Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сополимеры функция

    Ближний конфигурационный порядок — конфигурация присоединения соседних звеньев. В виниловых гомополимерах или полиолефинах ближний порядок характеризует регулярность цепи и различные типы тактичности. Как уже отмечалось, количественной мерой тактичности является степень стереорегулярности. Помимо интегрального выражения (т. е. отношения числа звеньев в стереорегулярных участках к общему числу звеньев), тактичность может описываться числом пар ближайших соседей (диад), троек (триад), четверок (тетрад) и т. д. Распределение таких диад, триад, тетрад и т. д., т. е. упорядоченных последовательностей ближайших соседей (отсюда и термин — ближний порядок), может характеризоваться нек-рой аналитич. функцией, параметры к-рой определяются экспериментально. Аналогичным образом в сополимерах функция конфигурационной неоднородности (см. стр. 105) описывает распределение последовательностей одинакового состава. [c.52]


    При данном строении сополимера функции и Q не зависят от и г , а определяются их произведением г г . Это видно, если уравнения (40) и (41) сопоставить с уравнением состава сополимера (10) [417, 418]  [c.75]

    Состав, блочность и композиционная неоднородность сополимеров. Зависимость Тс от состава сополимеров в общем случае является сложной нелинейной функцией [2]. Однако для таких каучуков как бутадиен-стирольные, бутадиен-нитрильные и некоторые полисилоксановые сополимеры существует близкая к линейной зависимость Гс от содержания модифицирующих звеньев [9, 12]. [c.44]

Рис. 4.18. Зависимость расчетных (сплошные линии) и соответствующих экспериментальных (отмечены точками) функций распределения частиц по размерам Р (1) готового сополимера от интенсивности перемешивания. — число оборотов мешалки, равное Рис. 4.18. <a href="/info/1422838">Зависимость расчетных</a> (сплошные линии) и <a href="/info/1623631">соответствующих экспериментальных</a> (отмечены точками) <a href="/info/145278">функций распределения частиц</a> по размерам Р (1) готового сополимера от <a href="/info/23593">интенсивности перемешивания</a>. — <a href="/info/147858">число оборотов мешалки</a>, равное
    Таким образом, феноменологический коэффициент Ь, определенный как Ь = с/ Ма/т), оказывается зависимым от процессов накопления вещества растворителя в слое сополимера еще и потому, что коэффициент является функцией концентрации через макроскопическую вязкость среды т]1. С другой стороны, для выражения динамики изменения химического потенциала растворителя в слое сополимера, следуя аналитическим свойствам диаграмм, можно записать [c.303]

    Активность растворители в материале сополимера. Поскольку растворы сополимеров резко отличаются от идеальных [5, 6], то возникает необходимость экспериментального определения функции активности а, которая связывает химический потенциал, рассчитываемый по предлагаемой модели, с концентрацией растворителя в материале сополимера по соотношению (4.5). Согласно этому соотношению экспериментальное определение функции активности сводится к измерению парциального давления растворителя над ограниченно набухшим сополимером. Экспериментальные [c.315]

    Образцы вследствие летучести растворителя перед эвакуацией прибора (откачка и удаление адсорбированной влаги из мембранной камеры и компенсационного объема) замораживались в жидком азоте. Вес исследуемого материала, загружаемого в нуль-манометр, не превышал 10 мг. Практически равновесное значение давления устанавливалось в течение двух-двух с половиной суток. Измерения проводились при температурах 20 (кривая 1), 40 (кривая 2) и 60° С (кривая 3) для растворов сополимера стирола и дивинилбензола в дихлорэтане с различным содержанием сшивающего агента (рис. 4.8). Нормировка функции активности выбрана следующим образом при = О, л = 0 при С1 = рх, а = 1, где рх = 0,0127 моль/см — молярная плотность чистого дихлорэтана. [c.318]


    Значение а определяется из экспериментальных кривых функции активности для равновесно набухшего сополимера (при — сГ), где [c.318]

    Для использования функций активности а и вязкости т] в модели макрокинетики набухания сополимеров производилась аппроксимация экспериментальных кривых. [c.322]

    Перестраивая зависимости Тс в функции от объемной, а не весовой доли одного из компонентов, можно из полученных графиков определить величину Д для данной системы. На рис. 2.11 в качестве примера приведены зависимости Тс некоторых сополимеров [c.51]

    При полимеризации мономеров со смешанными функциями или при сополимеризации двух мономеров с различными функциональными группами образуются полифункциональные полимеры, по химическим свойствам аналогичные соответствующим низкомолекулярным соединениям со смешанными функциями. Например, у- и б-оксикислоты легко отщепляют молекулу воды с образованием пяти- и шестичленных лактонов. При щелочном омылении сополимера малеинового ангидрида и винилацетата [c.214]

    Гетерополисахариды — сополимеры двух или большего числа различных моносахаридов — очень широко распространены в растительном и животном мире. В организме животных и человека они, как правило, встречаются в комплексе с другими биополимерами — белками или липидами — и выполняют очень ответственные и многообразные функции. [c.348]

    В ряде таких растворов используют нефтерастворимые органические частицы, например воски и смолы, выполняющие функцию закупоривающих материалов. В некоторых растворах при достаточно низких температурах эти частицы могут деформироваться и действовать как материалы для регулирования фильтрации и образования сводовых перемычек. Эти системы лучше всего работают при температурах от 65 до 95°С. При температурах ниже 65 °С такие частицы становятся слишком твердыми, а при температурах выше 95 °С — чрезмерно мягкими. В системе, описанной Фишером, органические частицы состоят из смеси воска, ПАВ и сополимера этилена и винила. С помощью таких частиц фильтрационные потери по методике АНИ можно снизить до 24 см , а при добавлении хромового лигнита — до 7 см . Для регулирования реологических свойств в раствор можно добавлять ГЭЦ и ксантановую смолу. С целью увеличения плотности до 1,2 г/см можно использовать хлорид калия. [c.432]

    По реологическим свойствам ПВАД, полученные в присутствии ПЗК и высокомолекулярных ПАВ, относятся к классу аномально вязких систем, для которых вязкость является функцией сдвига. С увеличением содержания винилацетатных звеньев в сополимерах ВС—ВА вязкость дисперсий увеличивается (рис. 1.14). Это может быть вызвано двумя причинами. Во-первых, в результате реакций многократной передачи цепи с участием ВА происходит рекомбинационная сшивка поливинилацетатных участков макромолекул сополимера, обращенных внутрь мономерной [c.34]

    При разделении на пористых полимерных сорбентах на основе сополимеров стирола и дивинилбензола наблюдается линейная зависимость логарифма исправленного удерживаемого объема от числа атомов углерода в молекулах для гомологических рядов нормальных алканов, ароматических углеводородов, спиртов, кетонов, жирных кислот [20—28]. Логарифм исправленного удерживаемого объема является также линейной функцией общей поляризуемости, температуры кипения, молекулярного веса, стандартной энтропии молекул гомологических рядов. Линейный характер полученных зависимостей позволяет использовать их для идентификации неизвестных соединений (рис. 3). [c.30]

    С ближним конфигурационным порядком связаны и меры стереорегулярности в гомополимерах или конфигурационной неоднородности в сополимерах. Помимо интегрального выражения (т. е. отношения числа звеньев в стереорегулярных участках к общему числу звеньев — а это мало что дает) тактичность может описываться числом диад, триад, тетрад и т. д., внутри которых выдержана одна форма тактичности. Распределение таких последовательностей (стерео-) упорядоченно расположенных ближайших соседей может быть выражено некоторой аналитической функцией, параметры которой определяются экспериментально. Аналогично — по распределению последовательностей А или В разных длин — определяется и конфигурационная неоднородность бинарных сополимеров. Не следует путать ее с неоднородностью по составу, представляющей собой (при прочих равных условиях) распределение по молярному отношению А В. [c.37]

    К сожалению, проблемы полидисперсности этим не ограничиваются — при переходе от гомополимеров к сополимерам сразу возникают еще два типа молекулярной полидисперсности неоднородность по составу и конфигурационная неоднородность. Поясним смысл этих характеристик на примере бинарного сополимера. Неоднородность по составу можно характеризовать мольным отношением звеньев типа А и В в разных цепях, независимо от их степени полимеризации, т. е. введя некоторую функцию (тоже численную или весовую) (А/В) [26]. [c.55]

    Осн. способ получения А. и.с.-полимераналогичные превращения, напр, карбоксилирование анионообменной смолы, содержащей первичные аминогруппы, Ыа-солью монохлоруксусной к-ты хлорметилирование сополимера стирола с дивинилбензолом, послед, замена С1 на остаток диметилового эфира иминодиуксусной к-ты и омыление эфирных групп. Др. способы сополимеризация или поликонденсация мономеров с противоположно заряженными ионогенными группами полимеризация мономера, содержащего ионогенную группу, в трехмерной сетке сополимера, функц. группа к-рого несет заряд противоположного знака (напр., полимеризация акриловой к-ты на сильноосновном анионите), [c.157]


    Осн. р-рители С.-в.л.-смеси орг. р-ршелей (кетоны, сложные иры) с разбавителями (ароматич. углеводороды), осн. пластификаторы-гл. обр. фталаты, низкомол. акриловые смолы. При наличии в сополимере функц. групп С.-в. л. могут содержать отвердители-изощмнаты, эпоксидные смолы и др. В С.-в. л. вводят также термостабилиза-торы (гл. обр. в С.-в. л. горячей сушки), тиксотропные добавки (при получении толстослойных покрытий), пигменты и наполнители, к-рые предварительно диспергируют в р-ре сополимера в бисерной или шаровой мельнице. [c.387]

    По своему химическому характеру диспергенты делятся па зольные и беззольные. Первые содержат в своем составе металлы в виде солей нефтяных сульфокислот (сульфонаты кальция или бария) или нафтеновых кислот. К незольным диспергирующим присадкам относятся алифатические алкила-мипы, а также так называемые полярные полимеры, представляющие продукты совместной полимеризации двух (или трех) мономеров, из которых один — носитель активных свойств присадки и содержит полярную группу (азотистое основание), а другой — неполярное соединение, являющееся олеофилыюй частью присадки, обеспечивающей ее растворимость в топливе. Третий мономер, если он прпсутствует, не выполняет дополнительных функций и служит удлинителем цепи сополимера. [c.324]

    Для повышения уяругохти полимера проводят сополимеризацию стирола с мономерами, звенья которых в макромолекулах сополимера выполняют функцию внутриструктурного пластификатора, снижающего внутренние напряжения в материале. В качестве пластифицирующих мономеров применяют изобутнлен, бутадиен, высыхающие масла. Сополимеры стирола с нзобутнленом или с небольшим количеством бутадиена отличаются высокой упругостью, но температура их стеклования ниже, чем для полистирола. Для устранения. этого недостатка получают совместные полимеры трех компонентов стирола, бутадиена и акрилонитрила. [c.525]

    Если эти ответвления расположены редко, пе создается пятствий для кристаллизации отдельных сегментов макромолекул, и кристаллические образования имеют такие же размеры и форму, как и в гомополимерах полиамида. Поэтому температура плавления привитого сополимера мало отличается от температуры плавления соответствующего гомополиамида. Полиоксиэтиленовые боков1.1е ответвления выполняют функцию пластификатора, способствуя увеличению текучести расплава, повышению упругости полимера, придавая волокну большую гибкость и лучшую морозостойкость. Волокна и пленки из привитого полиамида сохраняют упругость и при —7Сг (полиамид 6 и полиамид 6-6 начинают утрачивать упругость при температуре н(i кoJ[ькo ниже О ). [c.543]

    Поскольку значения р1, и г , известны, то по уравнению (3.11) определяют состав и массовые доли отдельных фракций. Таким образом, зная константы сополимеризации, по уравнению (3.11) можно рассчитать предполагаемый состав сополимера для бинарной сополимеризации как функцию конверсии. Предполагаемое распределение по составу сополимера удобно представить в виде интегральных и дифференциальных кривых распределения по составу (соответственно ИКРС и ДКРС). [c.37]

    Впервые показана возможность получения блок-сополимеров полисахаридов с синтетическими полимерами воздействием ультразвука на водно-мономерные растворы. Показано, что блок-сополимеры хитозана с четвертичной солью - метилсульфат-диметиламиноэтилметакрилатом - являются более эффективными флокулянтами по сравнению с изученными ранее привитыми сополимерами, к тому же сохраняют функции флокулянта-сорбента. При их использовании в концентрациях, обеспечивающих эффект осветления (флокуляции) сточных вод, концентрация ионов тяжелых металлов уменьшается более, чем в 2.5 раза. Блок- и привитые сополимеры полисахаридов с синтетическими неионогенными полимерами (полиакрилаты) лишены главного недостатка первых - хрупкости, т.к. в несколько раз возрастает не только их прочность, но и пластичность (относительное удлинение). Была выявлена возможность утилизации соответствующих полимерных материалов в условиях окружающей среды. Оказалось, что микрогрибы Peni illium sp. и Pae ilomy es sp. приводят к полному разрушению полисахаридных блоков путем глубокой олигомеризации до мономера, димера, тримера за 1 месяц. [c.100]

    Для А. п. характерна, как правило, относит, стабильность активных центров. В ряде случаев, иапр. при А. п. неполярных мономеров в углеводородных р-рителях, суммарный процесс включает практически лишь стадии инициирования и роста цепи (р-ции обрыва и передачи цепи отсутствуют или идут с очень малыми скоростями). При этом образуются т. наз. живущие полимеры, концевые группы к-рых сохраняют способность к присоединению мономера или др. реагентов и после завершения полимеризации. Такие полимеры - удобный объект как для исследования механизма A.n., так и для решения разл. синтетич. задач получения полимеров с заданным ММР, в т.ч. практически моиодисперсных синтеза полимеров и олигомеров с концевыми функц. группами, способными к дальнейшим превраш. поликонденсац. или полимеризац. типа, а также блоксополимеров, привитых сополимеров и разл. полимеров с регулируемым типом разветвления и др. [c.167]

    В пром-стн А. п. применяют гл. обр. для синтеза эласто-мерных материалов (непрерывной полимеризацией в р-ре, преим. на литиевых инициаторах)- 1,4- и 1,2-полибутадиена, статистич. сополимера бутадиена со стиролом, бутадиен-стирольного термоэластопласта объем произ-ва этих полимеров составляет ок. 1 млн. т/год. Методами А. п. сиитезируют также олигомеры бутадиена с концевыми функц. группами, поли- -капроамид, полиэтиленоксид, полиформальдегид, полисилоксаны и др. Осн. достоинства А. п.-легкость управления, возможность получения почти всех перечисленных гомо- и сополимеров бутадиена на одном и том же оборудовании при миним. изменениях технол. процесса, наличие долгоживущих активных центров, высокая чистота получаемых продуктов. [c.167]

    I, -число этих звеньев в блоке X-фрагмент молекулы бифункционального низкомол. в-ва (сшивающего агента). Частный случай Б.-стереоблоксополимеры, содержащие в макромолекуле блоки одинакового состава, но разл. пространств. структуры. Число мономерных звеньев в блоке д. б. достаточным для проявления в нем всей совокупности св-в данного полимера. Если блоки состоят из несовместимых полимеров, то Б. приобретают микрогетерогенную структуру и в них сочетаются св-ва полимеров, образующих отдельные блоки. На этом основан один из эффективных путей хим. модифицирования полимеров. Способы синтеза Б. 1) взаимод мономера с макромолекулярным инициатором-полимером, содержащим одну или две активные группы, способные вызывать полимеризацию [при этом получают Б. строения (А) -(В) или (В) -(А) -(В) , если при синтезе Б. первого типа акгивный центр генерируется на конце блока (В) с образованием живущих цепей (см. Анионная полимеризация), то м, б. получены сополимеры с заданным порядком чередования блоков] 2) взаимод. между собой двух или большего числа полимеров или олигомеров, содержащих концевые функц. группы 3) рекомбинация макрорадикалов, образующих [c.298]

    ПОЛИАКРИЛОВЫЕ ЛАКИ (акриловые лаки), получают на основе след, пленкообразователей 1) термопластичных гомо- или сополимеров акрилатов и метакрилатов (используют гл. обр. сополимеры метилметакрилата с метил- или бутилакрилатом, с этил-, этилгексил- или гептадецилмета-крилатом) 2) термореактивных олигомеров-продуктов сополимеризации акрилатов или метакрилатов с акриловым мономером, содержащим функц. группы, напр, гидроксильные, карбоксильные, амидные, и виниловым мономером, напр, стиролом. Широко распространены акриловые длеи-кообразователи, содержащие метилольные группы сиитезируют их, напр., сополимеризацией акриламида, стирола и [c.602]

    Обменные р-ции особенно эффективны при повыш. т-рах П. Их делят на два осн. типа 1) р-ции обмена образовавшихся при П. групп (сложноэфирной, амидной или др.) и даже нек-рых циклов (напр., имидного) с функц. группами мономеров или примесей (напр., алкоголиз, ацидолиз, аминолиз) 2) р-ции межцепного обмена между образовавшимися при П. одно- или разнотипными группами (напр., эфиролиз, амидолиз). Эффективность обменных р-ций зависит от соотношения скоростей основной и побочных р-ций. Обменные р-ции могут существенно влиять на мол. массу и ММР поликонденсац. полимера, микроструктуру сополимера. В [c.632]

    Прививку полимера к пов-сти наполнителя можно осуществить разл. способами. Эффективность прививки определяют после длит, обработки продукта р-рителем по доле нерастворимого полимера, связанного с наполнителем. Наиб, изучена радикальная прививка. Так, привитые полимеры образуются при измельчении минер, наполнителей в присут. жидких или газообразных мономеров, напр, стирола, метилметакрилата (кол-во привитого полимера обычно 1-2% по массе), а также при радиац. обработке смеси наполнителя (напр., целлюлозы) с мономером (образуется также нек-рое кол-во гомополимера). Прививкой к пов-сти наполнителя в-в (в т. ч. инициаторов), содержащих функц. группы, осуществляют фиксацию на частицах наполнителя активных центров, используемых в дальнейшем для получения наполненных полимеров заданного состава. Подобным способом получены наполненные материалы на основе, напр., полистирола, поливинилхлорида, политетрафторэтилена. В случае прививки к минер, наполнителям полиолефинов используют способность катализатора Циглера-Натты, а также катализатора на основе Сг или Zr взаимодействовать с группами ОН, имеющимися на пов-сти таких наполнителей. Сначала наполнитель подвергают термообработке с целью удаления нежелат. примесей, затем обрабатывают катализатором, после чего проводят жидко-или газофазную полимеризацию олефинов. Полученные в этом процессе наполненные материалы обладают необычным комплексом св-в. Напр., высокомол. полиэтилен, содержащий 50-60% по массе минер, наполнителя, обладает высокими износостойкостью и ударной вязкостью, к-рые невозможно достигнуть при мех. смешении полимера с наполнителем фафито- и саженаполненный полипропилен имеет необычно высокую электропроводность. Методом П. на н. можно получить структуры, в к-рых частицы наполнителя окружены равномерными слоями полимеров и сополимеров разл. типа. Особенно перспективен этот метод для получения сверхвысоконаполненных материалов с равномерным распределением наполнителя в матрице полимера. [c.638]

    В гомог. системе при разл. реакц. способности сомономеров или их неэквивалентном кол-ве состав сополимера в ходе С. меняется однако при полном завершении р-ции состав сополимера соответствует исходному составу смеси мономеров. Строение сополимеров зависит от ряда факторов обратимости р-ции роста цепи, способа проведения, относит, активности сомономеров и изменения активности функц. групп по-мере вступления части их в р-цию. При обратимой С. обычно образуются статистич. сополимеры. При необратимой одностадийной С. независимо от различия в активности сомономеров также получаются статистич. сополимеры. Для получения блоксополимеров необходимо использовать постадийный шш трехстадийный способы синтеза или постепенную дозировку в зону р-ции интермономера. [c.386]

    Пов-сть материала перед нанесением С.-в. л. тщательно очищают хим. и мех. способом. С.-в. л. наносят гл. обр. распылением (пневматич., безвоздушным, электростатическим). Пленкообразование осуществляется в результате испарения р-рителя или (при наличии отвердителя) вследствие его хим. взаимод. с функц. группой сополимера. Т-ра сушки С.-в. л. колеблется от 15 до 250 °С, время высыхания от 1 ч (при 15 °С) до 30 с (при 250 °С). [c.387]

    Под конфигурационной неоднородностью, в соответствии с определением конфигурации, надо понимать распределение в макромолекулах олигоад, т. е. непрерывных последовательностей АААА---и/или ВВВ---. Поскольку, в самом общем случае, содержание олигоад обоих типов никак друг с другом не коррелирует (есть лишь два предела — полностью статистический сополимер и бинарный блок-сополимер и промежуточный вариант — полиблочный полимер со случайным распределением звеньев между блоками), для количественного описания конфигурационной неоднородности потребовалось бы уже две функции. [c.56]

    В случае проведения процесса сополимеризации в среде жид кого пропилена состаз сополимера является главным образом функцией состава жидкой фазы, т е концентрации растворенно 10 эттена в жидком пропилене [125, 126, 227—230] На рис 15 П01 азаны изотермы ж 1дкой фазы при разтичной температуре [c.46]


Смотреть страницы где упоминается термин Сополимеры функция: [c.54]    [c.276]    [c.315]    [c.203]    [c.78]    [c.478]    [c.70]    [c.264]    [c.489]    [c.93]    [c.262]    [c.116]    [c.97]    [c.97]    [c.100]   
Фракционирование полимеров (1971) -- [ c.324 ]




ПОИСК







© 2025 chem21.info Реклама на сайте