Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободно-радикальная обрыва цепи

    Радикальная полимеризация протекает по цепному механизму. Процесс образования молекулы полимера состоит из следующих стадий инициирование — образование первичного свободного радикала из валентнонасыщенной молекулы мономера рост цепи — последовательное присоединение к радикалу молек л мономера с сохранением свободной валентности на конце растущей молекулы обрыв цепи — прекращение роста молекулы. [c.49]


    Согласно радикально-цепной теории крекинг представляет собой сложный цепной процесс, который идет с участием свободных алифатических радикалов. Первичной реакцией крекинга всегда является распад молекулы алкана по связи С—С на два свободных алкильных радикала (может случиться распад по связи С—Н, но при температурах крекинга он в 10 —10 раз менее вероятен). Свободные радикалы вступают в реакции с молекулами алкана, продуктами распада, реагируют между собой и со стенками. Эти вторичные реакции идут легко по сравнению с реакцией зарождения цепей, которая требует энергии активации не меньшей энергии диссоциации связи и определяют развитие и обрыв цепей. Длина цепи определяется конкуренцией реакций развития и обрыва цепей и в различных случаях принимает различное значение. В стационарном состоянии длина цепи определяется отношением скоростей реакций развития и зарождения цепей. [c.25]

    Поскольку процессы свободно-радикальной полимеризации проводятся либо в жидкой фазе, либо в газовой фазе под давлением, то в этих реакциях преобладающим является квадратичный обрыв цепей. На это однозначно указывает то обстоятельство, что скорость инициированной свободно-радикальной полимеризации всегда пропорциональна корню квадратному из концентрации инициатора. [c.360]

    Ускорить обрыв цепей можно введением в реакционную смесь веществ, которые взаимодействуют со свободными атомами и свободными радикалами активнее, чем молекулы исходных веществ, но в результате взаимодействия дают частицы, неспособные к реакции продолжения цепи. Такие., вещества называются ингибиторами цепных свободно-радикальных реакций. По большей части это достаточно сложные органические молекулы. В качестве простого примера можно привести ингибирование кислородом реакции lj с во- [c.317]

    Ускорить обрыв цепей можно введением в реакционную смесь веществ, которые взаимодействуют со свободными атомами и свободными радикалами активнее, чем молекулы исходных веществ, но в результате взаимодействия дают частицы, не способные к реакции продолжения цепи. Такие вещества называются ингибиторами цепных свободно-радикальных реакций. По большей части это достаточно сложные органические молекулы. В качестве простого примера можно привести ингибирование кислородом реакции С1г с недородом или метаном. Кислород легко реагирует с атомом С1, образуя относительно стабильное, хотя и валентно-ненасыщенное соединение СЮг  [c.404]


    При радикальной полимеризации процесс инициируется свободными радикалами. Реакция проходит через несколько стадий а) инициирование б) рост цепи в) передача или обрыв цепи. [c.352]

    Реакции 2 и 5 будут повторяться до тех пор, пока не произойдет обрыв цепи — уничтожение ведущего цепь свободного радикала при столкновении с другой радикальной частицей. В данном случае обрыв цепи может произойти при одной из следующих реакций  [c.99]

    Радикальные реакции представляют собой цепь последовательных стадий инициирование, рост цепи и обрыв цепи. На стадии инициирования возникают свободные радикалы в процессе роста цепи образуются конечные продукты реакции и свободные радикалы. Однако такой цикл превращений не может продолжаться бесконечно, и радикалы могуг превращаться в неактивные молекулы, соединяясь друг с другом,— происходит обрыв цепи и реакция прекращается. [c.245]

    Радикальная полимеризация вызывается (инициируется) веще- ствами, способными в условиях реакции распадаться на свободные радикалы (пероксиды, персульфаты, азо- и диазосоединения и др.)т I а также действием теплоты и света. Радикалы инициаторов входят 5 в состав молекулы полимера, образуя его конечную группу. Обрыв цепи происходит при столкновении концевой группы полимера с I- молекулой специально добавляемого регулятора роста цепи или [ за счет реакций рекомбинации и диспропорционирования. [c.261]

    Процесс окисления сырья при получении битумов протекает по радикально-цепному механизму. При этом происходит образование свободных радикалов и гидроперекисей в качестве промежуточных продуктов. Кроме того, возникают цепные реакции обрыв цепей происходит в результате рекомбинации радикалов. В системе устанавливается равновесная концентрация свободных радикалов. Одновременно протекает множество реакций окислительное дегидрирование, деалкилирование, окислительная полимеризация, поликонденсация, крекинг с последующим уплотнением его продуктов. В зависимости от условий окисления возможны взаимные превращения кислых и нейтральных продуктов окисления. [c.470]

    В качестве инициаторов этой реакции используют соединения, генерирующие свободные радикалы. Присоединение свободного радикала к молекуле ненасыщенного мономера дает новый свободный радикал, который в свою очередь присоединяется к следующей молекуле мономера, образуя еще более крупный свободный радикал, и т. д. Обрыв цепи происходит при рекомбинации или диспропорционировании двух радикалов. В процесс цепной радикальной полимеризации входят реакции инициирования (схемы 1, 2), роста цепи (схемы 3, 4) и обрыва цепи (схема 5). Для реакций цепной полимеризации обычно характерны следующие особенности, отличающие их от процессов ступенчатой полимеризации (а) рост цепи происходит путем быстрого присоединения молекул мономера к небольшому числу активных центров (б) скорость полимеризации очень быстро достигает максимального значения и затем остается более или менее постоянной до тех пор, пока не будет израсходован весь инициатор (в) концентрация мономера равномерно у-меньшается (г) даже при низкой степени конверсии мономера в продуктах реакции содержатся полимеры с высокой молекулярной массой. [c.301]

    Радикальная полимеризация протекает до тех пор, пока на растущей цепи сохраняется активный свободный радикал. В случае, когда при взаимодействии активного радикала с молекулой какого-то вещества образуется малореакционноспособный радикал, который не может продолжать цепь и присоединяется к полимерному радикалу, наступает обрыв цепи и замедление или полное прекращение полимеризации. [c.146]

    Радикальной полимеризации свойственны все признаки цепных реакций, известных в химии низкомолекулярных соединений (например, взаимодействие на свету хлора и водорода). Такими признаками являются резкое влияние незначительного количества примесей на скорость процесса, наличие индукционного периода и протекание процесса через последовательность трех зависящих друг от друга стадий — образование активного центра (свободного радикала), рост цепи и обрыв цепи. Принципиальное отличие полимеризации от простых цепных реакций заключается в том, что на стадии роста кинетическая цепь воплощается в материальную цепь растущего макрорадикала, и эта цепь растет до образования макромолекулы полимера. [c.40]

    Анализ кинетических кривых показывает, что во всех случаях катализа начальная скорость накопления гидроперекиси зависит от концентрации катализатора в степени 0,5. Согласно радикально-цепной схеме окисления углеводородов наличие подобной зависимости указывает на квадратичный обрыв цепей на пероксильных радикалах, т. е. катализатор в начальной стадии реакции играет роль инициатора свободных радикалов. [c.48]


    Радикальные процессы обычно протекают по цепному механизму. Они начинаются с воздействия на молекулу атомов или частиц, имеющих неспаренные электроны, в больЩинстве случаев возникающих за счет термической или фотохимической диссоциации лабильных в этом отношении молекул при реакциях замещения в результате воздействия такой активной частицы от реагирующей молекулы отрывается один из атомов, чаще всего водород, и образуется новый свободный радикал. Благодаря высокой активности свободных радикалов они вступают в реакцию с молекулами реагента, также отрывая от них один из атомов, причем вновь образуются частицы, имеющие нечетное количество электронов. Такое поочередное образование из реагирующей молекулы и из реагента частиц с неспаренным электроном создает длинную цепь актов превращения [1, 2]. Обрыв цепи происходит в результате соединения друг с другом двух частиц, имеющих нечетное количество электронов с образованием валентнонасыщенной молекулы. В качестве п.римера рассмотрим возможное течение реакции между иодистым метилом и иодистым водородом, в результате которой образуются метан и иод [1]. Процесс течет по следующей схеме  [c.744]

    Механизм полимеризации мономеров представляет собой обыЧ иый механизм свободно-радикальной полимеризации, включающий три основные стадии — инициирование, рост и обрыв цепи могут иметь место й реакции передачи цепи в зависимости от природы мономера, добавок и вида инициирования [175, 832] (см также приложение I к гл. 1). Скорость полимеризации пропорциональна корню квадратному из концентрации инициирующих ра дикалов, которая, в свою очередь, определяется дозой облучения или концентрацией инициатора  [c.282]

    Так же как и в случае любой радикальной цепной реакции, при рассмотрении механизма радикальной полимеризации следует учитывать три типа элементарных актов образование свободных радикалов (инициирование цепей), последовательная реакция при неменяющемся числе радикалов (рост цепей), гибель радикалов (обрыв цепей). Кроме этого, часто наблюдается также побочный процесс переноса цепей. Этот вопрос будет рассмотрен в раз- [c.670]

    Радикальная полимеризация. При радикальной полимеризации в первой стадии (возбуждение) под влиянием какого-либо физического или химического воздействия образуется свободный радикал М- К . Свободный ради к-а л — это частица, имеющая неспаренный электрон, но не имеющая заряда. Растущая цепь также является свободным радикалом (макрорадикалом). В третьей стадии макрорадикал превращается в неактивную макромолекулу полимера — происходит обрыв цепи. [c.18]

    Скорость реакции инициирования (а) (образования радикала RI) обозначим Ши- Константы скоростей всех реакций роста цепи будем для простоты считать одинаковыми и равными Ар. Так как процесс радикальной полимеризации обычно протекает в газе под давлением или в жидкой фазе, преобладающим является квадратичный обрыв цепей. Обрыв цепей, как показано на схеме, может осуществляться двумя способами путем рекомбинации (г) и путем диспропорционирования свободных радикалов (д), когда происходит передача атома от одного свободного радикала к другому, приводящая к образованию двух валентно-насыщенных молекул. При этом у частицы, отдающей атом, возникает двойная связь. В реакции обрыва могут участвовать любые радикалы (которые могут быть и одинаковой длины). Константу скорости обрыва обозначим ко. [c.522]

    Скорость реакции инициирования (а) (образования радикала Кг) обозначим Ша. Константы скоростей всех реакций роста цепи будем для простоты считать одинаковыми и равными кр. Так как процесс радикальной полимеризации обычно протекает в газе под давлением или в жидкой фазе, преобладающим является квадратичный обрыв цепей. Обрыв цепей, как показано на схеме, молсет осуществляться двумя способами путем рекомбинации (г) и путем диспропорционирования свободных радикалов (д), когда происходит передача атома от одного свободного радикала к другому, [c.526]

    Основные виды полимеризации радикальная и ионная. Наиболее распространена радикальная полимеризация—цепная реакция, состоящая из трех стадий зарождение (инициирование) цепи (свободные радикалы присоединяются к отдельным молекулам мономера М, М ->- М[), самопроизвольный рост цепи (М +М —М М и т. д.) и обрыв цепи (М-->-Р , где —неактивный полимер). [c.207]

    Даже при тщательном диспергировании размер частиц сажи в среде полимера составляет 10 ммк или более поэтому подвижность их чрезвычайно мала по сравнению с молекулами обычных антиоксидантов, которые мигрируют через менее упорядоченные области полимера. Обрыв свободно-радикальных окислительных цепей или распад перекисей, очевидно, происходит на поверхности этих частиц. Возможность миграции летучих компонентов из частиц сажи к центрам зарождающегося окисления исключается (раздел HI. Б). В смеси, содержащей 3% сажи, среднее расстояние между частицами размером 20 мм с (при условии равномерного распределения) составляет более 50 ммк. В результате неизбежной агломерации это расстояние может увеличиться в несколько раз. Трудно представить, каким образом реакционноспособные радикалы могут перемещаться на такие расстояния с тем, чтобы погаснуты на поверхности частиц сажи. Для этого необходимо предположить, что в твердом полимере происходит перемещение неспаренных спинов либо вдоль молекул, либо между соседними молекулами. Бемфорд и Уорд описали несколько возможных механизмов движения радикалов в твердом полимере. Предположено также чтс разрыв длинных полимерных цепей во время окисления увеличивает подвижное гь в массе полимера и приводит к последующей кристаллизации. Концы радикалов, образующихся при этом разрыве, могут [c.480]

    ИоЕгнал полимеризация, как и радикальная, является цепным процессом. От радикальной ионная полимеризации отличается тем, что полимерная цепь, образующаяся в присутствии ионных катализаторов, не содержит свободных радикалов, а активные центры в ней образуются в результате присоединения катализатора к молекуле мономера, вследствие чего образуется малоустойчивый ион, к которому последовательно присоединяются молекулы мономера с одновременным перемещением заряда на крайнее звено растущей цепи. Таким образом, в этом случае рост цепи осуществляется под действием макроиона, а не макрорадикала, как это имеет место в радикальной полимеризации. Обрыв цепи макромолекулы при ионной полимеризации происходит в результате отщепления от макромолекулы катализатора, который, таким образом, не расходуется на образование макромолекулы. [c.373]

    Радикальная полимеризация всегда протекает по цепному механизму. Функции активных промежуточных продуктов при радикальной полимеризации выполняют свободные радикалы. К числу распространенных мономеров, вступающих в радикальную полимеризацию, относятся этилен, винилхлорид, винилацетат, винил-иденхлорид, тетрафторэтилен, акрилонитрил, метакрилонитрил, метилакрилат, метилметакрилат, стирол, бутадиен, хлоропрен й другие мономеры. Радикальная полимеризация обычно включает несколько элементарных химических стадий инициирование, рост цепи, обрыв цепи и передачу цепи. Обязательными стадиями являются инициирование и рост цепи. [c.7]

    Детальное рассмотрение химических процессов с молекулярнокинетической точки зрения показывает, что большинство из них протекает по так называемому радикально-цепному механизму. Особенность цепных реакций заключается в образовании на промежуточных этапах свободных радикалов — нестабильных фрагментов молекул с малым временем жизни, имеющих свободные связи -СНз, -СгНа, С1-, N , HOj- и т. п. Связанная система сложных реакций, протекаюищх г.оследовательно, параллельно и сопряженно с участием свободных радикалов, называется цепной реакцией. По цепному механизму развиваются многие процессы горения, взрыва, окисления н фотохимические реакции. Значение цепных реакций в химии и в смежных с нею областях науки (биологии, биохимии) очень велико. Выдающаяся роль в изучении цепных процессов принадлежит советскому ученому акад. Н. Н. Семенову, сформулировавшему основные закономерности протекания таких реакций. Основные стадии цепных реакций зарождение цепи, продолжение цепи, разветвление цепи и обрыв цепи. Зарождение цепи — стадия цепной реакции, в результате которой возникают свободные радикалы нз валентно-насыщенных молекул. Эта стадия осуществляется разными путями. Так, при синтезе хлористого водорода из водорода и хлора образование радикалов осуществляется за счет разрыва связи С1—С1 (по мономолекулярному механизму) под воздействием кванта света b + Av l- +С1-. А при окислении водорода зарождение цепи происходит за счет обменного взаимодействия по бимолекулярному механизму Н2-гО = Н--f-НОг. Образование свободных радикалов можно инициировать введением посторонних веществ, обладающих специфическим действием (инициаторов). В качестве инициаторов часто используют малостабильные перекисные и гидроперекисные соединения. [c.219]

    Все описанные в литературе современные схемы такого нитроваиия (А. И. Титова, Мак-Клирли и Дегеринга, Бахмана с сотрудниками) совпадают в том, что оно представляет собой, по терминологии Титова, молекулярно-радикальный процесс. В этот термин Титов вкладывает представление о реакции, происходящей путем образования из исходных веществ свободных радикалов (К и N02) и последующей рекомбинацией последних. Процесс, являясь радикальным, не приводит к возникновению ценной реакции, поскольку рекомбинация алкильного радикала с двуокисью азота, как и всякая рекомбинация, не сопровождается появлением новых, свободных радикалов и, следовательно, представляет собой обрыв цепи. [c.302]

    Итак, цепная реакция возникает в силу принципа неунич-тожимости свободной валентности в реакциях, имеющих первый порядок по радикалу. Для ее реализации необходимо выполнение трех условий. 1. Набор и строение реагентов должны быть такими, чтобы в системе мог реализоваться цикл радикальных превращений с регенерацией исходного радикала (атома). 2. В системе из реагентов или путем специального инициирующего воздействия (инициатор, свет, радиация) необходимо генерировать свободные радикалы. 3. Условия подбираются такими, чтобы продолжение протекало гораздо быстрее, чем обрыв цепей. [c.347]

    Использование изотопов при изучении полимеризации ви-нильных соединений описано Бевингтоном [3]. Полагают, что полимеризация винильных мономеров протекает по радикальному механизму и может быть инициирована свободными радикалами. Если прервать процесс полимеризации, катализируемой перекисями (свободные радикалы), до его завершения, то не.пьзя обнаружить продуктов полимеризации с промежуточным молекулярным весом. Если в качестве катализатора применять трехфтористый бор, то можно выделить продукты различной степени полимеризации. Очевидно, при термическом разложении динитрилов азо-бис-(алифатических) кислот образуются радикалы [2, 4], большая часть которых инициирует образование полимерной цепи, а обрыв цепи [5] происходит в результате связывания двух таких растущих цепей. Сравнением молекулярного веса, определенного осмотическим путем, и количества меченых инициирующих остатков в случае полимеризации метилового эфира метакриловой кислоты [6] показано наличие меченых атомов у обоих концов цепи. [c.559]

    В составе полиметакрилонитрила, получаемого методом радикальной полимеризации, имеются термически неустойчивые кетен-иминные группировки строения —СН —С(СНз)=С=М—. При нагревании полиметакрилонитрила до 90 °С эти структуры быстро исчезают одновременно понижается молекулярный вес полиме-ра 5 . Полагают что наиболее вероятной причиной образования кетениминных группировок является обрыв цепи путем рекомбинации полиметакрилонитрильных свободных радикалов. При этом один из радикалов реагирует в своей таутомерной кетениминной форме  [c.394]

    Можно также инициировать катионную полимеризацию и сополимеризацию при ПОМОШ.И радиационных методов [8], применяя очень низкие температуры и электроноакцепторные полярные растворители (например, хлористый этил), способствующие увеличению времени жизни катионов. Стабилизирующая роль растворителей состоит, по-вндимому, в том, что они захватывают вторичные электроны, отрывающиеся от молекул системы при ее облучении, и тем самым затрудняют их взаимодействие с катионами. В этих условиях свободные радикалы, возникшие вместе с ионами в результате облучения, проявляют незначительную активность и практически не в состоянии возбуждать полимеризацию. Ионный характер реакции подтверждается тем, что радикальные ингибиторы не тормозят ее, и тем, что сополимеры, полученные такими методами, не отличаются по составу от сополимеров, синтезированных из тех же мономерных смесей в условиях обычной катионной полимеризации (см. с. 199 и след.). В гомогенной среде скорость полимеризации пропорциональна первой степени интенсивности облучения (мономолекулярный обрыв цепи), в то время как прн радикальной полимеризации она пропорциональна квадратному корню из интенсивности. В соответствии с этим повышение мощндсти дозы облучения ускоряет ионный процесс в большей степени, чем радикальный, и поэтому благоприятствует катионной полимеризации. [c.163]

    Присутствие некоторых загрязнений оказывает большое влияние на реакцию окисления с образованием гидроперекисей аналогично тому, что имеет место при свободно-радикальной полимеризации. Фенолы, например, при концентрациях порядка 10 моля на 1 моль окисляюш,егося веш,ества почти полностью подавляют реакцию [24, 251. Соотношения между различными процессами, по которым могут реагировать радикалы, принимаюш,ие участие в цепной реакции, подробно рассмотрены для случая полимеризации [61, 62], причем было проведено различие между ингибированием и замедлением . Реакция ингибируется, когда введенная примесь реагирует с инициирующими радикалами раньше, чем они смогут развить цепи, причем этот процесс настолько эффективен, что в идеальном случае цепная реакция полностью подавляется до тех пор, пока не израсходуется весь ингибитор. Начиная с этого момента цепная реакция протекает с такой же скоростью, как и в отсутствие ингибитора, причем время полного ингибирования пропорционально концентрации ингибитора. Замедление же наблюдается в тех случаях, когда обрыв цепей в результате взаимодействия радикалов с молекулами примеси конкурирует с реакцией обрыва, протекающей по обычному механизму. Таким образом, замедлитель только несколько снижает скорость реакции. По мере израсходования замедлителя скорость реакции постепенно увеличивается до значения, наблюдаемого в отсутствие замедлителя. Согласно этим определениям, влияние фенолов на реакции окисления можно назвать замедлением. [c.148]

    Из этой таблицы видно, что фенол можно получить с выходом от 50 до 80%, однако только в том случае, если конверсия бензола будет 10% или ниже. В своей работе Мойер [129] указывает, что гомогенное парофазное окисление бензола в фенол тормозится при помещении инертной насадки в реактор. Однако, если инертную насадку покрыть ВгОз, то превращения, выраженные в процентах, будут равны превращениям в реакторе без насадки. Вероятно, В2О3 предотвращает обрыв цепи свободно-радикальной реакции па поверхности, что облегчает гомогенное окисление. [c.216]

    Т. обр., термостойкость полимеров опр Зделяется не только прочностью связей в макромолекуле, но и наличием (или отсутствием) условий, способствующих протеканию ценных свободно радикальных ироцессов. Все факторы, затрудняющие осуществление таких процессов, будут приводить к повышению термостойкости. Так, введение в макромолеку.лы полиметилметакрилата небольшого количества акрилонитрильных звеньев, отщепление к-рых характеризуется большей энергией активации, приводит к заметному сни кению скорости деполимеризации. На скорость Т. д. существенное влияние оказывает цепное строение иолимерных соединений, поскольку отрыв атома водорода от макромолекулы, сопровождающийся переходом соответствующего участка цепи от тетраэдрич. конфигурации к плоской, связан с перемещением полимерных цепочек, что неизбежно должно привести к повышению энергии активации реакции и снижению ее скорости по сравнению со скоростью аналогичной реакции в случае низкомолекулярных соединений. По-видимому, один из основных факторов, определяющих высокую термостойкость застеклованных и кристаллич. пол1 меров,— невозможность эффективного развития ценЕых процессов из-за высокого межмолекулярного взаимодействия, затрудняющ( го перемещение сегментов макромолекулы. Существенную роль в этом случаэ играет также и снижение скорости инициирования вследствие рекомбинации в клетке первичных радикалов, образовавшихся прп разрыве связей С—С в макромолекуле (см. Клетки э(ффект). [c.302]

    Итак, Патат и Фрёмблинг заключили, что термическая полимеризация фосфонитрилхлорида протекает по радикальному механизму. Инициирование реакции осуществляется за счет разрыва связи Р—N в кольце тетрамера. Обрыв цепи происходит в результате мопомолекулярной перегруппировки, приводящей к образованию связи Р—N на конце цепи. Однако недавние наблюдения [6] говорят о том, что если и имеются свободные фосфонитрильные радикалы, то концентрация их очень мала. [c.66]

    Радикальная полимеризация вызьшается (инициируется) веществами, способными в условиях реакции распадаться на свобод- ные радикалы (перекиси, диазоаминосоединения и другие вещества), а также действием тепла и света. Растущая молекула полимера вплоть до момента стабилизации представляет собой свободный радикал. Радикалы-инициаторы входят в состав молекулы поли мера, образуя его конечную группу. Обрыв цепи происходит при столкновении либо с молекулой регулятора роста цепи (которым [c.75]


Смотреть страницы где упоминается термин Свободно-радикальная обрыва цепи: [c.13]    [c.604]    [c.54]    [c.627]    [c.28]    [c.604]    [c.292]    [c.72]    [c.71]    [c.75]   
Основы химической кинетики (1964) -- [ c.518 , c.519 ]




ПОИСК





Смотрите так же термины и статьи:

Обрыв цепи



© 2024 chem21.info Реклама на сайте