Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химический потенциал и поверхностный слой

    В главе I рассмотрены основные термодинамические соотношения, характеризующие поверхностные явления, и особенности тонких жидких пленок. Наряду с фундаментальными уравнениями поверхностных слоев и различными модификациями уравнений Гиббса —Дюгема рассмотрены зависимости химического потенциала поверхностно-активного вещества (ПАВ) в поверхностном слое от состава и поверхностного давления и на их основе получены выражения для дифференциальной работы адсорбции и гид-рофильно-олеофильного соотношения ПАВ, которые используются далее при исследовании устойчивости эмульсий и пленок. [c.4]


    Возможен и другой подход. Наш коллега из ГДР доктор А. Гроссман предложил не писать в фундаментальном уравнении Гиббса член а вместо этого разделить массу адсорбента на две части — поверхностный слой и остальную часть. Химический потенциал поверхностной части адсорбента считается при адсорбции переменным, а химический потенциал объемной части — постоянным. Получается вполне непротиворечивое описание. На этом языке отличие микропористого адсорбента (например, цеолита) от непористого (мезо- или макропористого) состоит в том, что масса объемной части равна нулю, а масса поверхностной части равна всей массе адсорбента. [c.270]

    Многие задачи теории смачивания удается решить, вводя в рассмотрение переходную область между плоской пленкой и объемной жидкостью (рис. 3), в которой одновременно проявляется действие как поверхностных, так и капиллярных сил. В состоянии равновесия профиль переходной зоны может быть найден из условия постоянства химического потенциала в слое жидкости переменной толщины h  [c.29]

    Большой неожиданностью для исследователей оказался тот факт, что обработка поверхности гладких образцев перед испытаниями на коррозионное растрескивание иногда оказывает заметное влияние на получаемые результаты. Термическая обработка изготовленных образцов может приводить к изменениям в химическом составе поверхностного слоя (например, к обезуглероживанию стали или выделению цинка в латунях), что способствуют очень резкому изменению сопротивления коррозионному растрескиванию. Аналогичным образом-окисные пленки, если они формируются при высоких температурах в процессе термической обработки или при эксплуатации, могут оказывать влияние на результаты, в-основном из-за своего влияния на потенциал коррозии. [c.317]

    Ковалентное и нековалентное связывание. В водных растворах полипептидная цепь белков уложена так, что на поверхности молекулы расположено максимально возможное число гидрофильных групп, а гидрофобные группы располагаются внутри белковой глобулы. В результате взаимодействия полярных и заряженных групп поверхности молекулы белка с противоположно заряженными частицами в растворе вокруг каждой молекулы образуется ионный слой, который называется гидродинамическим или двойным слоем Штерна (рис. 4.4). Химический потенциал этого слоя называется зета-потенциалом и характеризует активность молекулы. Вблизи поверхности носителя, если она содержит полярные или заряженные группы, также образуется гидродинамический слой. Однако для сорбции белков используют гидрофобные матрицы, имеющие небольшое количество заряженных групп и соответственно низкий поверхностный потенциал. [c.57]


    Вершина параболы соответствует точке нулевого заряда. В этой точке поверхностное натяжение не зависит от потенциала, так как производная с а/ /ф равна нулю, т. е. поверхностный слой имеет нулевой заряд, что означает отсутствие двойного электрического слоя. Потенциал же поверхности в этой точке ие равен нулю. Например, можно подобрать такой раствор, в котором химический потенциал иона будет равен его химическому потенциалу на опу-]ценной в раствор металлической пластинке. В этом случае перераспределения ионов между фазами не будет и двойной электрический слой не возникает. Такой раствор называется нулевым раствором, а потенциал на пластинке в нем — потенциалом нулевого заряда. Разность потенциалов двух электродов (веществ) в нулевом [c.49]

    Гиббс предполагал, что переходный слой между двумя фазами, в котором происходит постепенное изменение свойств, имеет очень малую толщину. Поскольку в то время не было никаких данных о размерах молекул и силах, действующих между ними, Гиббс не смог оценить, какова эта толщина, и, таким образом, определить размер фаз, к которому все еще можно применять представления о поверхностной фазе с независящими от размеров параметрами. Однако он, по-видимому, допускал, что такая граница существует. Говоря, например, об устойчивости пен [4], он совершенно определенно утверждал, что очень тонкие слои могут иметь особые свойства, которые способны приводить к их неустойчивости и разрушению. Более четко идея об изменении термодинамических свойств (химического потенциала) в тонком слое была изложена Поляни в 1914 г. Согласно Поляни, в результате взаимодействия молекул тонкого полимолекулярного слоя с подложкой, поверх которой [c.92]

    При рассмотрении реальных капиллярных систем следует учитывать, что внутри каждого капилляра возникает двойной электрический слой. Распределение плотности заряда в поверхностном слое, а следовательно, и величина -потенциала однозначно определяется (при данной температуре) составом фаз, а именно химической природой твердой фазы, составом раствора и его концентрацией. Таким образом, величина -потенциала по физическому смыслу не должна зависеть от структурных параметров, т. е, от размеров капилляра, что подтверждается и экспериментально. Точно так же, в коллоидных растворах, например в суспензиях, величина -потенциала у частиц дисперсной фазы не должна зависеть от их размеров .  [c.178]

    Чтобы разделить эту работу на химическую и электростатическую составляющие, предположим, что с фазы а можно мысленно снять заряженный поверхностный слой, содержащий, кроме того, поверхностный потенциал х - Для растворов величина х обусловлена определенной ориентацией находящихся на поверхности диполей растворителя, а на границе металл — вакуум поверхностный потенциал возникает из-за того, что электронный газ частично смещается относительно [c.112]

    Если свойства поверхностного слоя не изменяются во времени, то протекающий через электрод ток определяется только скоростью самого электродного процесса и размерами электрода. В этом случае плотность тока является мерой скорости электрохимической реакции. Если скорость наиболее замедленной стадии электрохимической реакции определяется стадией массопереноса, то поляризация называется концентрационной. Поляризация электрода, обусловленная медленной химической реакцией (в результате разряда или ионизации), называется химической поляризацией. Если скорость электролиза лимитируется процессами образования новой фазы, как, например, при катодном выделении металлов, то возникающая поляризация называется фазовой. Зависимость скорости процесса от потенциала поляризации, т. е. /=[(АЕ), графически выражается поляризационной кривой. Она может состоять из нескольких ветвей (рис. 191), причем участки кривой (сс1, е1 и т. п.) отвечают возникновению нового электрохимического процесса. [c.458]

    Обычно стеклянный электрод делают в виде шарика, в который вводят хлор-серебряный электрод и раствор соляной кислоты. Таким образом, получается полуэлемент, который погружают в исследуемый раствор (рис. 9). Потенциал стеклянного электрода представляет собой разность потенциалов на обеих сторонах стеклянной мембраны. Если бы обе стороны мембраны были абсолютно идентичны, то при применении одинаковых электродов сравнения (цепь 1.33) э. д. с. цепи была равна нулю. Однако вследствие потери щелочи при тепловой обработке в процессе изготовления стеклянного шарика, дегидратации поверхностного слоя вследствие высушивания или вследствие продолжительной выдержки в дегидратирующем растворе, вследствие механического разрушения поверхностного слоя или химического протравливания щелочами или фтористым водородом поверхности стеклянной мембраны различны, что приводит к возникновению так называемого потенциала асимметрии. Этому способствует также неодинаковое механическое напряжение на двух сторонах стеклянной поверхности. [c.21]


    Обе эти характеристики связаны с высотой и формой потенциального барьера, существующего на границе раздела кристалл—окисная пленка. Действительно, скачок электростатического потенциала в слое пространственного заряда является высотой потенциального барьера, расположенного в этом слое, а скорость электронного обмена между объемом кристалла и поверхностным окислом определяется высотой потенциальных барьеров, расположенных в слое пространственного заряда и непосредственно на границе раздела. В 31 мы видели, что скорость электронного обмена (ток обмена) с различными ионами водного раствора неодинакова и зависит от их положения в ряду напряжений. Такое же утверждение справедливо и для адсорбированных в окисной пленке частиц, скорость электронного обмена с которыми должна зависеть от их химической природы и степени взаимодействия с окислом. Поэтому обычно говорят, что н а поверхности полупроводникового кристалла присутствуют быстрые и медленные состояния. При этом под быстрыми состояниями подразумеваются те энергетические уровни в окисной пленке, [c.206]

    Реальная энергия сольватации (—Ар) отличается от химической энергии сольватации —Ах), обусловленной химическим и электростатическим взаимодействием ионов с растворителем, на величину электрической работы 2 х. вызванной прохождением иона через поверхностный слой растворитель—вакуум, в котором локализован скачок потенциала X- Этот скачок потенциала на поверхности раздела растворитель — газовая фаза / [c.171]

    Реальная сольватация равна сумме двух членов химической сольватации и электрической работы, обусловленной прохождением иона через поверхностный слой растворитель—вакуум, в котором локализован скачок потенциала, обусловленный определенной ориентацией молекул растворителя. [c.174]

    Так, в процессе омыления жиров, катализируемом ионами ОН, активный комплекс несет отрицательный заряд (2 = — 1) и в поле отрицательного потенциала пленки (Аф < 0) концентрация активного комплекса будет меньше, чем в отсутствие Дф (для незаряженного комплекса), т. е. с < с во столько же раз изменится и скорость реакции. Из уравнения (VIH. 17) следует RTI = 25, если Дф — в мВ), что при Дф = 25 мВ скорость изменится в е раз, при Дф = 500 мВ — в раз, т. е. на 8 порядков Таким образом, введение в поверхностную пленку молекул, изменяющих знак или величину Дф, может привести к значительному изменению скоростей химических реакций, протекающих в поверхностных слоях. [c.112]

    Механизм мицеллообразования может быть объяснен следующим образом. С ростом с увеличивается химический потенциал И[ дв, выражающий тенденцию выхода компонента из раствора. При малых с ионы ПАВ выходят в поверхностный слой на границе раздела ПАВ с другой фазой, уменьшая тем самым свободную энергию системы. [c.332]

    Для системы, находящейся в состоянии термодинамического равновесия, химический потенциал любого компонента, в том числе адсорбированного вещества, одинаков во всех контактирующих фазах и в поверхностном слое. Рассматривая величину ц как химический потенциал растворенного вещества в объеме раствора, можно написать [c.48]

    После начала пассивации дальнейший рост электродного потенциала вызывает некоторое эквивалентное повышение поверхностного химического потенциала кислорода, следовательно, обусловливает дальнейшее упрочнение связи поверхностных катионов (т. е. повышение степени пассивации металла). В то же время создающаяся при этом большая разность химических потенциалов между поверхностью твердой фазы и объемом металлической решетки с какого-то момента вызывает встречную диффузию анионов и катионов и постепенное формирование окисленной поверхностной пленки. Это образование или утолщение пленки не вносит ничего принципиально нового в природу лимитирующего акта ионизации. Тем не менее, диффузия катионов в поверхностные вакантные узлы из нижележащих слоев решетки металла может существенно изменять кинетику процесса. Однако именно в результате диффузии, поддерживающей химический потенциал металла в поверхностном слое выше равновесного, и появляется у пассивного металла на поляризационной кривой участок постоянной скорости растворения, которого нет у индивидуального окисла. [c.441]

    При переходе от одного, даже неполного, слоя хемо-сорбированных атомов окислителя к относительно очень толстым сплошным пленкам природа пассивации не меняется. Причиной ее во всех случаях остается упрочнение химической связи поверхностных катионов твердой фазы, что и ведет к повышению потенциального барьера их электрохимического перехода в раствор. Эти затруднения тем больше, чем выше химический потенциал кислорода на внешней поверхности. [c.442]

    Дополним фундаментальные уравнения поверхностного слоя и адсорбционные формулы Гиббса зависимостями химического потенциала ПАВ от состава в объемной фазе и поверхностном слое, а также энергетическими характеристиками адсорбции. [c.19]

    Таким образом, расклинивающее давление определяется разницей химического потенциала пленки и жидкости, из которой получена пленка, при одном и том же давлении (/"Р). Знак расклинивающего давления выбран, в соответствии с определением Дерягина [41], так, что при наличии притяжения поверхностных слоев оно является отрицательным, а при наличии отталкивания — положительным. [c.27]

    Возможности применения протекторов (гальванических анодов) в отличие от анодных заземлителей (анодов с наложением тока от постороннего источника) ограничиваются их химическими свойствами. Стационарный потенциал материала протектора в среде должен быть достаточно отрицательным по отношению к защитному потенциалу защищаемого материала, чтобы можно было обеспечить достаточное напряжение для получения защитного тока. Согласно пояснениям к рис. 2.5, между стационарным и равновесным потенциалами металла нет взаимосвязи. Это объясняет различные изменения значений потенциалов в ряду стандартных потенциалов и стационарных потенциалов на рис. 7.1. В целом различия в стационарных потенциалах у металлов получаются меньшими. Кроме того, все стационарные потенциалы зависят также и от среды (см. табл. 2.4). Температура тоже оказывает на них влияние. В частности, потенциал цинка в различных водах с повышением температуры становится более положительным вследствие образования поверхностного слоя. [c.174]

    Действительно, концентрация насыщения раствора при неизменной дисперсности минерала (влияние упругой деформации на поверхностную энергию пренебрежимо мало) зависит только от температуры, и кратковременное пересыщение в прилегающем тонком слое раствора, вызванное приложенным напряжением вследствие увеличения химического потенциала кристалла, приводит к немедленному обратному осаждению всей растворившейся твердой фазы в виде осадка с ненапряженной решеткой (эпитаксия скажется только на первых моноатомных слоях, что имеет значение для равновесного потенциала металла и скорости растворения минерала в ненасыщенном растворе, но несущественно для минерала в пересыщенном растворе в связи с быстрым образованием толстого слоя осадка). В результате на поверхности кристалла, покрытого этим осадком, восстановится прежнее фазовое равновесие, и влияние напряжений не удастся зафиксировать. Поэтому механохимическое растворение минералов следует изучать в растворах, далеких от насыщения, используя нестационарные кинетические методы. [c.35]

    Под поверхностным слоем детали понимается как сама поверхность, полученная в результате обработки, так и слой материала, непосредственно прилегающий к ней. Характерная особенность этого слоя состоит в отличии его свойств от свойств основного материала. Поверхностный слой детали формируется под воздействием технологических факторов, внешней среды и имеет комплекс свойств, которые можно условно разделить на три группы геометрические (шероховатость, волнистость) физикомеханические и химические. К геометрическим параметрам поверхностного слоя относят шероховатость (Яа Кг), волнистость и направление неровностей. К физико-механическим параметрам поверхностного слоя относят дефекты поверхности (задиры, царапины, трепщны, раковины), дефекты материала (деформация отдельных зерен слоев), структурнофазовый состав, субструктуру (размеры блоков, фрагментов, угол раз-ориентировки блоков), кристаллическую структуру (тип и параметр решетки, текстура, плотность дислокаций, концентрация вакансий, остаточные микронапряжения). К химическим свойствам поверхностного слоя относят его химический состав, валентность, ионизационный потенциал и др. [c.16]

    Электрохимические реакции, протекающие на iлpalHИlцe раздела двух фаз, совершаются при наличии двойного электрического слоя из зарядов, находящихся в металле, и ионов другого знака в растворе. Подобные ионные двойные слои, возникающие на границе соприкосновения фаз, приводят к глубоким изменениям физико-химических свойств поверхностных слоев. Процесс ионного обмена протекает таким образом, что значение электродного потенциала отвечает термодинамическому равновесию между металлом и электролитом. [c.6]

    Рассмотрим процесс адсорбции количественно. В первой главе было показано, что работа увеличения поверхности равна ос13. Если в поверхностном слое активность растворенного вещества возрастает, то полная энергия поверхности увеличится на где л — химический потенциал растворенного вещества, а т.,— его избыток на поверхности. Тогда увеличение полной энергии с1и определится уравнением [c.27]

    Таким образом, когда химический потенциал адсорбата при адсорбции изменяется, общее изменение свободной энергии Гельмгольца при адсорбции не определяется только изменением поверхностного натяжения, а превышает его на величину ГгАцг- Значение Др,2 можно получить, зная давление насыщенного пара адсорбата ps в исходном состоянии над чистой жидкостью и давлением пара адсорбата р, находящегося в равновесии с адсорбционным слоем при величине адсорбции Гг. Согласно (VI.57) имеем [c.351]

    Из теоретических вопросов упомянем о концепции двойного электрического слоя и электрокинетическом потенциале. Идея двойного электрического слоя на границе двух фаз была выдвинута более 100 лет назад физиком Квинке для объяснения механизма открытого им потенциала протекания. Эта идея была широко использована в различных областях науки, в частности в физике (теории поля и электростатике), а также в электрохимии. Понятие об электрокинетическом потенциале было введено Фрейндлихом и Смолуховским в начале настояш его столетия и было также широко применено для освещения многих коллоидно-химических и электрохимических проблем, где ставился вопрос о природе и свойствах поверхностных слоев, разделяющих отдельные фазы, с учетом их взаимодействия. Электрокинетический потенциал играет большую роль, как известно, в вопросах устойчивости суспензоидных коллоидов, коагуляции, пептизации, в учении о структурах и структурообразовании, в явлениях [c.5]

    Это основное термодина.мическое уравнение, описывающее закономерности адсорбции в двух1компонентной системе, было впервые получено Гиббсом и носит его имя. Уравнение Гиббса показывает, что избыток компонента в поверхностном слое определяет резкость уменьшения поверхностного натяжения с ростом химического потенциала адсорбирующегося вещества. [c.47]

    Падение поверхностного натяжения при постоянстве адсорбции в соответствии с уравнением Гиббса связано только с ростом химического потенциала адсорбированного вещества при увеличении его концентрации в растворе. Как известно, рост химического потенциала в устойчивой двухкомпонентной системе всегда соответствует росту концентрации в данном случае — П0 отношению к поверхностному слою — поверхностной концентрации, а следовательно, и адсорбции. Поэтому в области концентраций, где поверхностное натяжение линейно зависит от логарифма концентрации, должно происходить, хотя и медленное, но конечное возрастанпе адсорбции, которое, однако, не фиксируется экспериментально. При этом малому увеличению адсорбции отвечает очень резкое возрастание химического потенциала молекул ПАВ в адсорбционном слое. Это позволяет отождествить свойства адсорбционных слоев -при достижении предельной адсорбции со свойствами конденсированной фазы при повышении давления здесь также росту химического потенциала отвечают пренебрежимо малые изменения плотности. Эта аналогия, как будет показано далее при описании свойств адсорбционных слоев нерастворимых ПАВ, имеет глубокий физический смысл. [c.61]

    В соответстнии с уравнением Гиббса, постоянству двухмерного давления в процессе конденсацин при изменяющемся значении адсорбции отвечает постоянное значение химического потенциала вещества, — аналогично тому, как при объемной конденсации химический потенциал не зависит от соотношения количеств жидкости и пара. Следовательно, для растворимых ПАВ, способных к конденсации в поверхностном слое, процесс поверхностной конденсации должен осуществляться при некотором постоянном значении объемной концентрации Ск, т. е. конденсация проявляется в скачкообразном изменении адсорбции от некоторой величины Гк=1/5кКа до значения, приблизительно равного предельной адсорбции Гтат. Вид зависимости адсорбции от концентрации в этом случае представлен на рнс. II— 25 ломаными кривыми 3 и 4. [c.71]

    При значе1шях адсорбции малых по сравнению с Г 10 моль/м (см. гл. II, 1) концентрация молекул ПАВ мала не только в объеме, но и в поверхностном слое. В таком случае и объемный раствор, и поверхностный слой могут быть описаны в приближении идеальных растворов. Это означает, что химический потенциал молекул ПАВ в объемной фазе можно представить в виде [c.64]


Смотреть страницы где упоминается термин Химический потенциал и поверхностный слой: [c.200]    [c.18]    [c.34]    [c.187]    [c.76]    [c.187]    [c.53]    [c.11]    [c.277]    [c.86]    [c.19]    [c.20]    [c.67]   
Курс физической химии Том 1 Издание 2 (1969) -- [ c.435 , c.436 ]

Курс физической химии Том 1 Издание 2 (копия) (1970) -- [ c.435 , c.436 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхностный слой

Потенциал поверхностный

Потенциал химическии

Потенциал химический

Химический потенция



© 2025 chem21.info Реклама на сайте