Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные потенциал

    Рассматривая теоретические принципы нарушения агрегативной устойчивости синтетических латексов электролитами, надо иметь в виду, что агрегативная устойчивость этих коллоидных систем обусловливается наличием адсорбционного слоя, который имеет достаточно высокий заряд диффузного ионного слоя ( -потенциал для большинства латексов равен 100- 60 мВ) [32], обеспечивающий стабилизацию таких систем за счет электростатических сил отталкивания, и достаточно высокую степень гидратации, наряду с вязкоупругими свойствами и достаточной механической прочностью. С другой стороны, стабилизация синтетических латексов осуществляется в большинстве случаев ионными ПАВ, у которых при введении электролитов в систему резко меняется растворимость и происходит их высаливание из раствора. [c.255]


    Перегородка из стеклянного волокна диаметром 0,05—0,75 мкм имеет развитую поверхность, покрытую тонкой пленкой меламино-формальдегидной смолы, которая создает высокий положительный дзета-потенциал [408]. Эта перегородка предназначена для разделения суспензий с субмикронными частицами, несущими отрицательный заряд. При изготовлении перегородки стеклянные волокна смешивают с водой, содержащей смолу в коллоидном состоянии, полученную суспензию наносят на опорную перегородку из целлюлозы и затем сушат. [c.370]

    Эффективность депрессорных присадок при кристаллизации твердых углеводородов связывают с их полярностью, снижением сольватации молекул парафина молекулами масла, нарушением агрегативной устойчивости дисперсии парафина и повышением при этом компактности кристаллических агрегатов, образованием ассоциированных комплексов молекул присадки и твердых углеводородов, что приводит к увеличению скорости фильтрования в процессе депарафинизации масляного сырья. Изучение влияния депрессорных присадок на поведение суспензий твердых углеводородов в сопоставлении с электрокинетическими исследованиями позволяет сделать вывод о возможной электростатической природе их действия. В работе [104], проведенной в этом направлении, в качестве критерия эффективности маслорастворимых присадок, используемых для интенсификации процесса депарафинизации, предложено значение энергетического барьера, создаваемого присадками на поверхности частиц дисперсной фазы в их суспензиях. Энергетический барьер учитывает кроме электрокинетического потенциала частиц дисперсной фазы и их размеры. В работе показана возможность применения маслорастворимых присадок для создания электрического заряда у частиц твердых углеводородов, обеспечивающего образование устойчивых коллоидных систем. Электрокинетические исследования реальных систем твердых углеводородов показали, что присадки, обладающие только депрессор-ным действием, эффективны в дистиллятном сырье. Для остаточного сырья следует использовать металлсодержащие многофункциональные присадки. Однако многокомпонентность масляных рафинатов, сложность состава твердых углеводородов и присутствие двух ПАВ при осуществлении процесса депарафинизации нефтяного сырья в присутствии присадок сильно усложняют изучение механизма кристаллизации твердых углеводородов, что, в свою очередь, затрудняет направленный поиск наиболее эффективных присадок для интенсификации этого процесса. [c.171]


    Влияние изменения величины поверхности на химические равновесия. Возрастание изобарного потенциала, вызываемое увеличением поверхности веществ, может сильно влиять на положение равновесия в химических реакциях. Впрочем, в значительной степени эти эффекты проявляются только при очень сильно развитой поверхности, в частности у высокодисперсных материалов или у веществ в аморфном состоянии. Сюда относятся, например, пирофорные металлы , различные вещества в коллоидном состоянии, инфузорная земля, трепел и др. [c.358]

    На поверхности, образующейся между двумя жидкостями, не смешивающимися между собой или обладающими ограниченной взаимной растворимостью, существуют соотношения, аналогичные рассмотренным. Поверхностное натяжение на поверхности раздела между двумя жидкостями обычно значительно меньше, чем на поверхности раздела между жидкостью и газом. Но и в этом случае действуют силы, стремящиеся уменьшить изобарный потенциал как путем уменьшения поверхности, так и путем понижения поверхностного натяжения, что происходит в результате адсорбции соответствующих компонентов в поверхностном слое. Это имеет место и в системе из двух компонентов, и при растворении в них третьего вещества (рис. 131). Все эти явления приобретают большое значение в случае тонкого диспергирования одной жидкости в другой, в особенности в коллоидных системах, в связи с огромным увеличением поверхности. [c.365]

    По мере безграничного возрастания потенциала поверхности сила взаимодействия между коллоидными частицами растет не безгранично, а стремится к конечному пределу, близко подходя к нему при значениях Фа, близких к 100 мВ. Это объясняется тем, что с ростом ф увеличивается притяжение к поверхности противоионов, экранирующих действие внутренней обкладки двойного слоя. Взаимодействие частиц в случае высоких потенциалов поверхности определяется только составом электролита. [c.12]

    В связи с тем, что поверхностный заряд распределяется диффузно в обеих жидких фазах и лишь часть межфазного скачка потенциала приходится на дисперсионную среду, f-потенциал дисперсных капелек, как правило, невелик. С одной стороны,это сильно снижает высоту возникающего потенциального барьера, с другой - затрудняет управление разделением эмульсий в электрических полях. К тому же диаметр капелек в разбавленных эмульсиях близок к размеру коллоидных частиц и составляет, как правило, 10" см. [c.15]

    В координатах а — с в соответствии с уравнением (11.51)—<1а=Г 7 1пс (см. рис. VI. 4). При полном заполнении монослоя (Г = Лос) постоянному значению а соответствует постоянное значение химического потенциала ПАВ в растворе, что определяет процесс мицеллообразования как процесс образования новой фазы. Поверхностную активность коллоидных ПАВ можно приближенно оценить через ККМ с помощью соотношения [c.294]

    Приготовленными растворами заполняют электрофоретические трубки (в первой используют золь 1 и раствор 5, во второй — золь 2 и раствор бит. д.). Электрофорез проводят в течение 40 мин. Определяют знак заряда коллоидных частиц и рассчитывают -потенциал по формулам (П1.40) и (П1.41). Результаты записывают в таблицу (см. табл. 1И.7). Объясняют полученные результаты. [c.97]

    Если двойной слой образуется вследствие обратимой адсорбции из относительно большого объема раствора, то потенциал онределяется концентрацией потенциалопределяющих ионов, в то время как индифферентные ионы в основном влияют на толщину диффузного слоя. Метод вычисления для капель эмульсии рассмотрен ниже. Типичные значения лежат в области 25 н- 100 ме, а значения 6, которые могут быть рассмотрены как расстояния между поверхностью и центром заряда противоионов, колеблются от 1000 А (для дистиллированной воды) до 10 А [для 0,1 н. раствора (1 1) электролита]. Обычно считают, что если две коллоидные частицы, несущие подобные двойные слои, соприкасаются (например, в результате броуновского движения), поверхностный потенциал при их взаимодействии остается постоянным это означает, что адсорбционное равновесие устанавливается очень быстро. Альтернативно можно постулировать, что поверхностный заряд остается постоянным в результате медленной адсорбции. Видимо, истина находится между указанными двумя предположениями, которые, к счастью, не приводят к сильно отличающимся оценкам энергии взаимодействия. [c.97]

    Читатель, вероятно, помнит, что коллоидный раствор обладает двоякой потенциальной степенью устойчивости, зависящей от зета-потенциала и обеспечиваемой адсорбированной пленкой или сферой сольватации , которая препятствует сближению частиц. Выше было сказано, что зета-потенциал может быть выражен уравнением [c.100]

    Процесс диффузии заключается в самопроизвольном выравнивании концентраций молекул или коллоидных частиц в системе, находящихся в хаотичном тепловом движении. Результатом диффузии является установление одинакового химического потенциала каждого компонента и соответственно равномерного распределения ди )-фундирующих частиц по всему объему системы. [c.19]


    До сих пор не существует строгой экспериментальной проверки теории, что ставит под сомнение выводы о величине -потенциала (или заряда) коллоидных частиц, сделанные на основе их электрофоретической подвижности. Несмотря на это, из-за простоты метод идентификации по электрофоретической подвижности находит широкое применение, особенно для биологических объектов. Поэтому ниже мы подробнее остановимся на методах определения электрофоретической подвижности. [c.140]

    Значение среднего электрического заряда коллоидных частиц определяется разностью электростатических потенциалов, возникающей между коллоидными частицами и раствором при установлении равновесия в системе. Эта разность потенциалов называется -потенциалом (дзета-потенциал) системы. Чем больше -потенциал системы, тем больше значение среднего электрического заряда коллоидных частиц. [c.211]

    Если в дисперсную систему вводить большое количество электролита, то произойдет увеличение количества противоионов в адсорбционном слое коллоидных частиц. Это повлечет за собой уменьшение среднего электрического заряда коллоидных частиц и соответствующее снижение -потенциала системы. В итоге взаимное отталкивание частиц ослабеет и увеличится вероятность их столкновений. А столкновение коллоидных частиц, согласно принципу минимума свободной энергии, приводит к их слипанию (слиянию). В результате будет происходить их коагуляция (коалесценция), за которой может последовать оседание укрупнившихся частиц — седиментация. [c.212]

    В задачах VI.11.1—VI.11.10 построить потенциальные кривые взаимодействия частиц при концентрациях электролита и Сд и определить, иа какое расстояние сближаются частицы при случайном столкновении, если их кинетическая энергия равна половине потенциального барьера. Коллоидный раствор коагулирует при концентрации водного раствора электролита, равной с р. Из электрокинетических исследований известен -потенциал при с- 0. [c.173]

    Полное же падение потенциала от его значения на поверхности коллоидной частицы до нулевого значения соответствует максимальной разности потенциалов между твердой поверхностью и всеми противоионами, вместе взятыми. Эту максимальную разность потенциалов называют термодинамическим потенциалом. [c.174]

    Значительный интерес представляют электрические явления, наблюдаемые при движении частиц дисперсной фазы в золях (или при движении дисперсионной среды относительно неподвижных коллоидно-пористых материалов). Эти явления впервые были описаны Рейссом (опыт 79) и получили название электрокинетических явлений. К ним относятся электрофорез (опыт 80—82) и электроосмос (опыт 83, 84), а также обратные им явления — потенциал седиментации и потенциал протекания. [c.174]

    В ряде случаев при добавлении к золям электролитов, содержащих многозарядные ионы со знаком заряда, противоположным заряду коллоидных частиц, может наблюдаться не коагуляция, а наоборот, стабилизация и перемена знака дзета-потенциала. Это явление получило в коллоидной химии название перезарядки золей (опыт 111). [c.227]

    Осмотическое давление обусловлено понижением химического потенциала растворителя в присутствии растворенного вещества. Тенденция системы выравнять химические потенциалы во всех частях своего объема и перейти в состояние с более низким уровнем свободной энергии вызывает осмотический (диффузионный) перенос вещества. Осмотическое давление в идеальных и предельно разбавленных растворах не зависит от природы растворителя и растворенных веществ. При постоянной температуре оно определяется только числом кинетических элементов —ионов, молекул, ассоциатов или коллоидных частиц в единице объема раствора. [c.98]

    Электродиализ. Этот метод представляет собой ускоренный процесс диализа с применением электрического тока. В электродиализаторах различных конструкций имеется три камеры (рис. 82) с внутренними стенками из полупроницаемых мембран. В среднюю камеру наливают коллоидный раствор, подлежат,ий очистке, а во внешние камеры — растворитель — проточную воду. Во внешних камерах находятся электроды, на которые подается напряжение постоянного тока. При падении потенциала 2—5-10 В/м и более образуется направленное движение ионов к соответствующим электродам. Поскольку ионы свободно проходят че- [c.292]

    В настоящее время установлена прямая зависимость между толщиной (плотностью) сольватных (гидратных) оболочек, величиной дзета-потенциала и агрегативной устойчивостью данной коллоидной системы. [c.325]

    Механизм электролитной коагуляции. Как известно, гидрофобные коллоиды неустойчивы в изоэлектрическом состоянии, т. е. электронейтральные частицы коагулируют с наибольшей скоростью. На рис. 111 показана схема снятия заряда с коллоидной частицы при добавлении электролита с двухзарядными анионами. Как видим, гранула становится электронейтральной в том случае, если противоионы диффузного слоя, заряженные отрицательно, перемещаются в адсорбционный слой. Чем выше концентрация прибавляемого электролита, тем сильнее сжимается диффузный слой, тем меньше становится дзета-потенциал и, следовательно, тем быстрее начинается процесс коагуляции. При определенной концентрации электролита практически все противоионы перейдут в адсорбционный слой, заряд гранулы снизится до нуля и коагуляция пойдет с максимальной скоростью, так как отсутствие диффузного слоя обусловит значительное понижение давления расклинивания. [c.370]

    Процессы медленной коагуляции пока весьма слабо изучены. Предполагают, что медленное протекание процесса коагуляции обусловливается тем, что лишь очень небольшое число столкновений коллоидных частиц приводит к их слипанию (агрегации). Установлено, что слипаются лишь те частицы, у которых по какой-либо. причине снизился до критического значения дзета-потенциал, или частицы, обладающие большой скоростью и при столкновении попадающие н сферу взаимного притяжения. [c.375]

    Электрокинетические явления. Электрокинетическими явлениями называют перемещение одной фазы относительно другой в электрическом поле и возникновение разшзсти потенциалов при течении жидкости через пористые материалы (потенциал протекания) или при оседании частиц (потенциал оседания). Перенос коллоидных частиц в электрическом ноле называется электрофорезом, а течение жидкости через капиллярные системы иод влиянием разности потенциалов — электроосмосом. Оба эти явления были открыты профессором Московского университета Ф. Ф. Рейесом в 1809 г. [c.329]

    В заключение отметим, что формирование слоев связанной воды вблизи поверхности силикатных частиц коллоидных размеров тесно связано с формированием коагуляционной сетки в дисперсии. Из работ [132—134] следует, что формирование гиксотропной структуры в дисперсиях монтмориллонита приводит к заметному увеличению так называемого всасывающего давления я — величины, которая измеряется с помощью тен-зиометров и характеризует способность почвы при соприкосновении с чистой водой впитывать ее в себя. По величине я легко определить изменение химического потенциала связанной воды граничного слоя по сравнению с объемной, а по зависимостям я от температуры — парциальные молярные энтальпии и энтропии связанной воды. Перемешивание дисперсий (разрушение тиксотропной структуры) приводило к резкому уменьшению значений я. Получаемые на их основе парциальные термодинамические функции связанной воды практически не отличались от таковых для объемной воды. Тиксотропное структу-рообразование, наоборот, вызывало повышение значений я, а термодинамические характеристики связанной в структурированной дисперсии воды были существенно иными, чем в объемной воде [133]. [c.44]

    При еще меньших /г энергия притяжения оказывается большей по сравнению с энергией электростатического отталкивания, частицы начинают самопроизвольно сближаться и в конце концов коагулируют. Таким образом, величина энергетического барьера является ответственной за устойчивость коллоидной системы. На размер S оказывает влияние как потенциал поверхности частиц ( , так и толщина двойного электрического слоя X. Уменьшение устойчивости системы может происходить либо за счет уменьшения термодинамического потенциала поверхности либо за счет уменьшения толщины двойного электрического слоя. В случае нефтесодержащих дисперсий незначительные толщины двойного диффузионного слоя и ионные сферы затрудняют определение сил отталкивания и притяжения, что, в свою очередь, осложняет построение и анализ кривых энергий взаимодействия, однако оценка их влияния небезьште-ресна. [c.39]

    Коагуляция лиофобных дисперсных систем может происходить в результате различных внешних воздействий, например при механичес1юм воздействии (ультразвука), действии электрического поля, при нагревании или замораживании системы. Коагуляция лиофобных золей может быть вызвана также их сильным разбавлением или концентрированием. Наиболее часто коагуляция дисперсных систем происходит при добавлении электролитов. Различают два типа электролитной коагуляции коллоидных систем 1) нейтрализационную, происходящую в результате снижения поверхностного потенциала частиц 2) конпен-трационную, протекающую вследствие сжатия диффузной части двойного электрического слоя (потенциал поверхности в этом случае не изменяется). [c.162]

    Таким образом потенциальная энергия равнозначна разнице потенциалов и обозначает работу, потребную для перемещения предмета m от точки, находящейся от центра земного шара на расстоянии ho до точки hi. Подробно этому, электростатический потенциал является измерителем работы, необходимой для перемещения заряда Q+ от точки, находящейся на расстоянии do от центра заряженной частицы Q до точки di. В уравнении 14 принято ограниченное расстояние, а именно между поверхностями слоя среза и рассеянного слоя. Следовательно, в данном случае зета-потенциал равен работе, требующейся для перемещения заряда Q+ от поверхности слоя среза так, чтобы он полностью освободился от влияния частицы. Если бы все заряды рессеянного слоя оказались в слое среза, то зета-потенциал был бы равен нулю, и частицы оказались бы, в сущности, нейтрализованными, вследствие чего флокуляция была бы вполне возможной. В большинстве систем имеется критический зета-потенциал, определяющий устойчивость коллоидного раствора или суспензии. Если потенциал выше критического, коллоидный раствор сохраняет свою устойчивость благодаря отталкиванию частиц с одинаковыми зарядами друг от друга. В том случае, когда потенциал ниже критического наступает флокуляция, так как тогда кинетическая энергия быстродвижущихся частиц не может быть уравновещена силой отталкивания. [c.76]

    При диффузном и кинетическом (броуновском) движении коллоидных частиц или при наложении алектрического поля происходит скольжение гранулы относительно диффузного слоя. На грани -це скольжения 1-2, которая лежит межцу адсорбционным и диффуз-ншаи слоят противоионов возникает разность потенциалов, называемая электрокинетическим или дзота-потенциало м( ). [c.25]

    Объяснение этих явлений основано на представлениях Квинке (1861 г.) о существовании так называемого двойного электрического слоя на фазовой границе между жидкостью п твердой стенкой. В самом деле, если жидкость, находящаяся непосредственно у стенки капилляра, содержит избыток электрического заряда, компенсированный соответствующим избытком противоположного заряда на стенке (рис. 35), то при наложении электрического поля, направленного по оси капилляра, возникнет сила, стремящаяся переместить заряды в жидкости, а вместе с ними и саму жидкость в капилляре относительно его стенки. В результате мы имеем электроосмос. Напротив, если, создав разность давлений на обеих сторонах (концах) капилляра, мы вызовем в нем течение жидкости, то это приведет к перемещению заряда жидкости вдоль оси капилляра. Появится так называемый конвективный электрический ток и соответствующее электрическое поле — потенциал течения. Наличие зарядов на поверхности коллоидных частиц вызывает, как и в случае ионов, их перемещение относительно жидкой фазы в электрическом поле, т. е. электрофорез. И наконец, при седиментации заряженных частиц их заряд переносится в направлении оседания, в результате чего появляются конвективный ток осаждения и соответствующее электрическое поле — седиментационный потенциал. [c.134]

    Еще первые исследователи коллоидных систем (Сельми, Грэм и Фарадей) отмечали их чувствительность к электролитам. В 1900 г. Гарди впервые предположил, что устойчивость коллоидов связана с электростатическим отталкиванием между их частицами таким образом, возникла мысль о том, чтобы искать связь между -потенциалом и коллоидной устойчивостью. Подобные исследования (проведенные, например, Повисом в 1914 г.) показали, что скорость коагуляции действительно растет, когда -потенциал уменьшается вследствие повышения концентрации электролита. При определенном, достаточно низком значении -потенциала, называемом критическим потенциалом, начинается быстрая коагуляция. Дальнейшее добавление электролита уже не влияет на скорость коагуляции. Интересно, что в большинстве случаев значения критического потенциала не зависят от типа использованного электролита. Например, при добавлении различных электролитов к золям АзаЗз (Повис) или РсаОд (Гош) быстрая коагуляция начинается при близких значениях -потенциала, несмотоя на то что соответствующие концентрации электролита при этом, конечно, совершенно различны (табл. 3). [c.194]

    Электрические свойства дисперсных систем объясняют особенностью их строения, заключающейся в образовании мицелл (рис. VI.8). В центре мицеллы находится кристаллическое тело /, названное по предложению Пескова агрегатом. На нем, согласно правилу Панета—Фаянса (см. разд. 11.42), адсорбируются ноны 2, способные достраивать его кристаллическую решетку. Эти ионы сообщают агрегату электрический заряд и называются потен-циалопределяющими. В результате образуется ядро мицеллы, несущее электрический заряд, равный сумме электрических зарядов адсорбировавшихся на агрегате потенциалопределяющих ионов. Ядро создает вокруг себя электрическое поле, под действием которого к нему из раствора притягиваются противоионы, образующие вокруг ядра диффузионный слой 4 и частично входящие в состав адсорбционного слоя 3. Ядро совместно с адсорбционным слоем противоионов называется коллоидной частицей. Электрический заряд последней равен алгебраической сумме электрических зарядов потенциалопределяющих ионов и ионов адсорбционного слоя. Так возникает на частице заряд, определяющий -потенциал (дзета-потенциал) системы. Знак его соответствует знаку электрических зарядов потенциалопределяющих ионов. Противоионы диффузионного слоя мицеллы, относительно свободно [c.278]

    Внешнее электрическое поле действует на заряды двойного электрического слоя коллоидная частица и диффузные протнво-ноны перемещаются в сторону электродов с противоиоложными знаками. Смещение дисперсной фазы относительно дисперсионной среды происходит по поверхности скольжения. Направление движения частиц дисперсной фазы определяет их знак заряда. Измерив линейную скорость движения и частиц (или границы раздела золь — дисперсионная среда) в электрическом поле, можно рассчитать потенциал на поверхности скольжения — электрокинетический потенциал по уравнению Смолуховского (VI.1)  [c.96]

    Следует иметь в виду, что представления о структуре материала основаны на закономерностях взаимодействия компонентов данного материала. В коллоидной химии изучаются составы, имеющие два основных компонента, точнее, две фазы дисперсную фазу (чаще всего в виде мелких твердых частиц) и дисперсионную среду (обычно жидкость, содержащую различные растворенные вещества). Состав системы определяет величину сил, действующих между частицами (так как от него зависят потенциал и толщина двойного слоя, а также толщина и состояние адсорбционного слоя поверхностно-активного вещества или полимера). Межчастичные силы и концентрация частиц, а часто и предыстория определяют, в свою очередь, структуру дисперсной системы и, следовательно, ее реологические свойства, поэтому, приступая к изучению реологических свойств, необходимо хотя бы в общих чертах познако- [c.151]

    Чем больше концентрация ионов никеля, тем выше допустимая плотность тока. Поэтому концентрацию никелевой соли поддерживают достаточно высокой. Кислотность электролита должна быть такой, чтобы не происходило образования коллоидной фазы — гидроксида или основной соли никеля. В связи с тем, что в прикатодном слое значение pH гидроксидообразова-ния достигается раньше, чем в объеме электролита, рафинирование никеля в большинстве случаев проводят при pH 2,5—3,0, что приблизительно на две единицы pH ниже pH гидроксидооб-разования. Стандартные значения потенциалов меди, железа и кобальта — основных примесей в никелевых анодах, соответственно равны 0,34, —0,44, —0,28 В. Стандартный потенциал никеля —0,23 В, а разряд его ионов и ионизация атомов происходят с большой поляризацией. [c.127]

    На основании изучения электрокинетических явлений в коллоидных системах было установлено, что у поверхности коллоидных частиц на границе разд,ела фаз образуется двойной электрический слой и возникает скачок потенциала. Это обусловлено тем, что ионы одного знака необменно адсорбируются на поверхности адсорбента, а иоиы противоположного знака в силу электростатического притяжения располагаются около нее. Причем величина и знак заряда поверхности зависят от природы твердых частиц адсорбента и от природы жидкости, с которой он соприкасается. [c.313]

    Концентрация нитрата серебра больще концентрации иодида калия. При этом в системе, помимо нерастворимого комплекса Agi, имеются ионы Ag+, К+ и NO3-. В процессе роста ядра коллоидной мицеллы достраивание рещетки Agi идет только за счет ионов Ag+, которые прочно входят в его структуру, сообщают ему электрический заряд и потому называются потенциалопределяющими. Полученный в результате адсорбции ионов Ag+ электрический заряд определяет термодинамический потенциал. [c.319]

    FeO l РеО+ + l-Таким образом, ядро коллоидной мицеллы гидроксида железа Fe(0H)3 состоит из большого числа молекул Ре(ОН)з, Потенциа-лопределяющим ионом является FeO+, так как ион С " не входит в состав ядра. Исходя из этого мицеллярная формула золя гидроксида железа (П1) может быть изображена следующим образом [т [Ре (ОН)з] п FeO+ (п — j ) l + д С1-. [c.320]

    Из всего вышесказанного не следует делать вывод о том, что основная причина коагуляции заключается в достижении некоторого постоянного для всех случаев критического дзета-потенциала. Исследования последних лет, проведенные советскими учеными В. В. Дерягиным и его сотрудниками, показали, что коагулирующее действие электролитов заключается не столько в непосредственном уменьшении сил отталкивания между коллоидными частицами через понижение дзета-потенциала, сколько в том, что изменение строения двойного электрического слоя и сжатие диффузной его части, обусловленное прибавлением электролита-коагулянта, влечет за собой понижение расклинивающего действия гидратных (сольватных) оболочек диффузных ионов, разъединяющих коллоидные частицы. Иными словами, необходимое для коагуляции данного золя понижение расклинивающего действия (или давления) сольватных оболочек достигается уменьшением диффузного слоя противоионов, что ведет к соответствующему понижению величины дзета-потен-адиала. [c.371]

    В ряде случаев при добавлении к золям электролитов с много-зарядными ионами, заряд которых противоположен по знаку заряду коллоидных частиц, может наблюдаться не коагуляция, а стабилизации золя и перемена знака дзета-потенциала. Это явление получило в коллоидной химии название перезарядки золей. Так, при добавлении к золю платины небольших количеств хлорида железа РеС1з наблюдается понижение отрицательного заряда коллоидных частиц платины и их коагуляция. Дальнейшее увеличение концентрации РеСЬ приводит к перезарядке коллоидных частиц платины они получают положительный заряд. [c.372]

    Явление перезарядки коллоидных мицелл золя платины юд влияние.У РеС1з хорошо видно на кривой изменения дзета-потенциала (рис. 114). Здесь по оси абсцисс отложены значения концентраций прибавляемого электролита-коагулятора, а по оси ординат — измененные значения дзета-потенциала. Как видим, под влиянием электролита дзета-потенциал довотьно резко уменьшается по абсолютной величине, затем, переходя через нулевое значение полу- [c.372]


Смотреть страницы где упоминается термин Коллоидные потенциал: [c.331]    [c.195]    [c.25]    [c.36]    [c.210]    [c.322]    [c.322]    [c.371]   
Руководство к практическим занятиям по коллоидной химии Издание 4 (1961) -- [ c.150 ]




ПОИСК







© 2025 chem21.info Реклама на сайте