Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиамиды в цепи

    Гетероцепные полимеры содержат в основной цепи кроме атомов углерода еще и атомы кислорода или азота, кремния, фосфора и других элементов. К ним относятся целлюлоза, белки, полиамиды, (в частности, капрон), полиэфиры, полиуретаны, кремнийорганические полимеры и др. [c.188]

    Этот механизм объясняет, почему с увеличением количества катализатора уменьшается размер молекулы полиамида число образующихся молекулярных цепей пропорционально количеству катализатора. [c.948]


    Для разных химических типов радикалов обычно получают различные постоянные спада и различные энергии активации. Тино и др. [42] определили энергию активации спада числа центральных радикалов полиамида —КН—СН—СНа— в области температур 15—50°С, равную 41,9 кДж/моль, и энергию активации спада числа концевых радикалов цепи —СОЫН—СНа, равную 21,8 кДж/моль. [c.223]

    В то же время при (большой) концентрации (0,6-Ю ) разрывов связей на 1 м (т. е. 0,83 мол/м ) рассеивающаяся в виде тепла Qь полная энергия, накопленная втягивающимися концами цепей, в среднем равна 722 кДж/м . Химическая энергия Уь данного числа разорванных связей равна 156 кДж/м . Значение средней энергии следует также сравнить с плотностью накопленной энергии упругой деформации, т. е. с о /2 . Эта величина равна 125 МДж/м для сверхвысокопрочного волокна ПА-6 и в свою очередь составляет лишь шестую часть плотности энергии когезии данного материала. Поэтому рассеяние энергии, обусловленное разрывом связей, немного меньше, чем чисто гистерезисные потери при нагружении и раз-гружении волокна полиамида (для ПА-6 1 б 5-10 при частоте 10—30 Гц). [c.259]

    Гетероцепные полимерные соединения, в макромолекулярных цепях которых, кроме атомов углерода, содержатся атомы кислорода, азота, серы, фосфора, т. е. атомы элементов, обычно входящих в состав органических соединений. К этой группе полимеров относят целлюлозу, белки, полиэфиры, полиамиды, полиуретаны, полиэпоксидные соединения, [c.17]

    Некоторые функциональные группы, содержащиеся в полимерных цепях, могут служить инициаторами полимеризации ка-кого-либо вещества, В процессе полимеризации вещество присоединяется к функциональной группе основного полимера, образуя полимерные ответвления. Было, например, установлено, что иминогруппы полиамидов инициируют реакцию полимеризации окиси этилена. Полимеризация протекает при 80°, от продолжительности ее зависит количество полиоксиэтиленовых цепей, присоединившихся к основной макромолекуле полиамида  [c.191]

    При нагревании полиамида в присутствии кислорода воздуха происходит постепенное уменьшение прочности полимера. Особенно резко уменьшается прочность полимера при температуре выше 100° (рис. 117). Малую термическую стойкость полиамидов можно объяснить легкостью окисления амидных групп, окисление сопровождается разрывом полимерных цепей. На рис, 118 [c.452]


    Из сказанного можно сделать важный вывод, чго высокомолекулярные вещества с гибкими макромолекулами должны всегда лучше растворяться, чем с жесткими, поскольку первые могут располагаться в растворе значительно большим числом способов. Кроме того, следует помнить, что у жестких макромолекул, обычно ориентированных более или менее параллельно, энергия взаимодействия между отдельными молекулярными цепочками очень велика, и такие цепи трудно оторвать друг от друга. Этими обстоятельствами и можно объяснить обычно весьма ограниченное число растворителей для высокомолекулярных веществ с жесткими цепями (целлюлоза, поливинилхлорид, полиамиды). [c.441]

    ПОЛИАМИДЫ — полпмеры на основе синтетических высокомолекулярных соединений, сод( ржащих в основной цепи амидные группы —СОКИ—. П. получают полнконденсацией производных многоосновных кислот с диаминами или солей диаминов дикарбоновых кислот, полимеризацией капролактама и др. П. применяют в виде волокон тина капрон, найлон, пленок, клеев, как антикоррозийные материалы для защиты металлов и бетонов, для изготовления искусственной кожи, в медицине для хирургических швов, в глазной хирургии, для искусственных кровеносных сосудов, как заменители костей. [c.195]

    Для получения привитых сополимеров широкое распространение получил метод облучения полимера -лучами в присутствии жидких или газообразных мономеров в инертной среде. Привитая сополимеризация инициируется радикалами, образующимися в полимерных цепях. Этот метод широко используется для химической модификации поверхностей волокон и пленок, например, для -повышения гидрофильности полиолефинов и полиамидов путем прививки водорастворимых полимеров (полиэтиленоксида, полиакриловой кислоты, поливинилпирролидона). [c.65]

    Рассмотрим кратко реакции расщепления макромолекул полимеров под действием различных химических реагентов (кислоты, щелочи и др.), протекающие в полимерах с функциональными группами в цепях. Сюда относятся гидролиз, ацидолиз, аминолиз в целлюлозе, полиэфирах, полиамидах и других полимерах, широко используемых при производстве волокон и пленок. Эти реакции протекают по случайному закону и приводят к беспорядочному расщеплению макромолекул полимеров и ухудшению их свойств. [c.254]

    Полиамидами называют высокомолекулярные соединения, в основную цепь которых входят амидные группы —СОЫН —. Например, полиамидной смоле капрону отвечает формула [—N1- — (СНз) —СО—1МН—(СНг) —СО—] . Поскольку повторяющимся звеном в структуре капрона является группа ЫН—(СНз) —СО, то кратко формулу этого полимера изображают в виде Н[—ЫН— (СН2)5—СО—]—ОН с указанием, что концевые активные группы насыщены обычно водородом и гидроксилами. Сходную, хотя и несколько более сложную формулу имеет так называемый найлон-66 [—ЫН—(СНз) —ЫНСО(СН2) СО] . Из полиамидов с молекулярным весом 10000—30000 выделывают волокна, отличающиеся боль- [c.279]

    Полимерные соединения, молекулярные цепи которых построены только из атомов углерода, называются карбоцепны-м и. Полимерные соединения, молекулярные цепи которых содержат, кроме атомов углерода, другие атомы (чаще всего кислорода, азота, серы), называются ге т е р о ц е п н ы м и. Например, основная цепь такого полимера — полиамида [c.7]

    Полиамид (полярные группы в цепи), т. пл. 260° С [c.79]

    Бается смещенной друг относительно друга. Вследствие этого снижается прочность связи между цепями, что вызывает более легкую растворимость и более низкую температуру плавления у смешанных полиамидов, чем у полиамидов регулярного строения. Смешанные полиамиды растворяются в водных растворах метилового и этилового спиртов. Это преимущество позволяет использовать их для получения лаков. В СССР смешанный полиамид, получаемый сополиконденсацией капролактама и ади- [c.235]

    Исследовано [261] гидродеалкилирование толуола в присутствии металлов, отложенных на полиамидах. Исследована активность и селективность Р1, КЬ и Р(1 (0,4—5,1% металла), нанесенных на поли-п-фенилентерефталамид, при 140—400 °С. Показано, что катализаторы, полученные нанесением соединений металлов на этот полиамид, имеют низкую гидрирующую активность, в то же время реакция гидродеалкилирования протекает на них при более низких температурах, чем на катализаторах, где в качестве носителей применяются АЬОз или активированный уголь. Был сделан вывод, что гидрирующая активность и селективность металлов, отложенных на полиамидах, обусловлена влиянием носителя и образованием поверхностных активных комплексов. Предполагают, что в этих комплексах атомы переходного металла с валентностью больше нуля координационно связаны с амидной группой полимерной цепи. [c.175]

    Стадия роста цепи является основной в процессе поликонденсации. Она определяет главные характеристики образующегося полиЪгра молекулярную массу, состав сополимера, распределение по молекулярным массам, структуру полимера и другие свойства. Прекращение роста цепи макромолекулы может происходить под влиянием физических факторов, например, в результате увеличения вязкости системы, экранирования реакционных центров цепи, сворачивание ее в плохом растворителе и других. При прекращении роста реакционный центр сохраняет химическую активность, однако, как правило, не имеет подвижности, необходимой для протекания реакции [14]. Другой причиной является образование однотипных, не взаимодействующих функциональных групп на обоих концах полимерной цепи за счет избытка одного из мономеров. На этом принципе основан один из способов регулирования молекулярной массы полимеров (синтез сложных полиэфиров, полиамидов и др.). [c.159]


    Полиамидные смолы. Полимеры этого типа являются синтетическими аналогами белков. В их цепях имеются такие же, как в белках, многократно повторяющиеся амидные —СО—NH— группы. В цепях молекул белков они разделены звеном из одного С-атома, в синтетических полиамидах — цепочкой из четырех и более С-атомов. Волокна, полученные из синтетических смол, — капрон, энант и анид —по некоторым свойствам значительно превосходят натуральный шелк. В текстильной промышленности из них зырабатывают красивые прочные ткани и трикотаж. В технике исиользуют изготовленные из капрона или аннда веревки, канаты, отличающиеся высокой прочностью эти полимеры применяют также в качестве основы автомобильных щин, для изготовления сетей, различных технических тканей. [c.506]

    Ответ. Отличительным свойством эластомеров является высокая гибкость макромолекул. Гибкость полиамидной цепи может быть повышена увеличением числа атомов С между амидными группами и нечетным числом атомов С в алифатическом радикале элементарного звена. Поэтому таким полимером может быть, например, полипентаметиленсебацинамид (найлон-5,-10). Действительно, температура стеклования этого полиамида около 250 К, а нити из него способны к высоким (свыше 300%) обратимым деформациям при комнатной температуре. [c.133]

    Бензойная кислота вступает в цепь не только в начальный момент роста цепи, но, вероятно, также в результате переамидироваиия. -Капролактам находится в равновесии со своим полиамидом обратное образование циклического амида рассматривают как переамидирова-ние. В полиамидах из м-амииок.арбоновых кислот, имеющих более длинную цепь, такое переамидирование не происходит. [c.948]

    В данной монографии мы рассмотрим физическую природу образования дефекта на примере линейных термопластов и эластомеров (табл. 1.1). Известно, что эти материалы имеют широкий диапазон свойств, хотя и состоят из подобных молекул. Их молекулы преимущественно линейные, гибкие имеют высокоанизотропные (невытянутые) цепи с молекулярными массами 20000—1 000000 и более. На рис. 1.9 представлена цепная молекула полиамида-6 (ПА-6) в невытянутом состоянии с произвольным выделением сегментов, а на обведенной вставке показано ее основное звено. Относительные положения атомов и часть объема, занятая ими в цепи, иллюстрируются с помощью модели Стюарта для сегмента полиамида (рис. 1.10). Действительный размер распрямленного сегмента —1,97 нм. Если бы к такому сегменту можно было приложить напряжение вдоль оси цепи, то изгиб и растяжение основных связей обеспечивали бы в результате жесткость цепи 200 ГПа [15], в то время как межмолекулярное взаимодействие сегментов вследствие более слабых вандерваальсовых сил обеспечивает жесткость только 3—8 ГПа в направлении, перпендикулярном оси цепи. Характерные свойства твердых полимеров, а именно анизотропия макроскопических свойств, микронеоднородность и нелинейность, а также сильная временная зависимость [c.12]

Рис. 9,22, Модель разрущения и морфологии поверхности кристаллов полиамида, состоящих из вытянутых цепей [202]. (С разрешения IP Business Press Ltd. .) Рис. 9,22, Модель разрущения и <a href="/info/924881">морфологии поверхности</a> кристаллов полиамида, состоящих из <a href="/info/128640">вытянутых цепей</a> [202]. (С разрешения IP Business Press Ltd. .)
    Для сое ипения полиэфирных блоков можно применять диамин также в виде низкомолекулярного полимера—блока, полученного путем поликондепсации какой-либо дикарбоновой кис- г[оты с диамином, взятым с небольшим избытком. Последующей иоликонденсацией двух низкомолскуляртплх полимеров (полиэфира и полиамида), из которых один содержит на концах цепи карбоксильные группы, а другой аминогруппы, можно получить блоксополимер с регулярным чередованием блоков полиэфира и полиамида в макромолекулах. [c.169]

    В случае редкого расположения боковых цепей полиоксиэти-лена наблюдается лишь незначительное снижение температуры плавления полиамида, но эластичность и морозостойкость его существенно увеличиваются. [c.192]

    Величины пит могут быть одинаковыми и различными. В сокращенных названиях алифатических полиамидов цифрами обозначают количество углеродных атомов в звеньях цепи, образованных диаминами (или диизоцианатами) и кислотами, т. е. соответственно величины п и т+2. Например, в полиамиде 6-6 между аминогруппами находится по шести метиленовых звеньев (п =6), а между двумя карбонильными группами—по четыре ме-тиленовых звена (т+2==6) в полиамиде 10-8 чередуются десятизвенные метиленовые цепи между аминогруппами (п-—10) с шестизвенными цепями между карбонильными группами (/п=6). [c.438]

    Рис. по. Схематичное изображение макромолекулярных цепей, образующих водородные связи н кристаллитах полиамида, содержащего одинаковое число мотнлеионых звеньев между амидными группами. [c.447]

    Полиамиды, содержащие в макромолекулярных цепях фениле-иоиые группы, отличаются большей жесткостью цепей и боль-птим межмолекулярным взаимодействием благодаря образова- [c.449]

    Разрушение полиамидных цепей происходит и в результате ноздействия окисляющих реагентов. Полиамиды разрушаются при действии азотной кислоты, перекиси водорода, раствора перманганата калия. [c.452]

    При действии на полиамиды разнообразных реагентов происходит разрушение макромолекул полимера. Известны лишь немногие химические превраш,епия, которые можно осуш,ествнть без нарушения длины цепи полиамида. Такие реакции связаны г замещением атома водорода в амидных группах. [c.453]

    По свойствам полиуретаны имеют много общего с полиамидами. Линейным полиуретанам, как и полиамидам, свойственна нысокая прочность, обусловленная большим количеством водородных связей, возникающих между карбонильными и иминнымп группами соседних макромолекул. По мере увеличения длины углеводородных цепей, разделяющих полярные группы в макромолекулах полиуретана, уменьшается его жесткость и прочность и снижается температура плавления кристаллитов. Температуря плавления полиуретанов (и полиамидов) с нечетным числом метиленовых групп между полярными звеньями ниже температур плавления ближайших полимергомологов. содержащих четное число метиленовых групп в углеводородных цепочках (рис. 119). [c.456]

    С увеличением степени кристалличности или ориентации иолимера возрастает количество функциональных групп (всоседних макромолекулах), оказавшихся в непосредственной близости друг к другу, т. е. увеличивается количество водородных связен, я вместе с этим повышается прочность полимера. Как и для полиамидов, увеличение длины метиленовых цепей между имино-эфирными группами полиуретанов способствует повышению уп- [c.456]

    Совместной поликонденсацией многоосновных карбоновых кислот с многоатомными спиртами или диаминами, а также совместной поликонденсацней различных оксикислот или аминокислот можно широко варьировать свойства гетероцепных полимерных сложных эфиров и полиамидов. В результате реакций совместной полиэтерификации или полиамидирования, в которых принимают участие различные дикарбоновые кислоты и различные диолы или диамины, изменяется концентрация полярных групп пли регулярность их расположения в макромолекулах полимера, что отражается на его физических и механических свойствах. С понижением концентрации полярных групп в макромолекулах уменьшается количество водородных связей между цепями и, следовательно, снижается температура плавления и твердость полимера, возрастает его упругость и растворимость. Нарушение регулярности чередования метиленовых (или фениленовых) и полярных групп. штрудняет процесс кристаллизации сополимера и снижает степень его кристалличности. Это придает сополимеру большую эластичность, по вызывает уменьшение прочности и теплостойкости изделий из данного полимерного материала. При поликонденсации ш-амино-капроновой кислоты с небольшим постепенно возрастаюш,им количеством АГ-соли (соль гексаметилендиамипа и адипиновой кислоты, или соль 6-6) температура размягчения сополимера плавно снижается. Если в макромолекулах сополимера количество звеньев соли 6-6 достигает 35—50%, температура плавления сополимера снижается до минимума (150° вместо 214—218° для полиами- [c.532]

    Все это — карбоцепные полимеры. Осложнения наступают, когда в повторяющиеся звенья (в. основной цепи) входят ароматические радикалы или гетероциклы. Чередование таких радикалов, в об щем, определяет принадлежность полимеров к циклоцепным, или гетероциклоцепиым. Обычно это полимеры конденсационного про исхождения (полиэфиры, полиамиды, полиимиды и т. д. [27, гл. I]) получаемые в одну или две стадии. Примерами циклоцепных полимеров могут служить ароматические полиамиды, например полиметафеииленизофтальамид (амер. номекс , русск. фенилон ) [c.22]

    Деструкция по закону случая происходит путем независимых разрывов связей в основной цепи (главным образом, в гетероцеп-ных полимерах — полиамидах, полисахаридах и др.) с образованием макромолекул меньшей длины. В конечном итоге при деструкции могут образоваться мономерные соединения. Как правило, деструкция по закону случая протекает под влиянием химических реагентов (кислот, щелочей и т. д.) с разрывом связей углерод — гетероатом. Этот тип деструкции характерен для поликонденсационных полимеров (например, гидролиз полисахаридов, белков). [c.68]

    Если функциональные группы с атомами галогенов, кислорода, азота, серы содержатся в боковых ответвлениях, а не в основной цепи, то полимер относится к карбоцепным. У гетероцепных полимеров гетероатом (О, N. 8) входит в основную цепь. Это полиэфиры, полиамиды, полисульфиды, полиэтилентетрафталат, полн- [c.10]

    Кратко остановимся на реакциях, которые приводят к распаду образующихся больших молекул гидролиза, ацидолиза, аминоли-за, межцепного обмена. О реакции гидролиза уже говорилось выше. Гидролиз продуктов реакции возможен, если в процессе поликонденсации на каждой ступени синтеза полиамидов, полиэфиров выделяется вода или если реакция синтеза проводится в водной среде или в присутствии воды. Реакция аминолиза протекает при взаимодействии с низкомолекулярным амином или диамином формирующейся в процессе синтеза полиамида амидной функциональной группы в цепи, например  [c.77]

    Как видно из приведенных данных, среди полимерных соединений выделяется группа полимеров, нагревостойкость которых при длительной эксплуатации очень высока и находится в пределах 180—250° С. Входящие в эту группу полимеры политетрафторэтилен и его сополимеры, полисилоксаны (кремнийоргани1 е-ские полимеры) и полиимиды — называют обычно термостойкими, или нагревостойкими, полимерами. Группу с более низкой нагревостойкостью (130—140° С) образуют поди-этилентерефталат, поликарбонат и полифениленоксид. Полиамиды, полистирол, поливинилхлорид и большинство термопластов, содержащих С—С-связи в цепи, имеют нагревостойкость ниже 100° С. [c.80]

    Свойства полиамидов и области их применения. Полиамиды— твердые роговидные полимеры с высокой температурой плавления (например, 218°С у капрона, 264°С у найлона). Высокая температура плавления объясняется значительным процентом кристаллической фазы и образованием водородных связей между цепями (рис. 66, а). Полиамиды обладают хорошими механическими свойствами. Они весьма стойки к истиранию и отличаются высокой разрывной прочностью (700—750 кгс1см ). Плотность 1,14. Полиамиды регулярного строения очень стойки к действию обычных растворителей. Только сильно полярные соединения, такие, как фенол, крезолы, муравьиная кислота, растворяют полиамиды такого типа. Смешанные полиамиды растворяются при нагревании в низших алифатических спиртах (метиловом, этиловом) в смеси с небольшими количествами воды (от 10 до 20%). При остывании и хранении растворы смешанных полиамидов преврашаются в гелеобразную массу. При нагревании гель можно снова превратить в прозрачный раствор. [c.236]

    Полиамид — термопласт, содержащий в основной цепи амидогруппу —ЫН—СО—, например поли-е-капромид (капрон) [c.367]

    Взаимодействие бифункциональных соединений с функциональными группами элементарных звеньев полимера. Этим путем к полимерам, содержащим подвижные атомы водорода, могут быть привиты полиэтиленоксидные цепи. Получены, например, привитые сополимеры с боковыми этиленоксидными цепями на основе целлюлозы и крахмала, полиамидов (см. с. 218), полиуретанов (см. с. 261), поливинилового спирта (см. с. 234). [c.208]

    На основе аллиловых эфиров целлюлозы или крахмала, эфиров целлюлозы и ненасыщенных кислот (метакриловой, кротоновой) получены привитые сополимеры целлюлозы и крахмала с боковыми поливиниловыми цепями. Полимеризацию винильного мономера (метилметакрилата, стирола и других) проводят в этих случаях в присутствии указанного эфира целлюлозы и инициатора (см. с. 257). Получен также привитой сополимер целлюлозы с боковыми цепями из белка и полиамидов. [c.208]

    При действии окиси этилена на полисахариды или полиамиды образуются полимеры с боковыми полиэтиленоксидными цепями. При действии окиси этилена на целлюлозу в щелочной среде получаются этиленоксидные или полиэтиленоксидные эфиры  [c.218]


Смотреть страницы где упоминается термин Полиамиды в цепи: [c.92]    [c.210]    [c.55]    [c.441]    [c.447]    [c.449]    [c.457]    [c.204]    [c.168]   
Синтактические полиамидные волокна технология и химия (1966) -- [ c.44 , c.46 ]




ПОИСК







© 2025 chem21.info Реклама на сайте