Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент массопереноса Массопередачи

    Обратим внимание на следующий факт в формуле (2.1.159) коэффициент р изменяется в широких пределах, причем Р - оо при 7 >0. Это позволяет в любом адсорбционном процессе выделить область внешнего и внутреннего массопереноса, согласно чему и меняется вклад каждого слагаемого правой части равенства (2.1.159). В области малых относительных концентраций в потоке скорость адсорбции лимитируется сопротивлением внешней массоотдачи, а распределение вещества по радиусу близко к равномерному. Коэффициент внутренней массопередачи Р очень велик, и основной вклад в сумму (2.1.159) дает первое слагаемое, в котором (согласно приведенным соображениям) можно положить уз = у = и точность этого равенства повышается с ростом выпуклости изотермы при достаточно малых В1. [c.71]


    Анализируя уравнение (11.68), следует отметить вытекающую из него независимость коэффициента массопереноса от размеров газового пузыря, что подтверждается и экспериментальными данными. Это положение несколько облегчает задачу расчета массообмена в барботажных реакторах, однако остается неопределенность относительно поверхности контакта фаз, для нахождения которой до сих пор нет надежных рекомендаций. Поэтому при описании кинетики газожидкостных реакций часто пользуются объемным коэффициентом массопередачи характеризующим собой количество вещества В, прореагировавшего в 1 м реакционного объема аппарата. В связи с этим следует вернуться к уравнению (И.55), в котором скорость реакции зависит от газосодержания системы. Появление в нем объясняется тем, что удельная поверхность а отнесена к реакционному объему аппарата Ур, т. е. к объему газожидкостной смеси. Если отнести поверхность контакта фаз к объему жидкости, участвующей в массообмене, то уравнение (И.55) не будет содержать параметра 1 — фр. Из этого следует, что для исключения 1 — ф из эмпирических уравнений, характеризующих объемный коэ ициент массопередачи, его нужно относить к объему жидкости, находящейся в реакционной зоне аппарата. [c.41]

    Сложность гидродинамической обстановки в газожидкостных реакторах не позволяет пока достаточно строгим анализом получить уравнения для расчета коэффициентов массопереноса как в газовой, так и жидкой фазах, и затруднения, прежде всего, обусловлены подвижностью границы раздела фаз, что осложняет математическое описание проникновения турбулентных пульсаций в пограничный диффузионный слой. Поэтому в настоящее время при расчетах массопередачи в промышленных аппаратах приходится пользоваться эмпирическими уравнениями, ориентируясь на надежность результатов только в условиях, близких к экспериментальным. [c.42]

    В результате исследований, проведенных в последнее десятилетие, показано огромное влияние межфазной турбулентности на коэффициент массопередачи. Межфазная турбулентность вызывает увеличение коэффициентов массопередачи с ростом концентрационной движущей силы. В результате этого может наблюдаться изменение коэффициента массопереноса и величин ВЕП и ВЭТС в различных точках экстрактора. [c.19]

    При значительных касательных напряжениях на поверхности раздела фаз пленка жидкости поднимается вверх, т. е. движется в сопутствующем ее потоке газа. За счет интенсивного взаимодействия газа массоперенос значительно ускоряется. Коэффициент массопереноса зависит от режимных параметров обеих фаз. Вопрос о механизме ускорения массопередачи до настоящего времени остается открытым, хотя известна гипотеза, объясняющая ускорение влиянием газового потока на волновые характеристики, представляющие собой для потока случайные величины [1, 69, 70]. [c.429]


    Из сказанного выше следует, что в уравнении (2.2) общий коэффициент массопередачи Ро является переменной величиной мгновенные значения ро будут различными на разных участках по длине работающего слоя и зависят от величины адсорбции. Общий коэффициент массопередачи Ро будет постоянным при внешних постоянных параметрах только в том случае, когда величина коэффициента массопереноса в твердой фазе рт принимается независимой от величины адсорбции или в случае процесса, лимитируемого внешним массообменом. [c.35]

    В общем случае коэффициент массопереноса Ро в уравнении (2.4) зависит от величины адсорбции а и будет разным на различных участках работающего слоя. Интегрирование уравнения (2.4) в пределах конечной зоны массопередачи приводит к выражению [5]  [c.36]

    Суммарная скорость массопереноса может быть оценена коэффициентами массопередачи Ку или Кх (выраженными соответственно ио внешней или твердой фазам). Они определяются уравнениями  [c.66]

    Заполнение колонны неупорядоченной насадкой не приводит к значительному изменению скорости массопереноса в сплошной фазе. При расчете коэффициентов массопередачи в сплошной фазе применительно к колоннам с крупной насадкой удовлетворительные результаты дает использование формул, которые были получены для расчета массопереноса в распылительных и барботажных колоннах. [c.269]

    Уравнение для определения высоты единицы массопереноса и коэффициентов массопередачи см. [0-6, стр. 534]. [c.774]

    Уравнение (3), однако, не было использовано по следующим причинам. Если реакции протекают в кислотной фазе, как постулировано согласно уравнению (3), необходимо, чтобы изобутан, находящийся в углеводородной фазе, растворялся в кислотной фазе. Ускорение образования алкилата при росте интенсивности перемешивания должно было бы свидетельствовать о том, что массоперенос изобутана лимитирует скорость всего процесса. Однако расчетом было показано, что перемешивание было интенсивным настолько, что стадия массопереноса не была лимитирующей. Для расчетов нужно было знать равновесную растворимость изобутана в кислотной фазе и коэффициент массопередачи. Специальным опытом была найдена растворимость (0,00015 моль/ом ), а коэффициент массопередачи (30—1000 см /с) был взят из работы [12]. Фактическая растворимость изобутана в кислоте в ходе опыта по расчетным данным составляла 0,98—0,999 от равновесной. То, что массоперенос изобутана не лимитировал скорость всего процесса, нельзя считать неожиданным, так как применяли интенсивное перемешивание и скорость образования алкилата была достаточно мала (для завершения реакции требовалось, по крайней мере, 1—1,5 ч). [c.102]

    Коэффициент массопередачи отражает уровень интенсификации процесса чем больше величина К, тем меньших размеров требуется аппарат для передачи заданного количества вещества. Наибольшее влияние на интенсивность массопереноса оказывают гидродинамические и конструктивные факторы, определяющие интенсивность и характер взаимодействия контактирующих фаз. [c.30]

    Уравнения (1.23) и (1.24) позволяют определить величины коэффициентов массопередачи Ку и располагая коэффициентами массоотдачи Pj, и р,. При этом коэффициенты Р,, и р , можно определять экспериментально для опытных систем, моделирующих сопротивление массопереносу преимущественно только в одной фазе. [c.34]

    Если сопротивление массопереносу сосредоточено в одной из фаз (один коэффициент массоотдачи значительно меньше другого), то величина коэффициента массопередачи процесса может быть приравнена к меньшему коэффициенту массоотдачи. [c.34]

    Определив коэффициенты массоотдачи для каждой из фаз, находят коэффициент массопередачи по уравнению аддитивности фазовых сопротивлений массопереносу. [c.47]

    Согласно пенетрационной модели массопереноса (см. п. 6), коэффициент массопередачи в жидкой фазе [c.205]

    Использование жидких фаз с меньшей вязкостью уменьшает сопротивление массопереносу в пленке жидкой фазы, а следовательно, повышает эффективность хроматографической колонки (внутридиффузионная массопередача увеличивается). Максимально приемлемая вязкость неподвижной жидкой фазы растет с увеличением сорбируемости разделяемых веществ, так как относительная роль внутридиффузионного сопротивления в размывании уменьшается (уменьшается член С в уравнении Ван-Деемтера за счет увеличения К — коэффициента распределения). [c.62]

    Общий теоретический подход при анализе динамики внутреннего переноса заключается в решении уравнений, описывающих одновременное протекание массопереноса и химической реакции в порах. Рассмотрим [15, с. 129] наиболее простой случай — реакцию в сферической грануле радиуса г — при следующих допущениях гранула находится в изотермических условиях диффузия в пористой структуре подчиняется первому закону Фика и характеризуется постоянным по всей грануле эффективным коэффициентом диффузии Оэфф, форма которого зависит от условий массопередачи внутри поры (кнудсеновское, объемное или вынужденное течение) в реакции участвует один реагент А, она необратима и ее истинная кинетика описывается степенной функцией концентрации вещества А, т. е. скорость реакции равна ks , где — истинная константа скорости на единицу поверхности катализатора система находится в стационарном состоянии, т. е. изменение массовой скорости потока в результате диффузии, (например, к центру гранулы) равно скорости реакции внутри поры. В рамках этой модели получено аналитическое выражение для т] [c.88]


    Основной особенностью массопереноса в многокомпонентных смесях является зависимость потока каждого компонента i от градиентов концентраций всех компонентов, что приводит к появлению матрицы коэффициентов многокомпонентной диффузии [D], а также матриц коэффициентов массоотдачи [р] и массопередачи [/Г]. [c.145]

    Таким образом, все величины, характеризующие кинетику массопереноса, связаны друг с другом коэффициент массопередачи, объемный коэффициент массопередачи, высота и объем единицы переноса. Поэтому все методы расчета высоты массообменных аппаратов с помощью этих кинетических характеристик являются лишь разными математическими выражениями одного и того же процесса и в этом отношении равноценны. [c.33]

    В больпшнстве случаев коэффициент внутренней массоотдачи р, находят по уравнению (19.40) с использованием экспериментально найденных коэффициентов массопроводности. Как и для других процессов массопереноса, в расчетах массообменных процессов с твердой фазой используется понятие объемных коэффициентов массоотдачи и массопередачи Рр- , Ку и т.д. [c.188]

    По указанным причинам определение коэффициентов массопередачи можно вести по той же канве, что и в случае теплопередачи, но обязательно с учетом отличительных особенностей массопереноса. При этом определению подлежат оба коэффициента — кх VI ку, так что анализ придется проводить раздельно — в терминах (на языке) каждой из фаз. [c.783]

    Пусть, например, к Р Ь, тО применительно к выражению (10.36а) это означает а, Ь 1. Тогда массоперенос лимитируется массопередачей через поверхность контакта, поскольку дробь /кхР значительно превышает остальные слагаемые в знаменателе. Для расчета массообмена здесь необходимо располагать значениями кинетических характеристик и >у (а также т) или сразу коэффициента кх (либо ку) и величиной Р пропускные способности Ь и тВ в такой ситуации роли не играют. В этом случае говорят о массообмене в условиях поверхностной задачи. И для интенсификации массопереноса в целом нужно увеличивать Р, повышать кх- При этом может возникнуть вопрос, какая из стадий массопередачи контролирует процесс — перенос вещества через пограничную пленку со стороны фазы у или фазы х . Разумеется, следует увеличивать в первую очередь ту из стадий или т ур, которая медленнее (скажем, при хР < принять меры для дополнительной турбулизации фазы х с целью уменьшения толщины диффузионной пограничной пленки в этой фазе). [c.828]

    При полной взаимной нерастворимости Р и Э потоки (вди количества в случае периодического процесса) экстрагента и разбавителя не изменяются в ходе процесса — они постоянны вдоль поверхности массопередачи (вдоль аппарата). Это делает возможным линейную запись балансов с использованием относительных концентраций. Допуская независимость коэффициентов массоотдачи и массопередачи от концентраций и постоянство удельной поверхности контакта фаз (вди оперируя их усредненными значениями), получаем возможность линейного описания и кинетической составляющей массопереноса. А если и линию равновесия можно представить в ввде прямой, то весь процесс массопереноса описывается линейными соотношениями, и расчетные зависимости получаются в аналитической [c.1122]

    Знание степени продольного перемешивания при экстракции в колонных аппаратах важно для их проектирования, а также при изучении процессов, происходящих при массопереносе. Для того чтобы воспользоваться методами расчета, описанными в главе 5, необходимо иметь экспериментальные значения продольной дисперсии, коэффициенты обратного перемешивания, а также коэффициенты массопередачи. [c.122]

    Исследования 5] были проведены только на одной газожидкостной системе (воздух — водный раствор сульфита натрия), и растворимость кислорода в жидкости оценивалась общим коэ( и-циентом массопередачи Х - Поскольку в характеризующее его уравнение (П.49) входит константа Яр, то, очевидно, коэффициент массопереноса а следова- [c.73]

    На практике обычно пользуются частными уравнениями переноса. В некоторых дисциплинах отдельные виды проводимостей именуются по-разному, в частности коэффициентами переноса (например, коэффициент массопереноса, теплопе-реноса), коэффициентами отдачи, если речь идет о поверхности тела (например, коэффициент массоотдачи, теплоотдачи), коэффициентами передачи, когда в процессе участвует цепочка типа среда — тело — среда (например, коэффициент массопередачи, теплопередачи) и т. д. Мы не будем пренебрегать традиционными наименованиями, но все же предпочтение будем отдавать терминам, которые ближе отвечают духу ОТ. [c.147]

    Для улучшения массопередачи кислорода в ферментерах разработаны многочисленные устройства, повышающие степень аэрации и перемешивания жидкости. Коэффициент массопереноса кислорода Кьа в ферментерах с этими устройствами составляет около 1000 (Перт, 1978). Отмечается, однако, что и в этих случаях увеличение концентрации клеток в среде с 10 до 20 г/л снижает эффективность массопереноса кислорода с 10 до 6,4 моль Ог/МДж, что объясняется главным образом возрастанием вязкости культуральной жидкости (Dewey, Oldshue, 1977). [c.39]

    При переменном козффищ1енте распределения коэффициент массопередачи в соответствии с формулой аддитивности фазовых сопротивлений зависит в обшем случае от ф и, следовательно, от концентрации. Приведем уравнения (5.65), (5.66) при >п.д = 0 и переменных значениях параметров массопереноса к безразмерному виду, удобному для интегрирования. [c.243]

    Родионов А. И., Кашников А. М., Радиковский В. М., в сб. Тепло- и массоперенос , т. 4., Минск, Изд. Наука и техника , 1966, стр. 28. Определение поверхности контакта фаз и коэффициентов тепло- и массопередачи на провальных ситчатых тарелках. [c.274]

    Сначала рассмотрим более общий случай исключения влияния межфазного массопереноса. Характер температурной зависимости (энергия активации) не может служить в жидкофазных реакциях надежным критерием оценки по ряду причин. Вследствие возможного клеточного диффузионно-контролируемого механизма или ионного характера реакции истинная энергия активации реакции может быть малой. Далее, как указывалось в предыдущем разделе, наблюдаемая температурная зависимость может быть следствием изменения коэффициентов распределения реагентов между фазами. Вблизи критической области такое влияние может быть особенно сильным и сказывается такнлб на соотношении объемов фаз. Наконец, в жидкостях, в отличие от газов, сам коэффициент диффузии зависит от температуры экспоненциально, причем эффективная энергия активации диффузии в вязких жидкостях составляет заметную величину. Поэтому обычно о переходе в кинетическую область судят ио прекращению зависимости скорости реакции от интенсивности перемешивания или барботажа. Здесь, однако, есть опасность, что при больших скоростях перемешивания может наступить автомодельная область, а ири очень интенсивном барботаже измениться гидродинамический режим. В результате объемный коэффициент массопередачи может стать инвариантным к эффекту перемешивания и ввести, таким образом, в заблуждение исследователя. В трехфазных каталитических реакторах этот прием более надежен ири условии неизменности соотношения фаз в потоке. [c.74]

    Вопрос о коэффициенте межфазного массопереноса в случае катализсггора в виде утопленной насадки изучен недостаточно. Можно предполагать, что при достаточно малой толщине пленки жидкости на поверхности катализатора будет проявляться влияние химической реакции на коэффициент массопередачи, аналогично тому, как это показано в гл. 13 для двухфазного реактора. Однако поскольку доля такой поверхности в общей поверхности [c.189]

    В случае, когда процесс массопередачи лимитируется сопротивлением дисперсной фазы, переход от распылительной колонны к каскаду распылительных колонн — тарельчатой колонне — связан с выбором оптимального расстояния между тарелками. На первый взгляд наиболее выгодным с точки зрения массообмена является минимальное расстояние между тарелками, так как уменьшение времени контакта (расстояние между тарелками) приводит к увеличению среднего значения коэффициента массопередачи. Однако уменьшение расстояния между тарелками выгодно лишь до определенного предела. Дело в том, что в тарельчатой колонне как процесс массопереноса, так и химическая реакция происходят не во всем объеме между тарелками. Диспергирование на каждой из тарелок осуществляется нод действием разности удельных весов фаз, что требует наличия на каждой тарелке слоя скоагулировавшейся дисперсной фазы. Объем, занимаемый скоагулировавшейся дисперсной фазой, не принимает участия в процессе массопередачи и слабо участвует в химическом взаимодействии. При этом слой диспергируемой жидкости [c.257]

    Коэффициенты массообмена в экстракционных колоннах зависят от фнзнко-химических свойств жидкостей, турбулентности в обеих фазах и геометрических элементов колонны. Несмотря на трудности определения поверхности контакта фаз, количественно массообмен определяется для всех типов колонн при помощи объемных коэффициентов массопередачи или высоты единицы массопереноса. Обе аелнчины (коэффициент и высоту единицы переноса) относят к фазе рафината, или к фазе экстракта, или же к диспергированной фазе, или к сплошной. Опытные данные выражаются с помощью критериев подобия, используемых при описании диффузионных процессов критерия Шервуда 5п, критерия Рейнольдса Ре для обеих фаз и критерия Шмидта 5с. В состав этих критериев входят вязкость и плотность жидкости но они не учитывают межфазного натяжения, которое в жидких системах оказывает влияние на массообмен через межфазную турбулентность. Расчетным уравнениям придается зид показательных функций. Введение в уравнения критерия Рей- юльдса для обеих фаз одновременно следует из предполагаемого влияния турбулентности одной фазы на другую. Во многих случаях зто влияние не подтверждается, и тогда уравнение содержит только один критерий Рейнольдса или скорость одной фазы. [c.304]

    Диаметр колонны оказывает влияние на массообмен (объемный коэффициент массопередачи), главным образом, в связи с влиянием стенки и каналообразованием, вызванным неравномерностью расположения элементов насадки. При увеличении диаметра колонны влияние стенки исчезает и элементы насадки располагаюгся более равномерно. Поэтому результаты работы больших колонн в некоторых случаях могут быть лучше, чем малых, а в некоторых—хуже. Результаты исследований, впрочем немногочисленных, подтверждают эти выводы. При экстракции пищевых жиров фурфуролом в колоннах диаметром 50, 560 и 1600 мм [59] на двух болььчих колоннах был получен одинаковый к. п. д., в то время как у колонны диаметром 50 мм объемный коэффициент массообмена оказался гораздо хуже. В качестве насадки использовались кольца Рашига одинаковых размеров. Влияние диаметра колонны установлено также для системы вода—диэтиламин—толуол в колоннах диаметром 76, 101 и 152 мм. Результаты этих исследований [81] при насадке из колец Рашига диаметром 12,7 мм и выше приведены на рис. 4-12, где показана зависимость высоты единицы массопереноса для воды (ось ординат) при постоянных размерах насадки от отношения расхода потоков [c.329]

    Трудности, связанные с определениед коэффициентов диффузии в многокомпонентных системах, обусловили развитие методик по применению исследований бинарной массопередачи к многокомпонентной [65, 66, 69]. Предлагается рассчитывать многокомпонентный массоперенос через коэффициенты диффузии всевозможных пар компонентов смеси. Идея использования бинарных соотношений для коэффициентов диффузии при расчете массообмена в многокомпонентных смесях в ряде работ нашла практическое приложение [54], хотя еще до сих пор находится в стадии теоретической доработки. [c.345]

    Несмотря на различную физико-химическую природу рассмотренных выше процессов, разработка математических моделей каждого из них и методология определения параметров во многих аспектах имеет много общего. Прежде всего для каждого из процессов характерны такие этапы, как исследование условий химического и фазового равновесия, причем для большинства из них по единой методологии и одним и тем же моделям оценка гидродинамической структуры систем с двумя (и более) фазами применительно к выбранному типу оборудования оценка параметров кинетических закономерностей (коэффициентов массопередачи, площади поверхности раздела фаз, коэффициентов диффузии и т, д.) для учета реальных условий массопереноса установление механизма химических реакций и оценка параметров (ддя процессов химического превращения, хеморектификации, хемосорбции), выбор разделяющего агента (для комплексов с разделяющими агентами). [c.37]

    Малоизученным остается вопрос о связи кинетики адсорбции в одиночном зерне с макрокинетикой в слое адсорбента, необходимой для определения высоты зоны массопередачи и времени защитного действия его. В монографии приведена аналитическая зависимость коэффициента внутреннего массопереноса от заполнения адсорбционного пространства, сформулирована математическая модель адсорбции в слое адсорбента и получено аналитическое решение указанной задачи. Для ряда моделей изотерм получен аналитический аналог зависимости Жуховиц-кого — Забежинского — Тихонова для времени защитного действия макрослоя адсорбента с учетом внутридиффузионных эффектов. [c.5]

    Толщина диффузионного пограничного слоя, отсчитываемая по нормали к межфазной поверхности, различна в разных точках поверхности. Поэтому массоперенос к различным участкам неодинаков, что можно также заключить и из уравг[ения (XXIII. 7). Часто употребляют интегральное значение коэффициента массопередачи [c.280]

    Коэффициент массопередачи. Ввиду того, что в данном случае сопротивление массопереносу должно быть сосредоточено а водной фазе, примем коэффициент массопередачи равным коэффициенту массоотдачн в сплошной фазе, полагая, что диспергироваться должен экстрагент ввиду очень малого его расхода (объемный расход водного раствора примерно в 20 раз больше расхода экстрагента). Коэффициент массоотлачи в сп илнной фазе в аппаратах с мешалкой можно рассчитать по эмпирическому уравнению [14]  [c.107]

    При оценке внутреннего сопротивления массопереносу с помощью коэффициентов массоотдачн суммарная скорость массопередачи может характеризоваться коэффициентами массопередачи Ку или Кх, выраженными соответственно по внешней фазе или по фазе сорбента. Эти коэффициенты определяются уравнениями [c.146]

    По данным работы [231], константа скорости реакции кок-соотложения (в пристенном слое) в промышленном пирозмеевике значительно превышает коэффициент массопередачи, и, следовательно, скорость отложения кокса Гк (кг/сут) контролируется массопереносом и определяется по формуле [c.87]

    Охарактеризуем величины, входящие в (10.15). Пусть речь идет о переносе вещества из фазы у в фазу х (рабочая область процесса над линией равновесия). Тогда М — поток (в единицу времени) компонента, вещества (В), передаваемого из фазы У в фазу х примем для определенности, что М выражается в кг В/с Р — поверхность контакта фаз м ). Здесь налицо сходство в описании переноса вещества и теплоты далее возникают различия. В теплопереносе движущей силой была разность температур теплоносителей, и не возникало вопроса о способе ее выражения Д = Г - В массопереносе движущая сила может быть выражена в концентрациях любой из фаз — х или у . Соответственно рис.10.7, в терминах фазы х Д = гДх = хР — X, в терминах фазы у Д = Ду = у — уР. Поэтому и коэффициент массопередачи должен бьггь выражен в расчете на Дх (это будет А ) или в расчете на Ау (ку). Уравнение массопередачи при этом запищется в терминах ( на языке ) какой-либо одной фазы  [c.781]

    Приведенные выше уравнения справедливы для систем без массопередачи или для случая, когда растворенное вещество переносится из водной фазы в органическую. При обратном нанравлении переноса коалесценция более заметна, и при таком же вводе энергии производительность ротационной и пульсационной колонн увеличивается в 2—3 раза. В таких случаях Уд рассчитывают как для систем без массопередачи, а затем вводят некоторый коэффициент, равный 2—3, с тем чтобы скорректировать эффект массопереноса. [c.107]


Смотреть страницы где упоминается термин Коэффициент массопереноса Массопередачи : [c.356]    [c.239]    [c.241]    [c.15]    [c.145]    [c.787]   
Равновесие и кинетика ионного обмена (1970) -- [ c.214 , c.273 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент массопередачи

Массопередача

Массопередача массопередачи

Массоперенос



© 2025 chem21.info Реклама на сайте