магнитная анизотропия кристалла ароматического соединения возникает вследствие анизотропии ароматического кольца и его пространственной ориентации в кристаллической решетке. Между магнитной анизотропией молекулы, магнитной анизотропией кристалла и конфи- [c.615]

    Величина энтропии сложным образом отражает всю совокупность свойств соединения в данном агрегатном состоянии. Она зависит от молекулярной массы — для родственных веществ увеличивается с ее ростом от агрегатного состояния — увеличивается при переходе от твердого к жидкому и от жидкого к газу от кристаллического строения (графит, алмаз) от изотопного состава (Нг и Ог, НгО и ОгО), от структуры молекул ( -бутан и изо-бутан). [c.66]

    Рентгеноструктурными, электронографическими и другими новыми методами исследования структуры углерода установлено, что чистый углерод кристаллизуется с образованием кубической (алмазы) и гексагональной (графит) форм. В узлах кристаллической решетки алмаза каждый атом углерода направляет свои четыре о-связи к четырем соседним атомам. Расстояние между атомами в решетке алмаза такое же, как между атомами углерода в органических соединениях— 1,54 А. Энергия связи между атомами углерода весьма высока, что обусловливает высокую твердость алмаза, малую его летучесть и большую химическую стойкость. Теплота сгорания алмаза несколько выше, чем графита. В связи с этим при нагреве алмаза без доступа воздуха он переходит в термодинамически более устойчивое состояние — в графит. В кристалле графита (рис. 12) атомы углерода в базисных плоскостях расположены в углах шестиугольников, на расстоянии 1,42 А, т. е. на таком л<е расстоянии, как и в молекулах бензола. Прочность связей углерода в базисной плоскости кристалла графита примерно в шесть раз выше, чем в атомах углерода, расположенных на двух плоскостях, находяш,ихся на расстоянии 3,345 А. Относительно большое расстояние между базисными плоскостями обусловливает специфические физико-химические и механические свойства графита. Значительное расстояние между базисными плоскостями приводит к тому, что между ними могут внедряться атомы других элементов меньших размеров. [c.50]

    В этой главе мы рассмотрим только некоторые простые соединения углерода, так как изучение широкого класса его соединений составляет предмет органической химии. Углерод — уникальный элемент с точки зрения числа и многообразия его соединений, в основе структуры которых лежит скелет из одинаковых атомов С, непосредственно связанных между собой. Существуют также соединения, содержащие в скелете связи С—N. С—О и С—N—О, в том числе циклические системы. Некоторые из них мы рассмотрим позже. Известны два больших класса органических соедииений алифатические соединения, образованные тетраэдрическими атомами углерода, и ароматические соединения, содержащие гексагональные кольца Сб, в которых отдельные атомы углерода могут быть заменены атомами азота и т. п. Этим двум типам углеродного скелета в островных молекулах соответствуют две полиморфные модификации кристаллического углерода алмаз, в котором каждый атом С связан тетраэдрическими хр -связями с четырьмя соседними атомами, и графит, где каждый атом участвует в трех лежащих в одной плоскости хр -связях, вследствие чего атомы образуют слои. [c.5]


    Характер распределения ССЕ в твердых телах позволяет разделить их по степени симметрии на кристаллические п аморфные нефтяные дисперсные структуры. Твердые нефтяные тела, в которых расположение соединений имеет дальний порядок, соответствующий периодическому повторению определенной архитектуры в трех измерениях, называют кристаллическими, а расположение соединений в них — кристаллической структурой. Порядок, свойственный расположению соединений внутри твердого тела, часто приводит к симметрии его внешне] ) формы. Например, кристаллы графита имеют гексагональную форму, в базисных плоскостях атомы расположены в углах шестиугольников, на расстоянии 0,142 нм, т. е. на таком же расстоянии, как и в молекулах бензола. Прочность связей углерода в базисной плоскости кристалла графита примерно в шесть раз выше, чем в атомах углерода, расположенных на двух плоскостях, находящихся на расстоянии 0,3345 нм. Кристаллы графита имеют высокую симметрию. Аналогично другая форма кристалла углерода — алмаз — образует куб. В узлах кристаллическо 1 решетки алмаза а-связи каждого атома углерода направлены к четырем соседним атомам. Теплота сгорания алмаза несколько выше, чем графита. В связи с этим осуществляется переход при нагреве алмаза в графит в термодинамически более устойчивое состояние, в результате чего формируется новая симметрия. Симметрия также свойственна таким твердым нефтяным телам, как парафины. Известны нефтяные твердые тела с ближним порядком расположения соединений, они являются не кристаллами, а крайне вязкими жидкостями. К ним относятся, например, битумы, пеки, остаточные крекинг-остатки и др. [c.165]

    Соединения никеля, обогащенные кислородом, являются гораздо более электропроводящими следовательно, в дальнейшем реакция может проходить не только на границе графит — Ы1(0Н)2, но и на границе NiOOH — Ni(0H)2. В результате зарядной реакции образуется, по мнению ряда исследователей, непрерывный твердый раствор p-NiOOH в р-Н1(0Н)г. Эти вещества близки по своей кристаллической структуре (гексагональные решетки). При большой концентрации щелочи или большом зарядном токе образуется с большим удель- [c.101]

    Безусловно, что в кратком обзоре невозможно охарактеризо- вать все классы неорганических материалов, однако нельзя не сказать о графитовых материалах, которые выделяются исключительно высокой теплопроводностью, превышающей теплопроводность многих металлов и сплавов. Это качество наряду с химической инертностью и термической стойкостью при резких перепадах температур, высокой электрической проводимостью и хорошими механическими свойствами сделали графит и материалы на его основе незаменимыми в различных областях техники и промышленности. В частности, в химической промышленности применение графита особенно эффективно для изготовления теплообменной аппаратуры, эксплуатируемой в агрессивных средах. На ее поверхности в значительно меньшей степени откладываются накипь и загрязнения, чем на поверхности всех других металлических и неметаллических материалов. Сырьем для получения искусственного графита служит нефтяной кокс, к которому добавляют каменноугольный пек, играющий роль вяжущего материала при формовании изделий из графитовой шихты. Сам цикл получения изделий включает измельчение и прокаливание сырья, смешение шихты, прессование, обжиг и графитизацию. Условия обжига тщательно подбирают, чтобы избежать появления механических напряжений и микротрещин. При графитизации обожженных изделий, проводимой при температуре 2800—3000 °С, происходит образование упорядоченной кристаллической структуры из первоначально аморфизованной массы. Чтобы изделиям из графита придать непроницаемость по отношению к газам, их пропитывают полимерами, чаще всего фенолформальдегидными, или кремнийор-ганическими смолами, или полимерами дивинилацетилена. Пропитанный графит химически стоек даже при повышенных температурах. На основе графита и фенолформальдегидных смол в настоящее время получают новые материалы, свойства которых существенно зависят от способа приготовления. Материалы, формируемые при повышенных давлениях и температурах, известны под названием графитопластов, а материалы, получаемые холодным литьем, названы графитолитами. Графитолит, например, применяют не только как конструкционный, но и как футеровочный материал. Он отверждается при температуре 10 °С в течение 10—15 мин, имеет высокую адгезию ко многим материалам, хорошо проводит теплоту и может эксплуатироваться вплоть до 140—150°С. В последнее время разработан метод закрытия пор графита путем отложения в них чистого углерода. Для этого графит обрабатывают углеводородными соединениями при высокой температуре. Образующийся твердый углерод уплотняет графит, а летучие продукты удаляются. Такой графит назван пироуглеродом. [c.153]

    Важными являются химические свойства УМ, в частности взаимодействия с газами, С кислородом графит не взаимодействует до 400°С. Скорость реакции с кислородом и диоксидом углерода (IV) повышается с ростом температуры. Однако при 2600-2700°С имеется явно выраженный минимум реакционной способности по диоксиду углерода, что связано с изменением кристаллической структуры. На реакционную способность графитов существенно влияют примеси некото-рь1х металлов, например железа, меди, ванадия, натрия, которые могут служить катализаторами. ДЛя повышения стойкости графита против окисления применяют покрытия металлами, карбидами, боридами, нитридами и т.д. Ингибиторами окисления графита являются хлор и фосфорсодержащие соединения. Графит взаимодействует с расплавленными металлами, образуя карбиды. Растворимость углерода в металлах связана с дефектностью электронной полосы. [c.217]

    В большинстве соединений зтлерод образует четыре ковалентные связи, но они не могут быть реализованы в двухатомной молекуле Сз, поэтому простые вещества представляют собой полимерные кристаллические структуры. Углерод образует четыре простых вещества - алмаз, графит, карбины и фуллерены. [c.303]

    Основные системы соединенных точек—полиэдры, плоские и трехмерные сетки — сведены в табл. 3.7, которая показывает, что четыре плоские и четыре трехмерные сетки образуют ряды с п = 6, 5, 4, 3 и с н=10, 8, 6, 4 соответственно. Все системы, находящиеся на одиой горизонтали, образованы -членными циклами, а все системы, попадающие в одну вертикальную графу, имеют одинаковое значение р. В первом столбце 5-связанные системы начинаются тремя правильными телами с 11 = 3, 4 и 5 продолжением этого ряда является плоская сетка с = 6 и трехмерные сетки с п = 7, 8, 9 и 10. Сетки с п = 7, 8, 9 ниже упоминаться не будут, поскольку кристаллические структуры, построенные на основе таких сеток, неизвестны. На рис. 3.10 изображены две разновидности сетки (6,4), а на рис, 3,15,6 — трехмерная сетка (8, 4) последняя представляет еооой промежуточное звено между алмазной (6, 4) и сетками (10, 3) с 3-связаниымн узлами. Имеются также трехмерные (3, 4)-связанные сетки, образованные 6-, 7- и 9-угольннкамп, которые ие изображены, поскольку не встречаются в кристаллах. Система (5, 4) со связанностью 4, состоящая из 5-угольни- [c.115]

    Тейлор, Кистяковский и Перри [439], изучая различные способы получения платиновой черни, показали, что образцы с частицами меньшего размера обладали более высокой каталитической активностью. Гофман [201] обратил внимание на зависимость между адсорбционной способностью, каталитической активностью и кристаллической структурой углерода, а Гсфман и Лемке [202] установили, что натуральный графит имеет гораздо большие кристаллы и что образцы активированного угля и актив ированной сажи имеют почти одинаковое кристаллическое строение, хотя обладают заметно отличающимися адсорбционными свойствами. При соединении водорода и брома образцы активированного угля обладали высокой каталитической активностью, тсгда как каталитическая активность сажи была значительно меньше, а натурального графита еще меньше. Активность активированного угля несколько увеличивается при нагревании в двуокиси углерода до 950°. Таким путем в 17 раз была увеличена его эффективность при реакции разложения бензола. [c.246]

    Для ряда веществ, входящих в настоящий-Справочник (LiaO, ВеО, BN, В, A1N, графит), теплоты плавления были оценены на основании сравнения энтропий плавления аналогичных соединений, имеющих один и тот же или близкий тип кристаллической структуры. Возможная погрешность полученных таким образом значений теплот плавления составляет 20—40%. [c.146]

    Свободный углерод образует два аллотропных видоизменения алмаз и графит. Различие сво1ктв этих веш,еств обусловлено различием их кристаллических структур. Из углеродистых соединений получают черный углерод в виде древесного угля, сажи, кокса и костяного угля. Черный углерод — по внешнему виду черное аморфное вещество, по своей структуре сходен с графитом. В отличие от графита его кристаллы значительно мельче и расположены беспорядочно. [c.131]

    Полиморфизм широко распространен среди природных соединений. Например, карбонат кальция a Og образует минералы кальцит — гексагональной системы и арагонит — ромбической системы двуокись титана ТЮа встречается в виде минералов анатаза, рутила и брукита, отличающихся друг от друга кристаллической структурой углерод существует в гексагональной и в кубической форме (графит и алмаз). [c.87]

    Всякое графическое изображение конечного множества некоторых элементов и взаимосвязей между ними можно назвать графом. Графы характеризуют какое-то определенное состояние системы (план местности, карту электрических цепей, административное деление), взаимосвязи атомов в химических соединениях (структурные формулы, кристаллические структуры), план некоторых действий (расписание спортивных игр, карта путешествия, последовательность операций). Граф в общем случае состоит из вершин (узлов) — условных изображений составляющих его элементов и ребер — линий, соединяющих все или некоторые эти вершины. Вершины, соединенные данным ребром, называют смежными. Г ебра, имеющие определенное направление, указывающие на порядок взаимодействия вершин (направление пути, степень подчиненности и т. п.), называются ориентированными ребрами, они изображаются стрелками (около или на них). Граф, содержащий ориентированные ребра, именуют ориентированным (орграфом). В нем каждому ребру может быть приписан определенный физический смысл. Возможно сочетание в графе ориентированных и неориентированных ребер. [c.169]

    К реакциям, в которых кристаллическая структура не полностью разрушается, относится образование твердых растворов металлов в графите. В них атомы металлов закономерно размещаются между базисными слоями кристалла графита. Металлические свойства графита при этом не исчезают. В результате действия на графит жидких или парообразных щелочных металлов образуются соединения постоянного состава СзК и С1бК. Атомы калия, внедряясь в пространство между базисными слоями, увеличивают расстояние между ними [c.57]

    Многие соединения могут существовать также в двух или более кристаллических структурах. Такое явление называется полиморфизмом. В качестве примера полиморфизма можно указать существование 8102 в виде гексагонального кварца, ромбического тридимита и кубического кристобалита. Полиморфные модификации существуют и у большинства простых веществ, в этом случае они называются аллотропными (по форме) модификациями. В качестве примера можно назвать аллотропные модификации углерода алмаз, графит, карбин и фуллерен (см. 12.4). Карбин был открыт в 1968 г. (А.Сладков, Россия), а фуллерен в 1973 г. теоретически (Д.Бочвар, Россия), ив 1985 г. - экспериментально (Г.Крото и Р.Смолли, США). [c.100]

    Дисперсная фаза структурированных НДС в ядерной части на определенном этапе представлена газопаровыми пузырьками, капельками изотропной и анизотропной жидкости, кристаллами, ассоциатами и комплексами асфальтосмолистых веществ и других ВМС, кристаллитами углерода. Во многих случаях эти виды ДФ могут находиться в структурированных НДС одновременно. При этом следу ст подчеркнуть, что частицы ДФ данного вида, находящиеся в конденсированном состоянии, могут бьггь представлены органическими соединениями различных классов или относящимися только к одному классу, гомологическому ряду или группе. Так, кристаллическое ядро ДФ может быть образовано парафиновыми, ароматическими или смешанными углеводородами в таких системах как нефть, дистиллятные и остаточные продукты переработки нефти и газа, битумы и пеки, находящиеся при температурах, более низких, чем температура их застывания или стеклования, или сетчатыми ароматическими макромолекулами в графите. Состав, структура, размеры, объемные и поверхностные свойства ядерной части частиц ДФ, конкретный набор и концентрация различных видов ДФ в данной структурированной НДС в процессах получения нефтяного углерода определяются многими факторами природа сырья, температурно-временной режим и давление карбонизации, среда, степень превращения сырья, технологические и аппаратурные особенности процесса, тип и интенсивность внешних энергетических воздействий и т.д. [c.108]

    Атомы некоторых элементов, а также многоатомные соединения могут внедряться в графит и образовывать слоистые соединения. Наиболее изучены слоистые соединения щелочных металлов [84]. Как правило, они получаются нагревом графита и соответствующего щелочного металла до температуры, отвечающей определенному давлению паров металла. Считается, что могут образовываться слоистые соединения определенного состава. Такой вывод делается из рассмотрения кривых зависимости состава слоистого соединения от температуры его получения. Эти кривые имеют вид изотерм сорбции, причем каждой ступеньке соответствует слоистое соединение определенного состава (рис. 55). Соотношение между углеродом и металлом имеет дискретные значения, которые для щелочных металлов составляют С Мё, С Ме, СзвЛ е, С Ме, С,(,(,Ме, что отвечает расположению слоя атомов металла через один слой углерода, два и т.д. соответственно. Такие соотношения характерны при применении для синтеза слоистых соединений достаточно совершенных кристаллических форм углерода. Наличие дефектов структуры в реальных материалах может приводить к образованию соединений, отличающихся составом от приведенных. [c.137]

    К реакциям, в которых слоистый каркас графита сохраняет присущую ему структуру и гексагональный характер, относятся реакции образования кристаллических соединений графита со щелочными металлами (Ма, К, Rb, Сз). В результате действия на графит жидких или парообразных щелочных металлов образуются соединения постоянного состава СаМе, С1вМе и др. Наиболее изучены соединения СвК и СиК. Атомы калия, внедряясь между базисными плоскостями, увеличивают расстояние между ними соответственно до 5,65 и 5,95 А. Внедрение атомов щелочных металлов в кристаллическую решетку графита вызывкет разрыхление материала. Наиболее сильное разрыхление наблюдается у нефтяного и пекового коксов, в меньшей степени — у графита. Таким образом, интенсивность разрушения возрастает с уменьщением степени трехмерной упорядоченности структуры углеродистого материала при перехфде от графита к коксам. [c.42]

    Особен)юсти морфологии углеродных модификаций во многом определяются особенностями С-С связей в этих структурах. Открыты три аллотропные формы углероОа, которые имеют различные кристаллические ячейки и тип связей между атомами углерода аямач. графит, карбин. В основном состоянии углерод имеет электронную конфигурацию 1з 2з"2р. В этом состоянии атом углерода двухвалентен, В большинстве химических соединений углерод выступает как четырехвалентный элемент. Четырехвалентный атом углерода находится в одном из трех валентных состояний, соответствуюших зр зр -, зр- гибридизации электронов в атомах углерода. [c.6]


Смотреть страницы где упоминается термин Кристаллическая структура соединений графита: [c.171]    [c.366]    [c.115]    [c.1546]    [c.278]    [c.346]    [c.606]    [c.55]    [c.12]    [c.8]    [c.42]    [c.354]    [c.50]    [c.365]    [c.596]    [c.321]   
Графит и его кристаллические соединения (1965) -- [ c.164 , c.166 ]




ПОИСК





Смотрите так же термины и статьи:

Графит

Графит графита

Графой

Графы

Кристаллическая структура

Кристаллическая структура Нитрид бора Окись графита Остаточные соединения Слои Слоистые соединения

Кристаллическая структура Нитрид бора Окись графита Остаточные соединения Слои Слоистые соединения в качестве гальванических

Кристаллическая структура Нитрид бора Окись графита Остаточные соединения Слои Слоистые соединения с аммиаком и атомами металла

Кристаллическая структура Нитрид бора Окись графита Остаточные соединения Слои Слоистые соединения сульфидами, хлоридам

Кристаллическая структура Нитрид бора Окись графита Остаточные соединения Слои Слоистые соединения электрохимические соединени

Кристаллическая структура Нитрид бора Окись графита Остаточные соединения Слои Слоистые соединения элементов

Кристаллическая структура графита

Кристаллические соединения графита

Соединения кристаллические

Соединения с графитом

Структура графита



© 2025 chem21.info Реклама на сайте