Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекула взаимодействие в адсорбционном

    Рассмотрим адсорбцию с учетом взаимодействия молекул в адсорбционном слое. Теплота адсорбции на однородной поверхности ставится в зависимость от степени заполнения  [c.277]

    Особенностью адсорбционных взаимодействий является то, что адсорбирующаяся молекула взаимодействует не с одним центром на поверхности адсорбента (ионом, атомом или молекулой, образующими его решетку), но со многими соседними центрами. При этом суммарное взаимодействие молекулы адсорбата со всем адсорбентом, обусловленное дисперсионными силами, всегда больше взаимодействия ее с одним центром адсорбента, а суммарное электростатическое взаимодействие может быть и меньше электростатического взаимодействия с одним центром адсорбента (если, например, диполь молекулы адсорбата, притягиваемый катионом решетки, испытывает отталкивание со стороны соседних с этим катионом анионов, образующих вместе с катионами знакопеременную поверхность адсорбента). [c.438]


    При деформации поверхности растворов поверхностно-активных веществ происходит перераспределение концентрации в адсорбционном слое, и поверхностное натяжение оказывается уже не одинаковым по всей поверхности. Локальные повышения и уменьшения поверхностной концентрации определяются подвижностью тех же молекул в объеме (диффузия в объеме), скоростью, с которой они переходят из объема на поверхность и обратно, и энергией взаимодействия молекул в адсорбционном слое. Эти эффекты, которые теория Рэлея не принимает в расчет, подробно проанализированы в книге Физико-химическая гидродинамика [7 ]. [c.122]

    Все применяемые сорбенты делят на полярные (оксиды и соли) и неполярные (активный древесный уголь). Адсорбция на полярных адсорбентах происходит под влиянием ион-дипольных и диполь-дипольных взаимодействий. Адсорбционная способность определяется числом и типом полярных групп в молекуле адсорбированных веществ. Атомные группировки в органических соединениях располагаются в порядке возрастания адсорбируемости на силикагеле  [c.358]

    Механизм инверсии смачивания связан с определенной ориентацией молекул ПАВ в адсорбционном слое. Если твердая поверхность первоначально гидрофильна, то адсорбированные молекулы взаимодействуют своими полярными группами с поверхностью, а неполярными цепями обращаются наружу, вследствие чего твердая поверхность становится гидрофобной. Например, при погружении стеклянной пластинки в раствор стеариновой кислоты в октане или бензоле на поверхности пластинки образуется монослой стеариновой кислоты. Адсорбированные молекулы кислоты на пластинке ориентируются неполярными цепями наружу, придавая поверхности гидрофобные свойства. [c.315]

    Известны различные методы определения удельной поверхности дисперсных тел. Наиболее широкое распространение в научной и производственной практике получили методы низкотемпературной адсорбции азота (БЭТ), газопроницаемости в различных режимах течения газа, электронной микроскопии, ртутной порометрии и кинетический метод (по скорости образования пироуглерода иа углеводородного газа) [1—3]. Рассмотрим кратко главные достоинства и недостатки для каждого из методов, В методе БЭТ главным методическим недостатком является то, что при выводе основного уравнения адсорбции не учитываются энергетическая неоднородность поверхности и взаимодействия молекул внутри адсорбционного слоя существует также некоторая неопределенность в величине посадочной площадки адсорбируемой молекулы [2], В работе [2] рассмотрены и другие ограничения применимости метода БЭТ. В последнее время разработаны экспресс-методы [4], значительно сократившие время измерения, К достоинствам метода относится возможность получения высокой точности самих измерений (но не его интерпретации). [c.117]


    По изотерме адсорбции газа или пара кроме Зц п можно рассчитать ди( х )еренциальную теплоту адсорбции д, характеризующую энергию взаимодействия адсорбированных молекул в адсорбционном слое. Для приближенного расчета достаточно иметь всего две изотермы адсорбции при различных, не сильно отличающихся температурах [c.31]

    Исходные молекулы, взаимодействуя со свободными валентностями катализатора, диссоциируют, а образовавшиеся атомы присоединяются к его поверхности. Адсорбированные атомы, как показали расчеты, постоянно меняют характер своей связи. Взаимодействие частиц, находящихся одновременно в состоянии слабой связи с поверхностью катализатора, может привести к образованию продуктов реакции. При этом адсорбционные связи частиц с катализатором рвутся, а продукты реакции десорбируются. [c.361]

    Все сказанное выше относится преимущественно к нерастворимым ПАВ, Как было уже отмечено, растворимые ПАВ (с несильной полярной группой) содержат углеводородную цепь с малой длиной, поэтому межмолекулярные взаимодействия цепей имеют для них, как правила, меньшее значение. Рассмотрим, однако, в целя.ч общности, как может измениться вид изотерм адсорбции и поверхностного натяжения таких ПАВ при двухмерной конденсации молекул в адсорбционном слое. [c.71]

    Как следует из теории, изложенной во второй главе, чем уже и выше пики адсорбции — десорбции на С, -кривых, тем сильнее аттракционное взаимодействие между молекулами в адсорбционном слое. При очень сильном аттракционном взаимодействии, когда на поверхности электрода образуется конденсированный слой из молекул органического вещества, лики на С, -кривых вырождаются в вертикальные линии, как это показано на рис. 1.12,0. Ряд свойств адсорбированных на электроде конденсированных слоев будет рассмотрен во второй и четвертой главах. [c.25]

    Характер адсорбции и ориентации зависит от взаимодействия адсорбционных центров поверхности с активными центрами молекул. Наиболее полно изучена экспериментально адсорбционная ориентация полярно-цепных молекул с одним активным центром расположенным в конце цепи молекулы. К их числу относятся насыщенные нормальные основные карбоновые кислоты, одноатомные спирты и другие аналогичные или однозамещенные углеводо роды. Молекулы этих веществ имеют вертикальную ориентацию при адсорбции. Бездипольные молекулы углеводородов ориентируются горизонтально относительно твердой поверхности. Такая ориентация характеризуется наиболее слабым взаимодействием молекул или его отсутствием. [c.66]

    Таким образом, при некоторой концентрации должен произойти скачок в адсорбции. Этот скачок, вызванный взаимодействием адсорбционных молекул, должен быть трактован как двумерная конденсация — превращение двумерного газа в двумерную жидкость. Опыт подтвердил наличие таких скачков для ряда случаев, в частности для адсорбции паров металлов на кварце. [c.303]

    Некоторые авторы [72—75] считают диполь-дипольное взаимодействие адсорбированных молекул воды или других полярных молекул, ориентированных в определенном направлении, существенным фактором флокуляции. Однако вычисление этого взаимодействия в настоящее время связано с принципиальными трудностями. В зависимости от того, на основании каких моделей проводится расчет, варьирует знак диполь-дипольной компоненты взаимодействия. Так, Мартынов и Смилга [76] полагают, что расположение двух частиц с ориентированными адсорбционными слоями соответствует минимуму энергии, если происходит соприкосновение последних, Строго говоря, предложенный в работе [76] метод учета взаимодействия адсорбционных слоев справедлив, когда расстояние между частицами сравнимо с плечом [c.45]

    Из приведенных выше опытов нельзя предположить существование определенных дискретных комплексов, образованных в результате взаимодействия молекул в адсорбционных слоях, однако получения высокой прочности, безусловно, можно достичь при подходящем молекулярном расположении в адсорбционном слое. [c.190]

    Выше было показано, что при очень малых концентрациях, когда величина адсорбции Г невелика, молекулы в адсорбционном слое находятся в газовом состоянии (IV. 7) затем при увеличении концентрации раствора величина адсорбции Г возрастает, и в уравнении состояния адсорбционного слоя (IV. 8) приходится учитывать собственную площадь и силы взаимодействия адсорбированных молекул. Наконец, при дальнейшем увеличении адсорбции поверхностноактивного вещества Г достигает своего максимального значения при котором площадь 5= 1/Г ах занимаемая молекулой в адсорбционном слое, также приобретает свое предельное значение. Лангмюр сопоставляя уравнения (IV. 6) и (IV. 9) при высоких концентрациях, показал, что константа Ь из уравнения Шишковского равна [c.84]

    Если молекулы адсорбата связаны сильной водородной связью, взаимодействие адсорбат—адсорбат будет усиливаться. Это заметно проявляется для воды и менее сильно для аммиака. В случае воды наблюдается тенденция к характерному тетраэдрическому расположению молекул в адсорбционном слое, а до тех пор, пока взаимодействие с адсорбентом не будет достаточно сильным, будут получаться изотермы III типа. Это действительно [c.112]


    При адсорбции слабых электролитов с функциональными группами, способными к образованию Н-связей с водой (анилина, фенола и их производных), величина fa, в основном определяется /со. Следует заметить, что в отличие от гидрофобных полярных молекул нитробензола с большим дипольным моментом, вертикальная составляющая которых обусловливает значительное отталкивание в адсорбционной фазе, молекулы фенола и анилина имеют относительно небольшие дипольные моменты (1,41 В и 1,48 О, соответственно). Энергия взаимного отталкивания их молекул в адсорбционной фазе намного меньше энергии взаимодействия с молекулами воды, так как растворимость таких соединений относительно велика даже при полном подавлении ионизации, ве- [c.147]

    Коэффициенты активности веществ, адсорбированных из водного раствора углеродными материалами, и взаимодействие молекул в адсорбционной фазе [c.145]

    В то время как для газообразных веществ знание спектра внутренних электронных колебательных и вращательных переходов достаточно для расчета термодинамических функций с точностью, превышающей точность прямых измерений, для адсорбированных веществ аналогичная задача значительно сложнее. Для вычисления суммы по состояниям и расчета термодинамических функций адсорбированных молекул в общем случае необходимо знать следующее 1) изменение частот внутренних колебаний адсорбированных молекул 2) возмущение твердого тела 3) частоты колебаний адсорбированных молекул относительно адсорбционного центра 4) частоты либрационных колебаний адсорбированных молекул 5) вклад, обусловленный энергетической неоднородностью адсорбционных центров, и 6) вклад, обусловленный взаимодействием адсорбированных молекул друг с другом [74]. [c.146]

    Изучение свойств адсорбированного вещества современными экспериментальными методами позволяет получить важные сведения, характеризующие сорбционный процесс, свойства поверхности твердых тел, мелимо лекулярные взаимодействия, тонкие особенности движения молекул в адсорбционном слое, фазовые переходы и т. п. Такие работы особенно интенсивно развивались в последние десятилетия и определили существенные достижения в понимании природы адсорбционных взаимодействий. [c.207]

    Интересно, что уравнение Ленгмюра, полученное на основании модели локализованной адсорбции газов на поверхности твердого тела, часто хорошо описывает адсорбцию растворенных веществ на поверхности лсидкости (поверхности раздела раствор — газ), при которой адсорбция не локализована, так как молекулы подвин ны и образуют двумерную газо- или жидкоподобную пленку. Однако парадоксальность этого факта лишь кажущаяся. Те основные положения модели Ленгмюра, которые не являются состоятельными при адсорбции газов на твердой поверхности, соблюдаются при адсорбции из растворов поверхность жидкости идеально однородна, и взаимодействие адсорбированных молекул в адсорбционном слое мало отличается от взаимодействия их в растворе. К тому же оно сравнительно ослаблено за счет взаимодействия молекул растворенного вещества с молекулами растворителя и практически не влияет на адсорбцию. [c.219]

    Во всех процессах адсорбции взаимодействие адсорбента с поглощаемым веществом приводит к уменьшению свободной энергии. Поэтому они протекают самопроизвольно и сопровождаются выделением теилоты. Количество теплоты определяется характером взаимодействия поглощаемых молекул и адсорбента. При поглощении вещества пз газовой или парогазовой смеси путем физической адсорбции состояние молекул в адсорбционном слое приближается к конденсированному (жидкому) состоянию. Поэтому теплота физической адсорбции — величина такого же порядка, как теплота фазового перехода из парообразного в жидкое состояние, т. е. колеблется в пределах от нескольких килоджоулей до нескольких десятков килоджоулей на I моль поглощаемого вещества. Теплота активированной адсорбции и хемосорбции по порядку величины такая же, как теилоты химических реакций, и составляет несколько сотен килоджоулей на 1 моль поглощаемого вещества. [c.503]

    Это выражение показывает, что химический потенциал адсорбата в разреженном слое на однородной поверхности при данной температуре определяется его концентрацией (через а), потенциальной энергией его взаимодействия с адсорбентом (через <7s ), кинетической энергией его молекул в адсорбционном слое (через q E) и внутримолекулярной потенциальной и кинетическойэнерг и ей молекулы адсорбата на поверхности (через q ,). [c.509]

    Контакт топ п1в с кислородом может быть нерегулируемый (при хранении и транспортировании) и регулируемый (например, при сжигании в двигателях). При контакте топлива с кислородом воздуха в общем случае возможны три варианта взаимодействия. Первый характеризуется отсутствием изменс-пнй молекулярной структуры компонентов, участвующих во взаимодействии, и обратимым изменением массы топлива. Описанная ситуация возникает прп барботировании воздуха через топливо или случайном попадании его при хранении н транспортировании. Пузырьки воздуха коллоидно-дисперсных размеров, имеющих вокруг себя толстые абсорбционно-сольватные слои, находятся в топливе. Энергия взаимоде11ствия между молекулами в адсорбционно-сольватном слое значительно превышает энергию взаимодействия адсорбцнонно-сольватного слоя с кислородом воздуха. Так как обмен между адсорбционносольватным слоем и дисперсионной средой происходит без изменения структуры молекул, то топливо обладает бесконечной химической стабильностью. [c.214]

    Для хроматографии молекул на основании их химического и геометрического строения и возможных изменений конформации весьма важно создание на поверхности адсорбентов рецепторных мест фиксации, способных проявлять различные виды межмолекулярных взаимодействий, (табл. 1.1). В лекции 1 показано, что для разделения множества структурных изомеров достаточно применить неспецифические атомарные адсорбенты с плоской поверхностью. В лекции 2 приведены примеры хроматографии близких по геометрии полярных молещул при дополнительном воздействии на такие молекулы электростатического поля ионных адсорбентов. Б лекциях 3 и 4 рассмотрено использование образования между молекулами и поверхностными соединениями водородных связей. В лекции 4 показано также, что адсорбенту можно придать электроноакцепторные свойства путем отложения на его поверхности адсорбционных слоев модифицирующих веществ, обладающих этими свойствами. Это улучшает разделение электронодонорных молекул. Однако адсорбционные модифицир ующие слои часто оказываются недостаточно термически стойкими для использования в газовой хроматографии при высоких температурах или нестойкими к воздействию растворителей (элюентов) в жидкостной хроматографии. Поэтому весьма важно использовать для связи модифицирующего вещества с поверхностью адсорбента также и более прочные химические связи. При этом надо стремиться достичь геометрического и химического соответствия поверхностных соединений и тех или [c.89]

    Применимость этого уравнения (которое является аналогом уравнения, описывающего состояние идеального газа) свидетельствует о псевдогазовом состоянии адсорбированных веществ. Увеличение концентрации раствора приводит к увеличению адсорбции. В этом случае (как и при переходе от идеальных газов к реальным) необходимо учитывать собственную площадь и силы взаимодействия адсорбированных молекул (11.12). При дальнейшем увеличении адсорбции поверхностного вещества Г достигает своего максимального значения Гмакс, при котором площадь 5=1/Гмакс, занимаемая молекулой в адсорбционном слое, также приобретает свое предельное значение. [c.290]

    Вместе с тем подобная инвариантность поведения ПАВ в разреженных адсорбционных слоях, независимо от природы молекул ПАВ и характера их взаимодействия с подстилающим раствором, позволяет утверждать, что именно зависимость между двухмерным давлением и адсорбцией, выражаемая уравнением состояния адсорбционного слоя л (Г), может рассматриваться как его основная характеристика, не зависящая от состояния молекул ПАВ в объеме раствора. Напротив, величина с117с1с, которая характеризует способность вещества к адсорбции, существенно зависит от строения молекул ПАВ и природы растворителя в пределах одного гомологического ряда величина с1Г/(1с, как отмечалось на с. 55, быстро растет при переходе к последующему гомологу. Такое резкое различие в способности ПАВ к адсорбции при тождественности их поведения в самом адсорбционном слое показывает, что возрастание величины АТ/Ас в гомологическом ряду следует связывать с различиями в поведении рассматриваемых гомологов в объеме раствора, а не в адсорбционном слое. Это означает, что (для разреженных адсорбционных слоев) величина до— определяется энергетическим состоянием молекул ПАВ в объеме раствора. Иными словами, в равенстве (II—16) стандартную часть химического потенциала молекул в адсорбционном слое можно [c.58]

    Дальнейшее развитие теории адсорбции привело к отказу от упрощенных представлений об одинаковости всех а. ц. и об отсутствии взаимодействия между молекулами в адсорбционном слое. Согласно современным представлениям активные центры на поверхности твердого тела неодинаковы и могут быть разделены на различные группы, отличающиеся между собой по величине теплоты адсорбции Qi и, следовательно, значением Ь. Так как а. ц. действуют независимо друг от друга, то общую адсорбцию можно найти суммированием Г на указанных группах. Обозначим число а. ц. с теплотой адсорбции Сг в некоторой группе через При концентрации С адсорбция в этой группе равна Гг=2г ,С/( 14- С), а общая адсорбция Г=22г6гС/(1- -6гС). Для определе- [c.220]

    Ха актер адсорбции и ориентации зависит от взаимодействия адсорбционных центров поверхности с активными центрами молекул. Наиболее полно изучена экспериментально алсорбционнак ориентация полярно-цепных молекул с одним активным центром, расположенным в конце цепи молекулы, К их числу относятся насыщенные нормальные основные карбоновые кислоты, одноатомные спирты, другие аналогичные или о дно замещенные углеводороды. Молекулы этих веществ имеют вертикальную ориентацию [c.30]

    Увеличение концентрации ЦТАБ в системе после достижения изоэлектрического состояния (>2,5-10 М) приводит к росту положительных значений электрокинетического потенциала. Однако степень агрегации частиц (вплоть до концентрации ЦТАБ 10 М) вновь начинает расти, что может быть обусловлено разрушением ГС при появлении заряда на поверхности частиц, а также некоторой гидрофобизацией поверхности при адсорбции ПАВ. Гидрофилизация поверхности частиц ЗЮг за счет двуслойной адсорбции ЦТАБ [512] маловероятна вследствие низкой степени покрытия ЗЮг ионами ЦТАБ вблизи изоэлектрической точки. Из расчета энергии взаимодействия сферических частиц при С=ЫО М следует, что коагуляция частиц во вторичном минимуме (доли кТ) невозможна. Она происходит в первичном минимуме при преодолении энергетического барьера. Положительная структурная составляющая расклинивающего давления, ограничивающая его глубину, может быть обусловлена как взаимодействием ГС воды на поверхности ЗЮг, так и взаимодействием адсорбционных слоев ПАВ.. Можно ожидать, что при данной концентрации степень покрытия поверхности кварца молекулами ПАВ близка к 20% [513]. Как видно из рис. 10.3, дальнейшее увеличение концентрации ЦТАБ вновь приводит к ее стабилизации (участок г), что может быть связано с образованием геми-мицелл на поверхности кварца, а также увеличением положительного значения -по-тенциала частиц ЗЮг. [c.179]

    Современная технология производства феррожидкостей использует экстракцию частиц магнетита углеводородной средой после их градрофобизацни адсорбционным слоем олеиновой кислоты. Для этого после одно- или двукратной промывки осадка от маточного раствора к водной суспензии магнетита добавляют углеводородный раствор пептизатора (олеиновой кислоты) и все это перемешивают при нагревании. В смеси последовательно протекают следующие процессы. 1) адсорбция олеиновой кислоты на границе двух растворов 2) взаимодействие адсорбированных молекул кислоты со щелочным водным раствором и образование водорастворимых солей (мыл) олеиновой кислоты 3) десорбция мыл в водную фазу, их хемосорбция на частицах магнетита и гидрофобизация частиц 4) взаимодействие адсорбционного слоя олеиновой кислоты непосредственно с частицами магнетита и их гидрофобизация 5) переход гидрофобизованных частиц магнетита в углеводородную среду с образованием устойчивого коллоидного раствора. Магнетит полностью переходит из водной среды в углеводородную. Процесс экстракции может сопровождаться взаимным эмульгированием двух растворов, что делает необходимой последующую осушку феррожидкости (выпаривание воды). [c.757]

    Интересны соображения Ребиндера об активации наполнителя в случае, когда частицы недостаточно лиофильны по отношению к наполняемой среде, т. е. не взаимодействуют адсорбционно в должной степени с определенными функциональными группами молекул полимера. Наполнитель может быть активирован хемоадсорбцией соответствующего поверхностно-активного вещества. Однако наибольшее упрочняющее действие наполнителя достигается не при предельном насыщении поверхностного слоя, а приблизительно при половинном насыщении поверхности частиц наполнителя [504, 505, 508, 509]. При этом возможно образование коагуляционной структуры на сохранившихся, относительно лиофобных участках мо- [c.260]

    При больших степенях заполнения адсорбционного объема наблюдается другая картина. Если бы свойства адсорбированной воды при больших степенях заполнения определялись исключительно ионами, находящимися в шестичленных окнах, мы должны были бы обнаружить одинаковые диэлектрические свойства воды, адсорбированной на цеолите NaA и на образце I. Если бы эти свойства определялись только ионами, связанными с восьмичленными окнами, диэлектрические свойства воды, адсорбированной на цеолитах MgNaA с разной степенью обмена, должны были бы совпадать. По-видимому, при больших степенях гидратации диэлектрические свойства адсорбированной воды определяются как молекулами, взаимодействующими с ионами, локализованными в шестичленных окнах, так и молекулами, взаимодействующими с ионами, находящимися в восьмичленных окнах. Возможно взаимодействие молекул воды и с другими элементами структуры цеолита. [c.244]


Смотреть страницы где упоминается термин Молекула взаимодействие в адсорбционном: [c.179]    [c.638]    [c.28]    [c.638]    [c.473]    [c.46]    [c.43]    [c.124]    [c.147]    [c.215]    [c.70]    [c.147]   
Химическая кинетика и катализ 1974 (1974) -- [ c.0 ]

Химическая кинетика и катализ 1985 (1985) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Молекула взаимодействие



© 2025 chem21.info Реклама на сайте