Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновские теория

    Здесь важно отметить, что в рентгеновской теории аргумент os в выражении типа (12)  [c.184]

    Одной из них является возникновение и быстрое развитие новых теоретических представлений в органической химии. Оказалось, что именно углеводороды, состоящие из атомов всего двух элементов, являются нередко наилучшими объектами для экспериментальной и теоретической проверки новых представлений с целью дальнейшего развития теории органической химии. Другая причина — возникновение принципиально новых и очень информативных методов исследования течения реакции и строения катализаторов (спектральные, адсорбционные, рентгеновские, хроматографические, магнитные методы, использование изотопов в катализе, приме- [c.5]


    В 1914 г. Мозли установил, что частота v рентгеновских лучей, испускаемых при бомбардировке элемента пучком электронов, определяется соотношением v = (Z — b) . Пользуясь теорией Бора, объясните зависимость Z от квадратного корня из v в этом выражении. [c.381]

    Несомненно, теория Бора— Зоммерфельда явилась крупнейшим достижением физики. Наличие в атомах дискретных состояний было подтверждено экспериментально в опытах Д. Франка и Г. Герца (1913 г.). Серьезным успехом этой теории стало также вычисление постоянной Ридберга для водородоподобных систем и объяснение структуры их линейчатых спектров. В частности, Бору удалось правильно объяснить серии спектральных линий иона Не+, до того приписываемые водороду. Теория Бора — Зоммерфельда объяснила физическую природу характеристических рентгеновских спектров, расщепление спектральных линий в сильном магнитном поле (так называемый нормальный эффект Зеемана) и другие явления. [c.17]

    Рентгеновские снимки (фото У-2) показывают, как газовая пробка прорывает поверхность псевдоожиженного слоя, подбрасывая твердые частицы над колеблющейся поверхностью слоя. Единственный момент, когда твердые частицы на поверхности слоя находятся в состоянии покоя, соответствует максимальному расширению слоя сразу же после прорыва пузыря через поверхность. Поскольку доля пузырей в слое по двухфазной теории должна быть постоянной, то можно аналитически рассчитать максимальное расширение слоя [c.197]

    В двадцатых годах на основе учения о полярной структуре молекул были разработаны простейшие представления об ассоциации молекул в жидкой воде как результате взаимодействия диполей. Однако эти представления оказались недостаточными для построения теории, согласующейся с опытными данными. В тридцатых годах на основе использования данных рентгеновского анализа Бернал и Фаулер показали, что в жидкой воде молекулы расположены в той или другой степени упорядоченно. При обычных и повышенных температурах это расположение близко к структуре кварца. При более низких температурах (ниже 4° С) вода имеет менее плотную структуру, подобную структуре обычного льда (или тридимита — одной из высокотемпературных кристаллических модификаций кремнезема). [c.165]

    Теория этого вопроса была создана в результате изучения ускоренных кинопленок, на которых были фиксированы перемещения пластического слоя, снятые в рентгеновских лучах и спроецированные на экран. [c.155]


    Исследование природы химической связи и строения молекул развивалось параллельно с изучение. строения атома. К началу двадцатых годов текущего столетия Косселем и Льюисом были разработаны основы электронной теории химической связи. Гейтлером и Лондоном (1927) была развита квантовомеханическая теория химической связи. Тогда же получили развитие учение о полярной структуре молекул и теория межмолекулярного взаимодействия. Основываясь на крупнейших открытиях физики в области строения атомов и используя теоретические методы квантовой механики и статистической физики, а также новые экспериментальные методы, такие как рентгеновский анализ, спектроскопия, масс-спектроскопия, магнитные методы, метод меченых атомов и другие, физики и физи-ко-химики добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.8]

    Согласно представлениям Г. Улига, критическая концентрация легирующего компонента, которой отвечает резкий скачок пассивируемости, объясняется изменением электронной конфигурации атомов сплава от заполненной -оболочки к незаполненной (никелевые сплавы, стали). В основу расчетов критических составов положено представление Л. Полинга о существовании в -оболочках переходных металлов незаполненных электронных состояний (дырок). По современной электронной теории сплавов, такой большой перенос зарядов между компонентами сплавов невозможен. Эксперименты по рентгеновской фотоэмиссии показали, что число -электронов и дырок в -оболочках атомов переходного металла в сплаве с непереходным не изменяется (сплав N1—Си) или изменяется очень мало [55а—556]. — Примеч. ред. [c.97]

    Первая группа теорий, которая будет рассмотрена впоследствии, содержит общее предположение о том, что макроскопическое ослабление — это кинетический процесс, что составляющие его отдельные акты вызваны термической активацией разрывов вторичных и (или) основных связей и что накопление этих актов приводит к образованию трещины и (или) разрыву нагруженного образца. В рамках этих теоретических представлений основные акты разрушения определяют обычным образом и без привлечения экспериментальных данных связывают с определенными морфологическими изменениями. Вторая группа теорий опирается на явные физические молекулярные повреждения, обнаруживаемые спектроскопическими методами и методом рассеяния рентгеновских лучей, которые будут описаны в гл. 7 и 8. Третья группа теорий, в которой [c.75]

    Действие сил растяжения вдоль оси молекулярной связи К1—Кг проявляется в ослаблении кажущейся энергии ее образования и, таким образом, способствует увеличению вероятности разрыва связи. Если ослабление кажущейся энергии связи существенно, то механическое воздействие можно считать основной причиной деструкции цепи. Поскольку разрыв цепной молекулы сопровождается образованием органических радикалов, а последующее появление неспаренных свободных электронов регулируется механическими силами, то изучение процесса образования радикалов и их реакций дает необходимую с точки зрения молекулярной теории информацию относительно сил, действующих па цепь. Исследования свободных радикалов методом парамагнитного резонанса усиленно развивались в течение последних 30 лет [1, 2]. С тех пор данный метод успешно применялся для объяснения механизма образования свободных радикалов в химических реакциях и под действием облучения видимым и ультрафиолетовым светом, рентгеновским и 7-излучением и облучением частицами [1, 3]. Дополнительно изучались величина фактора спектроскопического расщепления магнитное окружение неспаренного спина свободных электронов и структура свободного радикала. Во всех этих случаях спин свободного электрона действует как зонд, который, по крайней мере временно, присоединяется к определенной молекуле, принимает участие в ее движении и взаимодействует с окружающим магнитным полем. [c.156]

    После открытия Лауэ (1912 г.) дифракции рентгеновских лучей теория кристаллической решетки, которая начала развиваться еще в ХУП в., получила полное экспериментальное подтверждение. Методом рентгеноструктурного анализа были измерены межатомные расстояния и определено положение атомов в кристаллах. При этом было установлено, что структура кристаллов является плотнейшей упаковкой соответствующих структурных единиц и определяется прежде всего размерами этих структурных единиц. Согласно правилу Гольдшмидта (1927 г.), строение кристалла определяется числом его структурных единиц (ионов), отношением их радиусов, а также их поляризационными свойствами. Усиленное изучение связи состава и свойств твердых веществ с их кристаллической структурой привело к формированию новой отрасли химии — кристаллохимии. Кристаллохимические исследования, среди которых выдающееся значение имели работы Л. Полинга, А. В. Шубникова, Н. В. Белова, А. И. Китайгородского, помогли глубже понять природу твердых веществ, раскрыть закономерности, управляющие образованием кристаллических структур, в том числе таких сложных, как структуры силикатов и алюмосиликатов. [c.166]


    Размеры блоков мозаики по эффекту экстинкции находятся из зависимости, выведенной в динамической теории рассеяния рентгеновского излучения  [c.101]

    В гл. I было показано, что в рамках кинематической теории рассеяния рентгеновских лучей дифракционный спектр идеально мозаичного кристалла (Н) описывается следующей формулой  [c.99]

    Такая теория должна объяснить равновесные термодинамические свойства жидкости, ее энтальпию, энтропию, уравнение состояния, температуру замерзания, поверхностное натяжение и т. п. Далее теория должна описать явления переноса — вязкость, диффузию, теплопроводность. Наконец, такая теория должна охватить явления рассеяния жидкостями различных излучений и прежде всего рентгеновского. В последние годы теория жидкостей достигла ряда серьезных успехов. Можно указать на три основных направления развития теории жидкости. К первому принадлежат концепции, развиваемые на основе какой-либо упрощенной модели жидкости. Такие модели не являются асимптотическими, т. е. строгими в какой-либо области параметров. Этим определяются сравнительно малые успехи модельных теорий, несмотря на то что попытки их построения делались на протяжении многих десятков лет. [c.284]

    Структура жидкости существенно зависит от теплового движения составляющих ее частиц. Для выяснения этой зависимости большой интерес представляют одноатомные жидкости, имеющие наиболее простое строение. Применительно к одноатомным жидкостям разработана теория, позволяющая на основании данных о рассеянии рентгеновских лучей устанавливать их структуру. Для определения ближней упорядоченности используются кривые радиального распределения атомов, вычисленные на основании кривых интенсивностей рассеяния рентгеновских лучей. Они строятся следующим нутем на оси абсцисс откладывается расстояние от произвольно выбранного атома, а по оси ординат — величина 4пг р (г), где р (г) — такая функция радиального распределения, при которой элемент площади под полученной кривой Апг р (г) г дает среднее число атомов. [c.144]

    Бернал и Фаулер (1932), основываясь на результатах рентгеновского исследования структуры жидкой воды, впервые показали, что связи между молекулами и относительные расположения их в жидкой воде в определенной степени подобны имеющимся в структуре льда. Они различали при этом Структуры, сходные со структурами разных кристаллических модификаций 5Юг — кварца к тридимита. Хотя отдельные детали их теории в дальнейшем были пересмотрены, [c.11]

    Для объяснения зависимости между частотой и порядковым номером Мозли воспользовался теорией строения атома водорода, развитой Бором. Согласно модели Бора, рентгеновское излучение должно возникнуть при переходе электрона на К- или -уровень. Бор показал, что частота в эмиссионном спектре водорода может быть выражена формулой [c.94]

    Основная часть сведений о геометрии молекул — длинах связей, валентных и торсионных углах — получена с помощью рентгеноструктурного анализа. Теория этого метода основана на использовании сложного математического аппарата. Поэтому в нашем курсе будет дано лишь описание природы явления, лежащего в основе этого метода — дифракции рентгеновских лучей на кристаллических решетках. [c.159]

    При прохождении света через узкую щель происходит дифракция световых лучей, при которой они способны интерферировать, т. е. усиливать или поглощать друг друга. При этом между длиной волны излучения, углом падения лучей и постоянной дифракционной решетки существуют простые соотношения, вытекающие из волновой теории света. Именно эти закономерности и лежат в основе так называемых дифракционных методов изучения структуры кристаллов. В настоящее время применяют два основных метода получения дифракционных рентгенограмм кристаллов порошковый и метод вращения кристалла. И в том и в другом методе используют монохроматическое рентгеновское излучение. Анализ получаемых рентгенограмм не всегда прост, тем не менее удается определить не только размеры и форму элементарной ячейки, но и число частиц, входящих в ее состав. Так, ориентируя кристалл определенным образом, можно установить постоянные решетки,а следовательно, и размеры элементарной ячейки. Зная плотность кристалла, можно рассчитать массу эле- [c.91]

    Дальнейшее развитие теории рентгеновских спектров связано с учетом расщепления линий поглощения в полях различной симметрии. Это расщепление проявляется в расширении линий, их асимметрии или отчетливом расщеплении на две или большее число [c.254]

    Другой, более универсальный, но вместе с тем и более сложный метод основан на определении координат всех атомов в элементарной ячейке по ним находят конфигурацию молекулы и ее геометрические характеристики. Работа начинается с промера интенсивностей рентгеновских рефлексов, так как эти величины зависят от вида атомов и особенности их размещения в ячейке. Далее, опираясь на теорию, рассчитывают интенсивности, которые получились бы, если бы атомы занимали определенные положения. Первые грубые подсчеты уточняют [c.63]

    С конца XIX в. начинается современный физико-химический этап развития атомно-молекулярного учения. Открытие электрона, рентгеновского излучения, явления радиоактивности и других разрушили представления об атоме как неизменной и неделимой частице и позволили построить теорию атома как сложной системы, состоящей из положительных и отрицательных частиц. [c.11]

    Это следствие теории вскоре нашло прямое экспериментальное подтверждение оказалось, что направленный на кристалл пучок электронов испытывает дифракцию подобно рентгеновским лучам. Немного позднее то же самое было установлено для атомов водорода и гелия. Так как дифракция является характерным свойством волн, приведенные результаты убедительно подтверждают правильность рассматриваемых представлений. [c.85]

    Важнейшая задача строгих теорий — нахождение радиальной функции распределения g(r). Это связано не только с возможностью экспериментально определить функцию д г) в опытах по рассеянию рентгеновских лучей или нейтронов и тем самым проконтролировать теоретические результаты. Наиболее суше-ственно то, что для сис/емы с парно-аддитивными взаимодействиями [см. (11.111)1 знание этой функции открывает путь к расчету всех термодинамических свойств системы. [c.202]

    Понятно поэтому, что изложение основ рентгеноструктурного анализа кристаллов немыслимо без предварительного ознакомления с некоторыми понятиями, представлениями и обозначениями, принятыми в структурной кристаллографии и в первую очередь в теории симметрии кристаллов. С этих представлений и целесообразно начать, предварительно оговорившись, что в задачу автора отнюдь не входит последовательное изложение всех основ теории симметрии. Будут рассматриваться лишь те ее аспекты, которые абсолютно необходимы для понимания особенностей дифракционных эффектов, возникающих при прохождении рентгеновских лучей через кристаллы, и правильного (грамотного) описания самой структуры кристалла. [c.5]

    В апреле 1914 г. Мозли опубликовал результаты исследования 39 элементов, от 1зА1 до 7,Ли. (Напомним, что порядковый номер элемента указывается индексом слева внизу от символа элемента.) Часть полученных им данных воспроизводится на рис. 7-2. Мозли писал Спектры элементов представляют собой равноотстоящие друг от друга горизонтальные линии. Выбранная последовательность расположения элементов соответствует возрастанию их атомных весов (масс), за исключением случаев Аг, Со и Те, когда она не согласовывалась с последовательностью изменения их химических свойств. Между элементами Мо и Ки, а также между Nd и 8т и между XV и Оз остаются вакантные места для спектральных линий, но элементы, которым могли бы соответствовать линии в этих местах, неизвестны... Все это эквивалентно тому, как если бы мы приписали последовательным элементам ряд характеризующих их последовательных целых чисел... Тогда, если бы какой-либо элемент не удавалось охарактеризовать такими числами или произошла ошибка в составлении последовательности элементов либо в нумерации мест, оставленных для еще неизвестных элементов, установленная закономерность (прямолинейная зависимость) оказалась бы сразу же нарушенной. Это позволяет на основании одних лишь рентгеновских спектров заключить, не пользуясь никакой теорией строения атома, что указанные выше целые числа действительно могут характеризовать элементы... Недавно Резерфорд показал, что наиболее важной составной частью атома является расположенное в его центре положительно заряженное ядро, а Ван-ден-Броек выдвинул предположение, что заряд этого ядра во всех случаях представляет собой целочисленное кратное от заряда ядра водорода. Есть все основания предполагать, что целое число, определяющее вид рентгеновского спектра [элемента], совпадает с числом единиц электрического заряда в ядре [его атомов], и, следовательно, данные эксперименты самым серьезным образом подтверждают гипотезу Ван-ден-Броека . [c.312]

    Дифракционное рассеяние рентгеновских лучей под малыми углами характерно для ультрамикрогетерогенных систем с частицами аморфной структуры. Природа этого я1 ле1 ия аналогична дифракции видимого света малыми экранами и отверстиями, теория которой подробно рассматривается в следующем разделе, поспященном рассеянию света. Отличия состоят не только в размерах частиц и применяемых длин воли, а главное — в соотношениях между ними. Данный метод применим, если размеры определяемых частиц сравнимы или больше длин рентгеновских лучей. В связи с этим максимум рассеяния приходится па направление, совпадающее с направлением падающих лучей. Размер же области рассеяния, т. е. угол, при котором интенсивность рассеянных лучей нрактически равна нулю (Омзкс), тем меньше, чем больше рассеивающий объем. Эту величину можно оценить по соотношению [c.253]

    Новый повод для занятий теорией скоро помог Фрэнсису стать самим собой. Через несколько дней после истории с Брэггом кристаллограф В. Вэнд прислал Максу письмо, в котором излагал свои теоретические соображения относительно дифракции рентгеновских лучей спиральными молекулами. Спирали в то время были в центре внимания лаборатории, главным образом из-за а-спирали Полинга. Но общей теории, которая позволяла бы проверять новые модели и подтвердить некоторые тонкие детали строения а-спирали, еще не существовало. Вэнд и надеялся, что его теория восполнит этот пробел. [c.43]

    К часу дня скучная работа по сборке была закончена, и мы с Френсисом, как обычно, пошли в Орел , прихватив химика Герберта Гутрей-нда. Джон обедал в Питерхаусе, а Макс всегда уезжал на велосипеде домой. К нам иногда присоединялся Хью Хаксли, работавший под руководством Джона, но последнее время его начали отпугивать въедливые расспросы Фрэнсиса. Перед моим приездом в Кембридж Хью взялся за проблему сокращения мышц, и Фрэнсис тотчас обратил внимание на следующее неожиданное и многообещающее обстоятельство данные по физиологии мышцы накапливались уже более двадцати лет, а объединить их в стройную картину еще никто не попытался. Чего еще было желать Фрэнсису Выискивать нужные факты в непереваренной массе экспериментов ему не приходилось, это уже проделал Хью. И вот обед за обедом объединялись эти факты, рождались теории и держались день-два, а потом Хью удавалось убедить Фрэнсиса, что не устраивающие его результаты, которые он готов был приписать ошибке в эксперименте, на самом деле надежны и незыблемы, как Гибралтарская скала. Теперь Хью смонтировал свой рентгеновский аппарат и надеялся вскоре получить экспериментальные данные, которые разрешили бы спорные вопросы. Но все было бы для него испорчено, если бы Фрэнсис ухитрился правильно предсказать, что именно у него получится. [c.55]

    Макбэйн предложил интересную интерпретацию результатов исследований, произведенных Палмером (см, ссылку 66) при помощи рентгеновских лучей. Толкование Макбэйна служит в защиту механизма слоеобразования, вполне совместимого с теорией адсорбции. Палмер изучал растворение воды в мицеллах эластичных волокон, содержащих цефалин. Ему удалось установить регулярное увеличение длины интервалов рентгеновских лучей, сопут- [c.66]

    Известным аналогом периодических коллоидных структур мо-, жет служить кристалл монтимориллонитовой глины при его внутрикристаллическом набухании в водных растворах. При внутрикристаллическом набухании кристаллические плоскости толщиной каждая около 10 А раздвигаются и между ними образуются жидкие прослойки. Условием набухания является насыщение кристалла ионами Н+, или Na При очень низких концентрациях внутрикристаллические прослойки достигают толщины в 300 А. Одинаковость всех прослоек сохраняет периодическую структуру системы и позволяет по дифракции рентгеновских лучей измерять толщины прослоек. Полученные данные согласуются с теорией ДЛФО. Такой набухший кристалл служит хорошей моделью других периодических структур. С помощью этой модели можно также, как показал О. Г. Усьяров, обнаружить существование ближней и дальней потенциальной ям, энергетического барьера и влияние валентности ионов на закономерности набухания. [c.319]

    При малом тд формула (IV.32) переходит в формулу интенсивности для мозаичного кристалла 5 (Н)иитегр = QV. В случае, когда можно пренебречь первичной экстинкцией, размеры блока кристдлла определяются из равенства тд л 0,4—0,5. Поскольку д зависит от А, и структурной амплитуды, то в разных случаях и для разных отражений он будет различным. Для сильных отражений величина поправки на экстинкцию больше. Предельный размер блоков в идеально мозаичном кристалле не должен превышать 1000 атомных слоев, что соответствует 10 — 10 см. Формула интенсивности динамической теории применима к когерентно рассеивающим кристаллам, толщина которых составляет 10 атомных слоев, т. е. к кристаллам толщиной не менее 10 — 10" см. В промежуточной области 10 — 10 см следует пользоваться формулой (IV.32). Отметим, что указанные выше размеры блоков приведены для случая рентгеновского излучения. [c.98]

    Положения главных максимумов дифракционного спектра / (Н) соответствуют узлам обратной решетки правильного кристалла, а функция. У (Н) является непрерывной функцией вектора обратного пространства Н. Любое искажение правильной структуры кристалла будет сопровождаться перераспределением части интенсивности главных максимумов дифракционного спектра в области обратного пространства между узлами обратной решетки. Это проявляется на рентгенограммах в виде диффузного фона между главными отран<ениями. Геометрия и интенсивность диффузного фона зависит от характера искажений правильной трех-мерно-периодической структуры кристалла, благодаря чему возможно экспериментальное изучение нарушений кристаллической структуры по эффектам диффузного рассеяния. Подробное изложение теории диффузного рассеяния рентгеновских лучей можно найти в работах [1—4]. [c.99]

    Кристалл представляет собой систему, состоящую их двух взаимодействующих подсистем электронной и ядерной. В рассеянии излучений принимают участие обе подсистемы, однако, интенсивность рассеяния на каждой из них зависит от природы рассеиваемого излучения. Например, интенсивность потенциального рассеяния рентгеновских лучей на ядрах атомов (томпсоновское рассеяние) примерно в 10 раз меньше интенсивности, рассеянной электронными оболочками тех же самых атомов, поэтому в теории дифракции рентгеновских лучей рассеянием на ядрах пренебрегают. Известны некоторые изотопы, ядра которых как раз попадают в область длин волн, используемых в структурном анализе. Сечение взаимодействия таких ядер имеет резонансный характер и по величине может значительно превышать сечение взаимодействия излучения с электронными оболочками атома. [c.174]

    Кривоглаз М. А. Теория рассеяния рентгеновских луче11 и тепловых hbii-тронов реальными кристаллами.— М. Наука, 1967. [c.246]

    Изучение рассеивания рентгеновских лучей позволяет определить величины (г). Часто величину гаМг, т. е. 4яг / (г), представляют графически. На рис. XIV. 13 изображено такое распределение для жидкого алюминия. Площадь пика, соответствующая первому максимуму, отвечает среднему координационному числу в жидкости. Для тел, имеющих плотную упаковку в твердом состоянии, координационное число равно 12, а для жидкого состояния — приблизительно 11. Это означает (в рамках теории [c.289]

    Поскольку в явлении дифракции электронов проявляются их волновые свойства, поток электронов в данном случае можно рассматривать как луч с длиной волны X. Марк и Вирль (Германия), впервые применившие дифракцию электронов для излучения молекул, воспользовались без каких-либо изменений теорией рассеяния рентгеновских лучей, разработанной до этого Дебаем. [c.293]


Смотреть страницы где упоминается термин Рентгеновские теория: [c.156]    [c.83]    [c.252]    [c.82]    [c.245]    [c.246]    [c.246]    [c.192]    [c.37]    [c.2]   
Физическая химия Том 1 Издание 5 (1944) -- [ c.108 ]




ПОИСК





Смотрите так же термины и статьи:

Дебай адсорбция теория теория рентгеновский анализ

Интенсивность и форма рентгеновских эмиссионных линий К-и L-серий. (Теория вопроса)

РАЗДЕЛ И. ВЗАИМОДЕЙСТВИЕ С ВЕЩЕСТВОМ И ТЕОРИЯ РАССЕЯНИЯ КРИСТАЛЛАМИ РЕНТГЕНОВСКИХ ЛУЧЕЙ Рентгеновские спектры

Рентгеновские Рентгеновская-спектроскопия. 78. Закон Мозли и теория рентгеновских спектров. 79. Систематика рентгеновских спектров. 80. Применение рентгеноспектроскопии Периодическая система элементов

Теория молекулярного поглощения рентгеновских лучей Кронига — Петерсена — Богдановича

Теория погасания рентгеновских рефлексов



© 2024 chem21.info Реклама на сайте