Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нейтрон структура

    Для нейтронографических исследований необходимы атомные реакторы, дающие мощные пучки нейтронов, которые подвергаются монохроматизации отражением от кристаллической пластинки (например, СаРз). Дифрагирующие нейтроны регистрируются счетчиками. Нейтроны рассеиваются не электронной оболочкой атома, но его ядром, и атомный фактор определяется конкретной протонно-нейтронной структурой ядра, а не атомным номером. Поэтому атомные факторы изотопов существенно различаются. Атомный фактор для водорода (протона) далеко не минимален, для ряда тяжелых элементов он меньше. Поэтому нейтронография позволяет надежно локализовать атомы водорода с ее помощью была установлена структура льда (см. стр. 203). Можно высказать уверенность в том, что нейтронография в будущем сыграет важную роль в изучении биополимеров, где она до сих пор почти не применялась (дальнейшие подробности см. в [33]). [c.275]


    Анализ нейтронного рассеяния позволяет получить ценную информацию о нормальных и межцепных колебаниях в полимерах. Нейтроны с низкой энергией могут рассеиваться полимерным образцом и терять ча сть своей энергии, которая эквивалентна характеристическим молекулярным колебательным частотам образца. Возбуждающие нейтроны должны иметь узкое распределение по энергиям и среднюю энергию, близкую к энергии низкочастотных движений молекул рассеивающего вещества. При этих энергиях длины волн нейтронов сравнимы с атомными расстояниями. Рассматриваемый метод анализа позволяет оценить также сечения нейтронного рассеяния полимеров, конформации полимеров в стеклах, каучуках и растворах (особенно при малоугловом рассеянии нейтронов), структуру полимерных сеток. [c.303]

    В дифракционных методах исследования структуры используются рентгеновские лучи, поток электронов или нейтронов с длиной волны того же порядка, что и расстояния между атомами в молекулах или между атомами, ионами и молекулами в кристаллах. Поэтому, проходя через вещество, эти лучи дифрагируют. Возникающая при этом дифракционная картина строго соответствует структуре исследуемого вещества. Рентгеновские лучи (рентгенография) чаще всего применяют для исследования структуры кристаллов, электроны (электронография) — для исследования газов и кристаллов нейтроны (нейтронография) — для исследования жидкостей и твердых гел. [c.150]

    Оксид ВеО имеет структуру типа вюрцита (см. рис. 194), отличается высокой энергией кристаллической решетки и высокой энергией Гиббса образования (АО/ = —582 кДикачестве химически стойкого и огнеупорного материала для изготовления тиглей и специальной керамики, а в атомной энергетике — как замедлитель и отражатель нейтронов. ВеО входит в состав некоторых стеклообразующих смесей. [c.472]

    Оказалось также, что уравнение де Бройля справедливо не только для электронов и фотонов, но и для любых других микрочастиц. Так, для определения структуры веществ используется явление дифракции нейтронов (об этих элементарных частицах см, 35), [c.70]

    Понижение диэлектрической проницаемости граничных слоев воды следует также из молекулярно-динамических оценок изменений вращательной подвижности диполей воды [4] п подтверждается исследованиями структуры воды в тонких прослойках методом неупругого рассеяния нейтронов и ЯМР. Так, для дисперсий кремнезема времена релаксации молекул воды в граничном слое 1 нм в 5—10 раз превышают объемные значения [39]. Методом электронного спинового резонанса показано, что подвижность спиновой метки снижается с уменьшением радиуса пор силикагеля от 5 до 2 нм [40]. [c.14]


    Следует еще отметить зигзагообразный вид линии устойчивых изотопов, а также преобладание изотопов с четным числом протонов или нейтронов либо четным суммарным числом нейтронов и протонов. Это указывает на наличие какого-то взаимодействия между нуклонами и на существование внутренней структуры ядра. Отмеченное преобладание четного числа нуклонов каждого типа становится еще более очевидным при рассмотрении табл. 23-2. [c.417]

    Современное состояние науки о ядре и его структуре находится примерно в том же положении, в котором находилась теория строения атома в 1925 г. Имеется возможность проводить измерения свойств ядер, описывать и классифицировать их, но нет еще общей теории, позволяющей объяснить эти свойства. Ядра состоят из протонов и нейтронов, сосредоточенных в небольшом объеме и взаимодействующих сильнее всего лишь со своими непосредственными соседями по ядру. В некоторых отношениях (это касается энергии связи) они подобны спрессованным капелькам однородных частиц, но в других отношениях (предпочтительность четного числа нуклонов и существование магических чисел) они ведут себя так, будто образуют оболочечные структуры, подобные электронным оболочкам. Диаграммы энергетических уровней для ядер могут быть построены на основе спектров у-излучения, сопровождающего ядерные превращения. Ядра, подобно электронам в атоме, тоже имеют основные и возбужденные состояния. [c.435]

    Близко к этому методу (рентгенографии) стоит метод дифракции электронов (электронография). Волновая механика показывает, что при действии пучка электронов на поверхность кристалла возникают те же дифракционные эффекты, что и при действии рентгеновских лучей. Определение структуры кристаллов и молекул методом дифракции электронов привело к результатам, полностью совпадающим с результатами, получаемыми с помощью рентгенографии, В последние годы с этой же целью стали применяться и нейтроны (нейтронография), что дало возможность определять положение и водородного атома, чего не удавалось достигнуть методами рентгенографии и электронографии. [c.123]

    Способ сравнения двух различных металло-водяных смесей вытекает йз формулы Ферми — Маршака для возраста нейтронов. Нетрудно заметить, что возраст нейтронов полностью определяется их свободным пробегом в смеси. Таким образом, если, как это указывалось ранее, детали энергетической структуры сечения рассеяния металла не являются основным факто- [c.290]

    На рис. 10.1 приведены значения коэффициента теплового иснользования и вероятности нейтрону избежать резонансного поглощения для гомогенных сред из естественного урана и графита. Максимальная величина произведения этих двух величин (пунктирная кривая) 0,59, что гораздо меньше минимального значения, оцененного выше. Таким образом, гомогенный реактор с оптимальным отношением замедлителя к горючему — система подкритическая. Однако гетерогенная структура из этих материалов может быть сделана критической. Это достигается главным образом увеличением вероятности нейтрону избежать резонансного поглощения, если однородное распределение заменить блочным. [c.464]

    Подобные расчеты на основе транспортной теории выполнил Тейт Расчет Тонкой структуры потока тепловых нейтронов в котле методом сферических гармоник . Тр. Международной конференции по мирному использованию атомной энергии. Женева, 1955. [c.486]

    Влияние на возраст нейтронов блочной структуры горючего и пустот в виде параллельных каналов (щелей) можно оценить из следующих соотношений  [c.517]

    Широкое развитие ядерной энергетики — основной путь преодоления энергетического кризиса. Предполагается, что к концу нашего века доля ядерного топлива в мировой структуре топливного баланса может составить около 20%, а к 2100 г. — до 60%. Развитие ядерной энергетики определяется прежде всего возможностью полного использования природных урановых месторождений пока что на атомных электростанциях, в реакторах на тепловых нейтронах потребляется большей частью уран-235, содержание которого в природных рудах не более 0,7%. Остальные 99,3% приходятся на долю неделящегося изотопа — урана-238, который непосредственно не может служить ядерным горючим. Однако уран-238 уже используется в урановых реакторах на быстрых нейтронах. где он превращается в новое искусственное ядерное горючее— плутоний-239. Наиболее эффективно сочетание реакторов на медленных нейтронах, использующих уран-235, с реакторами-размножителями на быстрых нейтронах, использующими уран-238, в которых нарабатывается плутоний-239. В таких системах ядерное горючее отдает в 20—30 раз больше энергии, чем в обычных ядерных реакторах, и привлекаются к использованию большие запасы бедных урановых руд. [c.35]


    На схеме приведена структура организации материи, которая, как принято считать, состоит из вещества и поля. Каждый вид материи представлен своим набором элементарных частиц с массой покоя тфО и т = 0 соответственно. Однако нас с точки зрения химической организации особо интересуют только три типа элементарных частиц, которыми представлено вещество протоны, нейтроны и электроны. При взаимодействии двух первых из них возникают положительно заряженные ядра, которые, притягивая отрицательно заряженные электроны, образуют атомы, формирующие следующий (после элементарных частиц) уровень организации материи. [c.6]

    Необходимо отметить, что схема, согласно которой атом образуется из элементарных частиц только трех типов, является упрощенной. Однако при рассмотрении структуры химической организации материи такое упрощение вполне оправданно — свойства атома и характер его взаимодействия с другими атомами можно однозначно объяснить только тремя параметрами числом протонов, нейтронов и электронов, содержащихся в нем. [c.6]

    Экспериментальные методы, применяемые для определения и характеристики структуры полимерных цепей и их совокупностей, упоминались в общем обзоре гл. 1. Дополнительную информацию по дифракции рентгеновских лучей [3], рассеянию нейтронов [4—6], электронов и света [4, 52, 53], оптической и электронной микроскопии [3, 14Ь], термическим [3, 54] и вязкоупругим свойствам [14с, 55—57] и методу ядерного магнитного резонанса (ЯМР) [3] можно получить из источников, указанных в списке литературы к данной главе. В гл. 5 и 6 соответственно будут рассмотрены методы инфракрасного поглощения (ИКС) и ЭПР. [c.35]

    Таким образом, второй период каждого этапа является, с одной стороны, продолжением, а с другой — повторением первого. В этом и заключается суть диалектического повторения, названного Б. М. Кедровым "повторением на новом более высоком уровне". Координатой, определяющей "высоту этого уровня и является последовательный (накопительный) рост числа протонов, нейтронов и электронов в атомах вида (химического элемента). На спиральной модели Системы химических элементов хорошо видна искусственность деления валентных групп на главную и побочную в табличном варианте. В генетически иерархической структуре естественной системы атомов нет предпосылок для этого. [c.170]

    Создание первых графитовых кладок реакторов, в первую очередь как замедлителей нейтронов, явилось началом интенсивного развития научных исследований структуры и свойств углеграфитовых материалов, условий их формирования и создания новых технологий. [c.14]

    Исследование бездефектной кристаллической структуры графита методом дифракции нейтронов [1-3] показало, что разброс значений длины связей и некомпланарность между плоскостями [c.23]

    Влияние температуры на радиационные эффекты неоднозначно и зависит от вида связующего. Установлено, что ароматические структуры менее чувствительны к радиации по сравнению с алифатическими. Так, ароматические эпоксиды при облучении 7-частицами и нейтронами на воздухе при дозе 10 рад сохраняют 80% своей первоначальной прочности. Кислород п])0-мотирует деградацию эпоксидного связующего при облучении частицами и ультрафиолетом. В отсутствие кислорода под действием быстрых нейтронов прочность углеродных волокон и их [c.537]

    Радиационная деструкция происходит под влиянием нейтронов, а также а-, р-, у-излучения. В результате разрываются химические связи (С—С, С—Н) с образованием низкомолекулярных продуктов и макрорадикалов, участвующих в дальнейших реакциях. Облучение полимеров изменяет их свойства с образованием двойных связей или пространственных структур (трехмерной сетки) или приводит к деструкции. Но иногда происходит и улучшение качеств облучаемого полимера. Например, полиэтилен после радиационной обработки приобретает высокую термо- и химическую стойкость. Радиоактивное излучение, ионизируя полимерные материалы, способно вызывать в них и ионные реакции. [c.411]

    Гипотеза де Бройля была экспериментально подтверждена обнаружением у потока электронов дифракционного и интерференционного эффектов. В настоящее время дифракция потоков электронов, нейтронов, протонов широко используется для изучения структуры веществ (см. раздел III). [c.8]

    На рис. 23-4 указано лишь существование устойчивых (нерадиоактивных) изотопов, но не их степень ядерной устойчивости и не их относительную распространенность. Ядра обладают особой устойчивостью, если они имеют Z или п (число нейтронов), равное 2, 8, 20, 28, 50, 82 или 126. Приведенные значения называются магическйми числами. Хотя они дают определенную информацию об оболочечной структуре ядра, пока что не существует теории, позволяющей объяснить эти данные. Напрашивается их сопоставление с набором магических чисел 2, 10, 18, 36, 54 и 86, которые принимают порядковые номера особо устойчивых в химическом отношении элементов - благородных газов. Магические числа устойчивости ядер могут, очевидно, получить объяснение на основе представлений об оболочечной структуре ядра, причем ядерные квантовые оболочки, по-видимому, должны существовать независимо для протонов и нейтронов. Магическое число протонов либо нейтронов придает ядру устойчивость атомы типа 82 РЬ с магическими числами одновременно протонов и нейтронов обла- [c.417]

    В настоящее время дифракция электронов широко используется для изучения структуры веществ. Установка, в которой наблюдается это явление — электронограф — стала обычным прибором в физико-химических лабораториях. Для структурных исследований применяется также дифракция нейтронов. Была изучена дифракция атомов гелия, молекул водорода и других частиц. Таким образом, двойственная корпускулярно-волновая природа микрообъ-ектов является надежно установленным фактом. [c.17]

    Из соотношений (1.13) и (1.11) легко видеть, что составное ядро с четным числом протонов и нейтронов обладает наибольшей энергией возбуждения, так как член б отрицателен для этих ядер. Несколько меньшая по величине энергия возбуждения получается в составном ядре с нечетным числом нуклонов и наименьшая — в случае нечетно-нечетных ядер. Поэтому ядра изотопов и могут делиться нейтронами любых энергий, тогда как и делятся только быстрыми нейтронами. В случае первых трех ядер захват нейтрона приводит к четно-четной составной структуре и энергия возбуждения, обусловленная только энергией связи нейтрона ( 6,8 Мэе), равна порогу деления. Таким образом, эти ядра могут делиться как тепловыми (очень медленными), так и быстрыми нейтронами. Именно эги свойства дают возможность нспользовать такие ядра в качестве ядер-пого горючего. Ниже будет показано, что эти ядра настолько легко делятся нейтронами тепловой энергии, что целесообразнее замедлять нейтроны до тенлОБЫх энергий. Вооб1це вопрос о замедлении нейтронов является одним из основных вопросов теории реакторов. [c.11]

    Однако физическое разделенно ядерного горючего и замедлителя еще не определяет прн 1адлежност 1 реактора к гетерогенной категории. Так, молшо представить себе активную зону реактора, состоящую нз тонких фольг ядерного горючего, плотно уложенных в среде замедлителя. Такая конфигурация эквивалентна гомогенной смеси ядерного горючего и замедлителя. Вследствие тонкости физической структуры нейтроны не чувствуют ее геометрических неоднородностей ири прохождении через ядерное горючее, замедлитель, снова ядерное горючее н т. д. Эта степень тонкости определяется размерами и взаимным раснолол еннем неоднородностей в реакторе, а также средней энергией нейтронов. [c.18]

    При использовании слабо обогащенных материалов гетерогенные систем1л более приемлемы (если не единственно возмол ны). В гомогенных системах, использующих природный уран в смеси с любым из известных замедлителей, единственным исключением из которых является тяжелая вода, не может быть обеспечена самоподдерж вающаяся цепная реакция, так как эти замедлители обладают большим сечением захвата нейтронов. Такие хорошие замедлители, как графит, бериллий (окись бериллия), обычная вода, требуют применения обогащенного ядерного горючего, а при работе на природном уране необходимо применение гетерогенной структуры. Блочное рас-нолол енне ядерного горючего обеспечивает лучшее использование имеющихся нейтронов, так как в этом случае улучшается возмон(ность поддержания ценной реакции. Нейтроны деления, возникающие в системе с энергией порядка нескольких мегаэлектронвольт, в результате упругих и неупругих столкновений с окружающими ядрами замедляются до тепловых скоросте . Если изобразить энергетическое распределение нейтронов как функцию энергии, то окажется, что основная масса нейтронов сосредоточена в сравнительно узком энергетическом интервале. Целесообразно ввести понятие средняя энергия нейтронов в реакторе . [c.18]

    Диффузионная длина. Влияние б гочнон структуры материалов в реакторе па вероятность того, что тепловые нейтроны избегнут утечки, трудно оценить точно. Наибольший интерес при изучении этого вопроса представляет диффузионная длина. Диффузионную длину можно было бы определить, зная средний квадрат смещения нейтрона от источника до точки поглощения [аналогично тому, как это было сделано в уравнении (5,228) для гомогенной системы]. В гетерогенной системе такой расчет связан с нахождением потока в среде от точечных источников, расположенных в различных точках реактора, определением среднего квадрата смещения от источника до точки поглощения д гя каждого источника и, наконец, усреднением по всем точечным источникам. [c.468]

    Наиболее важное из преимуществ гетерогенных систем состоит в увеличении вероятности нейтрону избежать резонансного захвата благодаря ффекту самоблокировки горючего в блоках. В связи с тем что резонансная структура в горючем представляет собой резкие и высокие пики, в раснределепии потока резонансных нейтронов имеются локальные спады вблизи [c.475]

    Рентгеновское и нейтронное рассеяние. Методы рентгепострук-турного и нейтроноструктурного анализа представляют собой дифракционные методы. Рентгеновские лучи — это электромагнитные волны большой энергии. Длины волн пх лежат в интервале от 0,05 до 0,20 нм. Нейтроны — незаряженные микрочастицы, обладаюплие массой покоя. Для пучков нейтронов соответствующие им длины волн лежат в пределах 0,1 —1,0 нм. Рентгеновское излучение рассеивается электронами атомов и молекул. Интенсивность рассеянного излучения фиксируется каким-либо способом и характеризует электронную плотность. Рассеяние рентгеновских лучей на ядрах оказывается пренебрежимо малым. В свою очередь, нейтроны рассеиваются ядрами атомов. При этом упругое рассеяние медленных нейтронов позволяет изучать атомную структуру вещества, а неупругое используется для изучения динамики частиц. Механизмы рассеяния рентгеновских лучей и нейтронов похожи. [c.101]

    Незначительная потеря массы, происходящая в облученных битумах, объясняется лишь выделением газов. В большинстве литературных источников рассматривается влияние 7-облучения информация о влиянии нейтронного излучения крайне ограничена. Гротенх-вис [13] установил, что изменения объема и структуры битумов, облученных нейтронами, аналогичны изменениям, происходящим при 7-облучении. [c.171]

    Так, в работах /123, 124/ на основе данных электронной и /125/ рентгеновской дифракции бып сделан вывод, что для структуры углеводородных цепей в жидкой фазе характерна высокая упорядоченность. Упорядочшные области, образованные параллельными участками цепей в транс-конформациях, могут в случае н-алканов и полиэтилена простираться на расстояния 10 нм и занимать до 60% объема расплава. Однако последующие исследования функций радиального распределения, полученных методами электронографии и рентгенографии /125/, поставили под сомнение выводы авторов /123, 124/ и выявили лишь локальную упорядоченность в располож ии участков молекул, по сути дела ничем не отличающуюся от ближнего порядка в структуре простых низкомолекулярных жидкостей. Аналогичные выводы получены методами ИК-спектроскопии /106/ и методом малоуглового рассеяния нейтронов /107/. [c.159]

    Неупругое и пластическое деформирование можно рассматривать как следствие последовательного движения дислокаций и смещения связывающих областей. Поворотная модель дает полное молекулярное описание структуры полимера. И на этот раз имеется лишь слабое различие между упорядоченными н неупорядоченными областями. Печхолд указывает, что совершенный кристалл ПЭ может содержать до 4 поворотов на 1000 групп СНг, в то время как в структуре типа расплава их число достигает 200 на 1000. Хотя эта концентрация столь велика, что исключает и ближний, и дальний порядок, какая-то логика в организации пространства, заполненного цепными молекулами, должна сохраниться. Печхолд предложил подходящие модели — сотовую и меандровую (рис. 2.1, в). Он полагает, что последняя модель более вероятна и может существовать в частично кристаллических волокнах (рис. 2.18,6) и в каучуках [11, 14Г]. Упомянутые ранее а-, р- и 7-релакса-ционные переходы объясняются в рамках данной модели движением поворотных блоков, замораживанием вращения сегмента из-за отсутствия свободного объема и существованием поворотных ступеней и скачков соответственно в аморфной и кристаллической областях [11]. Хотя эксперименты по рассеянию нейтронов [100—104] в значительной степени опровергают наличие четкого меандрового упорядочения цепей, предложение Печхолда было в высшей степени плодотворным для изучения структуры аморфных областей. [c.53]

    Пространственную систему атомов можно легко преобразовать в плоскую систему химических элементов. Для этого достаточно спроецировать ее на плоскость, перпендикулярную оси А. На рис. 15, в аксонометрии, она выглядит как эллипс, а на рис. 16 — это круговая спираль, типа спирали Архимеда. В этом случае на плоскость проецируется и структура условного пространства периоды — в виде концентрических кругов, а валентности — в виде плоских радиальных углов. На рис. 17 более наглядно показана электроноструктурная суть плоской спиральной модели Системы химических элементов. На оси абсцисс дается как бы разрез электронной оболочки атомов, начиная с нейтрона (п 08 ) с нарастанием структуры, последовательно фиксируя ее для каждого химического элемента. Структура легко читается по дуге окружности, на которой расположен химический элемент, до пересечения ее с осью абсцисс (е-). Так, для водорода — 18, для Не — 1 8", для — 2 8, для Ве — 2 8 и т. д. Трудность пользования полной системой (рис. 15) состоит в высокой плотности графической информации. Для учебных целей целесообразно использовать крупноразмерные плакаты. [c.161]

    Структура спиральной модели Системы наглядно и выразительно показывает суть диалектически противоречивого процесса развития природного объекта, В каждом этапе два равноемких периода находятся по отношению друг к другу как бы в параллельно-последовательной генетической связи. По одним признакам они последовательны (рост числа протонов, нейтронов и электронов в атоме), что отражает поступательную, интегративную тенденцию развития по другим — параллельны (одинаковая емкость и структура внешних (одного-двух) квантовых подслоев, определяющих валентность), что отражает попятную тенденцию, повторяемость свойств химических элементов. [c.169]

    Предложено уравнение, удовлетворительно аппроксимирующее объемный радиационный рост графита при дозах, превышанмцих 10 нейтронов/см . При этом отмечено снижение радиационных эффектов с увеличением совершенства кристаллической структуры материала. Ил. 4. Табл. 1. Список лит. 11 назв. [c.264]

    Плоские графитовые монохроматоры применяются для исследований дифракционного и неупругого рассеяний нейтронов. При этом обеспечивается дифрация нейтронов в диапазоне длин волн 0,2-0,5 нм [7-6], что позволяет исследовать магнитные структуры, фононы в твердых телах, фазовые переходы и биологические системы. [c.458]

    Интенсивное облучение частицами высокой энергии может настолько нарущить структуру вещества, что происходит полная его аморфизация, как, например, при обработке кварца потоком нейтронов высокой плотности. Полиэтилен начинает заметно аморфи-зоваться при дозе облучения около 10 Мрад и полностью теряет кристалличность при дозе порядка 10 Мрад. Но интересно, что облучение кварца и кварцевого стекла потоком нейтронов одинаковой [c.142]


Смотреть страницы где упоминается термин Нейтрон структура: [c.26]    [c.409]    [c.426]    [c.50]    [c.75]    [c.517]    [c.30]    [c.85]    [c.121]    [c.698]   
Успехи общей химии (1941) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Нейтрон



© 2025 chem21.info Реклама на сайте