Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрофобные связи в нуклеиновых кислотах

    Связь нуклеиновой кислоты с белком в вирусном нуклеопротеиде значительно прочнее, чем в тканевом. В силу компактного строения вирусной частицы белок и нуклеиновые кислоты пространственно сближены, благодаря чему возникает большое число солевых связей и других дополнительных взаимодействий (гидрофобное, водородное связывание и др.). Однако, в отличие от тканевых нуклеопротеидов, в вирусных нуклеопротеидах основным фактором, обеспечивающим их устойчивость, является взаимодействие самих белковых молекул [c.466]


    Одной из самых интригующих и перспективных задач современной науки является изучение механизма и движущих сил процессов, происходящих в живом организме. Решение этих проблем позволит перейти на качественно новый уровень развития фундаментальных и прикладных наук, таких как медицина, биотехнология и фармакология. В области химических наук толчком к началу исследования процессов молекулярного узнавания в биосистемах послужило открытие в конце бО-х годов искусственных молекул (краун-эфиров), способных к специфическому распознаванию других химических частиц. В последующие годы бурное развитие получил синтез соединений, способных к самоорганизации. На рубеже 80-90-х годов сформировалась новая область знаний, получившая название "супрамолекулярная химия". У ее истоков стоят работы трех нобелевских лауреатов 1987 года -Ч. Педерсена, Д. Крама и Ж.-М. Лена [1-3]. По определению Лена [4], супрамолекулярная химия - это химия межмолекулярных связей, изучающая ассоциацию двух и более химических частиц, а также структуру подобных ассоциатов. Она лежит за пределами классической химии, исследующей структуру, свойства и превращения отдельных молекул. Если последняя имеет дело главным образом с реакциями, в которых происходит разрыв и образование валентных связей, то объектами изучения супрамолекулярной химии служат нековалентные взаимодействия водородная связь, электростатические взаимодействия, гидрофобные силы, структуры "без связи". Как известно, энергия невалентных взаимодействий на 1-2 порядка ниже энергии валентных связей, однако, если их много, они приводят к образованию прочных, но вместе с тем гибко изменяющих свою структуру ассоциатов. Именно сочетание прочности и способности к быстрым и обратимым изменениям - характерное свойство всех биологических молекулярных структур нуклеиновых кислот, белков, ферментов. [c.184]

    До сих пор мы говорили лишь о тепловой денатурации ДНК, обусловленной энтропийной выгодностью денатурированного клубкообразного состояния. Энергия молекул ДНК и других нуклеиновых кислот меньще в спиральном состоянии, которое поэтому является устойчивым при достаточно низких температурах. В энергетический баланс молекул нуклеиновых кислот вносят существенный вклад не только внутри- и межмолекулярные водородные связи и взаимодействие гидрофобных групп, но и электростатическое взаимодействие заряженных групп цепи. Поэтому температура денатурации нуклеиновых кислот зависит от степени ионизации макромолекул, определяемой концентрацией водородных ионов, а также от ионной силы раствора, т. е. от концентраций других низкомолекулярных ионов. [c.371]


    Как уже указывалось, во всех случаях, когда молекулы содержат ионизуемые группы, концентрация водородных ионов в растворе оказывает существенное влияние на конформационные переходы. Это обусловлено тем, что электростатическая свободная энергия, включая энергию ионизации, неодинакова для различных конформационных структур макромолекул. Так, например, ионизуемые группы белков и нуклеиновых кислот могут участвовать в образовании внутримолекулярных водородных связей. В белках существенную роль играют тирозил-карбоксилатные и тирозил-гистидиновые связи. Поэтому ионизация групп в нативных молекулах оказывается невозможной. В то же время в молекуле, в которой в результате конформационного перехода внутримолекулярные водородные связи оказываются разорванными, степень ионизации групп определяется значением pH, и такая молекула обладает отрицательной электростатической свободной энергией. Ионизуемые группы в глобулярных белках могут быть экранированы также гидрофобными взаимодействиями с близко расположенными к ним областями белковой молекулы [c.20]

    С изучением поведения коллоидов в высокочастотном электрическом поле связано исследование диэлектрических свойств коллоидных растворов. Многие золи лиофобных коллоидов содержат вытянутые частицы со значительной асимметрией в расположении электрических зарядов вследствие этого они имеют большие постоянные дипольные моменты и легко ориентируются в электрическом поле. Такие растворы характеризуются высокой диэлектрической постоянной е, например, у 1%-ного золя = 400 (для сравнения укажем, что у воды е = 80, а у большинства органических жидкостей — ниже 30). Высокий дипольный момент был найден также у молекул аминокислот, белков, нуклеиновых кислот напротив, у большинства гидрофобных коллоидов он невелик. [c.117]

    Как и при интерпретации влияния солей на водные растворы, основное внимание следует обращать на изменение свободной энергии системы при добавлении неполярных веществ к водным растворам интерпретация этого явления непосредственно с точки зрения структурной модели может оказаться ошибочной. Так, структурная модель дает приемлемое объяснение солюбилизации гидрофобных соединений под действием спиртов алкилзамещенных аминов и мочевин. Если одно растворенное вещество увеличивает структурированность раствора, можно было бы ожидать, что оно должно облегчать введение молекул другого подобного вещества. С другой стороны, структурирующая способность вещества совершенно необязательна для того, чтобы оно было в состоянии солюбилизировать гидрофобные соединения в воде. Уже отмечалось, что один из возможных механизмов денатурации белков и нуклеиновых кислот под действием мочевины заключается в стабилизации гидрофобных боковых цепей аминокислот и оснований нуклеиновых кислот при увеличении их контакта с растворителем, что проявляется в увеличении растворимости и уменьшении коэффициента активности этих групп в присутствии мочевины [31, 32, 35]. Спирты, ацетон и подобные им вещества разрушают гидрофобные связи и способствуют денатурации аналогичным образом. Однако мочевина, вероятно, не обладает структурирующим действием, по крайней мере в том смысле, как это понимается для неполярных молекул мочевина очень слабо влияет на большинство свойств воды и либо практически не изменяет структуру воды, либо, из данных по поглощению ультразвука, несколько ее разрушает [85]. Данные по энтальпии и теплоемкости растворов веществ с гидрофобными группами, а также исследования спектра ультразвуковой релаксации полиэтиленгликоля в воде и растворах мочевины указывают на то, что энергетически более благоприятное взаимодействие гидрофобных групп с мочевиной, чем с водой, связано с уменьшением структурированности воды вокруг гидрофобных групп [85, 86]. Таким образом, разрушение гидрофобных связей под действием мочевины или спирта нельзя объяснить одним и тем же механизмом с точки зрения структуры растворителя, хотя по свободной энергии эффекты соединений этих двух типов одинаковы. Возможно, что мочевина создает более благоприятное окружение для гидрофобных групп, находящихся в пустотах струк- [c.328]

    Биогенные вещества связываются и транспортируются как альбуминами, так и глобулинами, а ксенобиотики транспортируются преимущественно альбуминами. Реагирование лекарственных веществ с белками происходит посредством водородных связей, электростатического и гидрофобного взаимодействий. Связанные с белками лекарства не проходят через мембраны и гистогематические барьеры не участвуют в фармакологических эффектах не подвергаются химическим превращениям, в связи с чем дольше циркулируют в крови. Лекарства иногда конкурируют друг с другом за связывание с белками. Транспорт лекарств может осуществляться клетками крови (эритроциты, в меньшей степени — лейкоциты тромбоциты транспортируют биогенные амины). Активными являются несвязанные (свободные) формы лекарств. Для реализации их действия требуется связывание с макромолекулами, выполняющими роль клеточных рецепторов, или мишени (белки, нуклеиновые кислоты, сложные липиды). Лекарства накапливаются в тех тканях, где имеются рецепторы к ним. [c.483]


    На устойчивость двойной спирали в растворе влияют многочисленные факторы. Образование упорядоченных структур является экзотермическим процессом, и поэтому спирали стремятся расплавиться при повышении температуры растворов ДНК. Из числа сил, стабилизующих нативную форму, водородные связи и диполь-дипольные взаимодействия между пуриновыми и пиримидиновыми остатками, упакованными в двойную спираль [344], должны приводить к выделению тепла. В то же время следует ожидать, что гидрофобное взаимодействие будет эндотермическим. Значение гидрофобного взаимодействия иллюстрируется тенденцией водных растворов ДНК к денатурации при добавлении органических растворителей с большими неполярными остатками [345]. Как и следовало ожидать, высокая плотность заряда, обусловленная ионизованными фосфатными остатками, расположенными вдоль цепи ДНК, обусловливает неустойчивость спиральной конформации. В результате этого добавление умеренных количеств электролитов должно стабилизовать нативную форму ДНК, что и было обнаружено при добавлении таких солей, как галогениды щелочных или щелочноземельных металлов [346, 347]. Если определить температуру плавления (Г ) как температуру, при которой изменения в спектре, характеризующие денатурацию, происходят на 50%, то Т- , по-видимому, будет иметь примерно линейную зависимость от логарифма концентрации катионов щелочных металлов. В типичном случае повышается от 36 до 82° при увеличении концентрации ионов натрия с 0,0003 до 0,1 н. Увеличение концентрации соли приводит также к сужению интервала температур, в котором происходит переход спираль — клубок. В отношении стабилизации спиральной конформации особенно эффективны некоторые двухвалентные иопы, образующие специфические комплексы с фосфатными группами основной цепи ДНК (например, Mg +). Нуклеиновая кислота как бы образует стехиометрические комплексы с этими катионами, причем Тт таких комплексов высока даже при очень слабой ионной силе. При всех условиях переход спираль — клубок происходит в удивительно узком температурном интервале, причем 90% изменений, как правило, происходит в интервале менее 10°. [c.127]

    Формирование (сборка) вирусов. Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически узнавать друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, солевых и водородных связей. [c.54]

    Вторичная структура нуклеиновых кислот образуется за счет возникновения водородных и гидрофобных связей между основаниями, т. е. слабых взаимодействий. [c.110]

    Водородные связи играют большую роль в организации и стабилизации вторичных структур нуклеиновых кислот. Однако в последнее время накапливаются данные, свидетельствующие о том, что водородные связи являются не единственными, а в ряде случаев и не самыми существенными силами при образовании вторичных структур нуклеиновых кислот. Серьезными конкурентами водородных связей выступают так называемая гидрофобные связи и взаимодействия соседних нуклеиновых оснований в полинуклеотидной цепи (sta ked for es, по-ви-димому, я—я-взаимодействия). —Ярил1. ред.].  [c.737]

    На третьей - фармакодинамической - стадии изучаются проблемы распознавания лекарственного вещества (или его метаболитов) мишенями и их последующего взаимодействия. Мишенями могут служить органы, ткани, клетки, клеточные мембраны, ферменты, нуклеиновые кислоты, регуляторные молекулы (гормоны, витамины, нейромедиаторы и т.д.), а также биорецепторы. Рассматриваются вопросы структурной и стереоспе-цифичной комплементарности взаимодействующих структур, функционального и химического соответствия лекарственного вещества или метаболита (например, фармакофорной группировки) его рецептору. Взаимодействие между лекарственным веществом и рецептором или акцептором, приводящее к активации (стимулированию) или дезактивации (ингибированию) биомишени и сопровождающееся ответом организма в целом, в основном обеспечивается за счет слабых связей - водородных, электростатических, ван-дер-ваальсовых, гидрофобных. [c.13]

    Нуклеопротеиды образуются, как правило, в результате нековалентных взаимодействий белков и нуклеиновых кислот. В связывании принимают участие электростатические и гидрофобные взаимодействия, водородные связи, а также уже упоминавшиеся с тзкинг -взаимодействия стабилизирующую роль в комплексах часто играют ионы металлов и другие кофакторы. [c.398]

    Последовательно расположенные нуклеотиды в молекулах ДНК и РНК ковалентно связаны друг с другом при помощи фосфатных мостиков . 5 -гидрок-сильная группа пентозы одного нуклеотида присоединена к 3 -гидроксильной группе пентозы соседнего нуклеотида с помощью фосфодюфирной связи (рис. 27-5). Таким образом, ковалентные остовы нуклеиновых кислот состоят из монотонно чередующихся фосфатных и пентозных групп основания же можно рассматривать как боковые группы, присоединенные к остову на равных расстояниях друг от друга. Отметим также, что сахарофосфатный остов и ДНК, и РНК несет заряд, поскольку фосфатные группы являются кислыми и при характерных для клеток pH заряжены отрицательно. Вместе с тем пуриновые и пиримидиновые основания, которые плохо растворимы в воде, гидрофобны. Укажем также, что цехш ДНК и РНК обладают определенной полярностью, цли направлением, поскольку все межнуклео-тидные фосфодиэфирные связи ориентированы вдоль цепи одинаково (рис. 27-5). Благодаря этой полярности каждая по-линуклеотидная цепь имеет 5 -конец и 3 -конец. [c.856]

    В настоящее время имеется большое число экспериментальных фактов, свидетельствующих в пользу того, что стабильность спиралей полипептидов и особенно двойных спиралей нуклеиновых кислот поддерживается не только внутримолекулярными водородными связями, но и обычными силами ван-дер-ваальсова взаимодействия (диноль-дипольными и дисперсионными), действующими между гидрофобными группами [45,53-э5] Большая роль ван-дер-ваальсовых взаимодействий в стабильности двойных спиралей нуклеиновых кислот продемонстрирована также расчетами Де Во и Тиноко Поскольку это обстоятельство существенно не изменяет математического аппарата излагаемой теории, мы в дальнейшем будем для простоты говорить только о водородных связях. [c.291]

    Известно большое число разнообразных гидролитических ферментов (группа сериновые протеазы - трипсин, химотрипсин и т.п. ферменты, гиролизующие нуклеиновые кислоты, типа рибонуклеазы и т. п. ферменты, гидролизующие сахара, типа лизоцима и т. п.). В самом общем смысле субстрат для ферментов такого типа удобно рассматривать в виде плоскости (гидрофобная полимерная подложка) с активными точками , обладающими чрезвычайно высокой избирательностью. Каталитической активностью такой поверхности можно было бы управлять, например регулируя молекулярные вращения или дегидратируя субстрат, который является стабильным в гидратированном состоянии. Стабилизация переходных состояний в этом случае осуществлялась бы в результате как электростатических сил, так и водородных связей. Практическое воплощение таких планов является, разумеется, очень трудной задачей. Например, при использовании лизоцима возникают сложности, связанные с тем, что глюкозное кольцо в процессе связывания субстрата переходит из устойчивой конфигурации типа кресло в неустойчивую конфигурацию типа ванна . [c.103]

    Нуклеиновые кислоты образованы нуклеотидами, связанными фос-фодиэфирными группами через группы в положениях 3 и 5. Такая структура имеет большое число вращательных степеней свободы. Для закручивания структуры представляют интерес 5 точек сахарофосфатного остова и две внутренние точки молекулы нуклеотида (точки 2 и 3, в которых возможны эндо- и экзо-положения сахара). Последнее обстоятельство связано с возможностью вращения связи сахар—фосфат (син и ангт) в нуклеотиде. Рассмотрим возникающие конфигуращ1и с точки зрения энергетической выгодности. Стабилизирующими факторами двойной спирали являются электростатические силы отталкивания между фосфатными группами, гидрофобное взаимодействие между основаниями (стэкинг-взаимодействие) и водородные связи между комплементарными основаниями. Именно эти факторы должны определять углы вращения сахаров и оснований, а также всю структуру синтезируемых олиго- и полинуклеотидов. [c.190]

    Согласно существовавщей до недавнего времени традиционной точке зрения для поддержания внутримолекулярной структуры полимеров в растворах необходимо наличие специального типа взаимодействий, в частности — водородных связей. Именно этого типа внутримолекулярные взаимодействия считали ответственными за спиральную конформацию молекул полипептидов, белков и нуклеиновых кислот (см., например, [251, 510]). Лишь в последнее время стали допускать, что ван-дер-ваальсовы взаимодействия между гидрофобными группами цепи также участвуют в стабилизации спиральной структуры молекул указанных полимеров 538—540]. [c.264]

    Переходы от упорядоченных к беспорядочным конформациям цепных молекул имеют большое значение, поскольку они касаются условий, которые должны поддерживаться для сохранения белков и нуклеиновых кислот в форме, необходимой для осуществления их биологических функций. В то же время явление г рехода спираль — клубок может рассматриваться как одномерный аналог процессов плавления и кристаллизации и поэтому представляет особый теоретический интерес. Рассмотрим сначала переходы в таких изолированных цепях, которые типичны для полипептидов, не учитывая образования мультиплетных спиралей, характерных для нуклеиновых кислот и их аналогов. Ранее было установлено, что характер связи С — N, частично напоминающей двойную, исключает вращение вокруг нее, и поэтому мономерный остаток ведет себя как жесткое звено. Следовательно, для описания относительной ориентации триплета аминокислотных остатков необходимо установить лишь два внутренних угла вращения ф. Когда беспорядочный клубок переходит в идеально унорядоченную конформацию, свобода выбора значений ф утрачивается. В результате этого для цепи, состоящей из Z аминокислотных остатков, переходу в идеальную спираль будет противодействовать прирост свободной энергии, пропорциональный Z — 2. С другой стороны, образованию спирали будут благоприятствовать различного типа взаимодействия между ближайшими соседями. К таким взаимодействиям относятся образование внутримолекулярных водородных связей, гидрофобное взаимодействие и эффекты десольватации, сопровождающие переход боковых цепей из относительно незащищенного состояния в беспорядочном клубке в компактную упаковку вокруг спирали. В целом такие эффекты будут более ярко выражены для остатков, находящихся внутри спирали, чем для остатков, располагающихся на ее концах. Поэтому вклад взаимодействий между непосредственными соседями в свободную энергию образования спирали будет пропорционален Z — б, где б — коэффициент, учитывающий меньшую устойчивость концов спирали. При б > 2 (для а-спирали Шеллманом [368] было принято 6 = 4) свободная энергия перехода беспорядочного клубка в идеальную спираль будет уменьшаться при увеличении Z. Однако, для того чтобы правильно установить условия, определяющие переходы спираль — клубок, необходимо учитывать частично упорядоченные состояния, содержащие разнообразные сочетания последовательностей, свернутых в спирали или в беспорядочные клубки. Результаты, полученные различными исследователями, рассматривавшими эту проблему, аналогич- [c.132]

    Вирусы, как известно, построены из отдельных макромолекул, удерживаемых вместе в результате возникновения между ними ионных и гидрофобных взаимодействий и водородных связей с помощью различных агентов, ослабляющих эти взаимодействия или же разрывающих водородные связи, вирусы можно разложить на составляющие их элементы. Кроме того, в растительных, бактериальных и животных клетках, инфицированных многими просто устроенными вирусами, наблюдается образование не только полных вирусных частиц, но также и вирусоподобных образований, не содержащих нуклеиновой кислоты. Следовательно, форма этих частиц, будь они палочковидные или изометрические, определяется отнюдь не нуклеиновой кислотой, а характером специфической агрегации белковых молекул (см. гл. VIII, разд. Б). Поэтому есть все основания думать, что в определенных условиях вирусные белки могут агрегировать с образованием вирусоподобных частиц даже in vitro. Впервые эта особенность была обнаружена у белков ВТМ, выделенных из инфицированных клеток [495] и из вирусных частиц [423]. [c.215]

    Фотоденатурация нуклеиновых кислот является следствием разрушения кооперативной системы слабых нековалентных связей (водородные, гидрофобные и т. д.) и частичного (локального) или полного нарушения двуспиральной структуры Уотсона — Крика (эффект расплетания ). Наиболее вероятно, что денатурация нуклеиновых кислот представляет собой вторичный темновой процесс, вызванный образованием фотопродуктов, хотя не исключена возможность прямого разрыва слабых связей при тепловой диссипации энергии электронного возбуждения оснований, как это предполагается для белков. Несмотря на то, что спектр действия денатурации ДНК совпадает со спектром поглощения тимидина, причастность тиминовых димеров к образованию денатурированных участков в ДНК остается до сих пор сомнительной. Г. Б. Завильгельским твердо установлено, что локальные нарушения вторичной структуры ДНК при ее облучении коротковолновым светом определяются индукцией сшивок между комплементарными нитями ДНК. Наиболее точно такой вывод подтверждается опытами, в которых миграционным путем с ацетофенона на тимин изменялось количество тиминовых димеров в ДНК. При этом каких-либо различий в кривых плавления, отражающих состояние вторичной структуры, у образцов ДНК, содержащих 0,17 и 30% димеров, обнаружить не удалось. В то же время кинетика образования сшивок и локальных денатурационных участков в ДНК идентична. [c.241]

    Результаты, полученные при изучении транспортных РНК, показывают, что нуклеиновые кислоты могут иметь высокоупорядоченную трехмерную конформацию. Не вызывает сомнения, что гораздо более крупные молекулы РНК, такие, как рибосомные РНК, также имеют сложную трехмерную структуру. Существуют и молекулы ДНК сложной формы. О механизме образования третичной структуры нуклеиновых кислот известно еще слищком мало, и проблема предсказания уникальной трехмерной структуры этих молекул исходя из их нуклеотидной последовательности представляется невероятно трудной (если вообще разреишмой), так же как и аналогичная проблема для белков. (Дальнейщее обсуждение третичной структуры нуклеиновых кислот можно найти в гл. 24.).Тем не менее ясно, что основными факторами, благодаря которым формируется третичная структура полинуклеотидов и белков, являются геометрические и стерические ограничения, водородные связи, гидрофобные взаимодействия и электрические силы. [c.312]

    Компонентами нуклеиновых кислот являются основания, формулы которых приведены на рис. 1-4. Эти основания состоят из относительно гидрофобных циклов, которые содержат группы, способные образовывать водородные связи при этом получаются пары оснований, показанные на рисунке. Основание ковалентно связано с сахаром (2-дезокси-о-ри6оза в ДНК или о-рибоза в РНК), к которому присоединена фосфатная группа при поликонденсации таких веществ между мономерами возникают фос-фодиэфирные связи и образуются нуклеиновые кислоты, как показано на рис. 1-5. Когда между основаниями образуются водородные связи, полярная часть каждого из них становится менее доступной для воды поскольку гетероциклы явно гидрофобны (особенно по сравнению с сахаром и заряженным фосфатным остатком), в нуклеиновых кислотах, где присутствуют водородные связи, основания расположены таким образом, что они ми- [c.12]

    Фосфодиэфирные связи в нуклеиновых кислотах также подвижны (рис. 1-7). Однако, поскольку основания представляют собой систему плоских сильно гидрофобных колец, окруже11ных лишь небольшим числом способных к протонированию и депротонированию групп, они имеют тенденцию к межплоскостным взаимодействиям (гл. 16), уменьшая при этом до минимума контакт с водой. Это в свою очередь приводит к увеличению жесткости структуры, даже в случае одноцепочечного полинуклеотида. [c.17]


Смотреть страницы где упоминается термин Гидрофобные связи в нуклеиновых кислотах: [c.85]    [c.318]    [c.324]    [c.53]    [c.149]    [c.209]    [c.148]   
Стратегия биохимической адаптации (1977) -- [ c.222 ]




ПОИСК





Смотрите так же термины и статьи:

Гидрофобные связи

Нуклеиновые кислоты



© 2025 chem21.info Реклама на сайте