Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

оптимальные полные

    Здесь T].j, и T j —оптимальные полные к. п. д. соответственно турбины и модели  [c.111]

    Анализ ректификационных систем проводят с целью определения оптимальных параметров процесса ректификации и конструктивных размеров аппаратов. Оптимальными параметрами процесса ректификации в полной колонне являются в первую очередь давление, флегмовое число или коэффициент избытка флегмы и температура питания. [c.125]


    Многими исследователями было показано, что оптимальной температурой для полной десорбции н-алканов состава Сб—Се является 350°С при давлении 3 мм рт. ст. [c.193]

    Многими исследователями было показано, что оптимальным пределом температуры для полной десорбции н-алканов Сь—Ся является 350—400°С. В работе [5] показано, что при 250°С десорбируется 50%,, а при 350°С — 100% адсорбированных н-алканов С5—Сз. [c.198]

    Вследствие эквивалентности задач оптимизации, выбранное значение полной длины реактора Ь1 (О, ёо) оптимально. Найдя эту функцию и начертив соответствующую кривую в третьем квадранте рис. IX.8 вместо кривой Ьу, можно таким же образом построить функцию Ь1 (О, о) и т. д. При другой постановке задачи, когда Ц (абсцисса точки Я) задана, можно вести построение от / к Я и далее к С, Р, Е я В тогда РВ = QB равно полной длине реактора и положение [c.270]

    Прибавление электронов сверх оптимально допустимого приводит к энергетической неустойчивости данного типа кристаллической структуры металл — растворитель и к возникновению структуры нового типа. Это уже свидетельствует о превращении твердого раствора в интерметаллическое соединение или при полном завершении валентной зоны — в соединение с ковалентной или ионной связью. [c.253]

    Поднимаясь снизу вверх но высоте отгонной колонны и последовательно определяя массы, составы и температуры паровых и жидких потоков на ее тарелках, можно получить полное представление о характере работы колонны нри условиях, которые были заданы проектировщиком, принявшим условия существования р , in, Хп) равновесной системы в кипятильнике и закрепившим определенный режим Z/R) работы колонны. Понятно, что эти пять величин теоретически можно варьировать в весьма широких пределах, поэтому оптимальный режим, отвечающий наиболее экономичным условиям разделения, должен определяться путем технико-экономического сравнения ряда вариантов работы колонны. [c.235]

    ЛБ — ])абочая линия ОР — кривая равновесия ВА - [)сжим полного орошения ВЛз —режим минимального орошения ВЛз —режим оптимального орошения [c.75]

    Чтобы решить задачу отыскания области оптимальных условий ведения процесса, используют метод градиента, но при этом в отличие от классического приема отыскания кратчайшего направления градиента путем сравнения пробных шагов по каждому из варьируемых факторов, направление градиента определяют с помощью методов дробного или полного факторного эксперимента. Такое сочетание позволяет в условиях случайных возмущений проводить поиск оптимально. Из векторного анализа известно, что градиентом функции отклика г/ = / х , [c.158]


    Выражение (15-69, б) представляет условия оптимума переменной но оптимальное промежуточное давление не является больше переменной, а определяется по Р и Р . При установленном конечном давлении Ру оно зависит только от начального давления р , и, следовательно, с полным основанием можно написать  [c.340]

    Необходимо отметить, что указанные выше скорости охлаждения, хотя и применяются фактически при промышленных процессах депарафинизации, не являются во всех случаях оптимальными и в полной мере обоснованными. Имеются возможности повышения эффективности данных процессов депарафинизации путем уменьшения указанных выше скоростей охлаждения в экономически приемлемых пределах. [c.115]

    Таким образом, ири оптимальном температурном режиме температура повышается с увеличением степени превращения исходного реагента, достигая бесконечно большого значения на выходе реактора, причем при таком режиме в аппарате обеспечивается полное превращение вещества А. [c.227]

    Вследствие больших затрат труда и времени на полное систематическое изучение процесса инженер чаще всего довольствуется-выборочным исследованием и, следуя интуиции, ведет эксперимент в тех областях, где надеется отыскать оптимальное решение. [c.26]

    Найти общий метод оптимального решения-а случае сложных процессов химической технологии необычайно трудно. Очень редко (на основе полного изучения процесса в результате систематических исследований) удается дать точное описание явлений в виде системы уравнений (чаще всего дифференциальных) и определить. положение экстремума. [c.31]

    Масштабирование с применением теории подобия является общим случаем моделирования. Ниже будет показано, что соблюдение полного подобия чаще всего не позволяет сохранить оптимальных параметров процесса, полученных в меньшем масштабе. Например, если мы определили в модели оптимальное распределение [c.444]

    Выяснение полной модели реакции открывает путь для детального машинного воспроизведения процесса с тем, чтобы установить влияние всех его параметров на образование и выход побочных продуктов. Это позволяет найти оптимальные условия процесса задолго до того, как выполнен окончательный проект и проведены производственные испытания. Введение в машину данных по динамике реактора и других агрегатов вместе с зависимостями по массо- и теплопередаче поможет искоренить пугало моделирования , которое так долго докучает проектировщикам. [c.24]

    По условиям термодинамического равновесия при гидроочистке бензинов гидрогенолиз всех серосодержащих соединений, кроме тиофена и его производных, может протекать до их полного превращения в соответствующие углеводороды и сероводород. При давлении до 5 МПа оптимальный уровень гидроочистки лежит в пределах 300-360°С. При более высоких температурах снижается равновесная глубина гидрогенолиза тиофена и его производных, интенсифицируются реакции гидрокрекинга. [c.82]

    Полимеризацию в присутствии литиевых катализаторов проводят в изопентане или циклогексане при концентрации мономера 15—20% и температуре 50—60°С. Продолжительность полимеризации до конверсии более 90% составляет 3—5 ч. Концентрация катализатора и температура полимеризации оказывают влияние на скорость реакции, микроструктуру и молекулярную массу полн-изопрена, поэтому очень важны.м моментом является выбор оптимальных условий проведения процесса [44]. [c.220]

    Получение полиэтилена нри высоком давлении. Полиэтилен впервые был получен при высоком давлении английской фирмой Империал Кемикалс Индастри [59]. Способ получения заключается примерно в том, что этилен при температуре 120—130° и давлении 1000— 20ОО ат полимеризуется в присутствии небольших количеств чистого кислорода. Молекулярный вес полимернзата получается тем больше, чем ниже температура полимеризации. Практически, однако, оптимальной рабочей температурой признана 120—130°, потому что уже при этих условиях температура плавления нолимеризата составляет около 110°. Полимеризация проводится при полном отсутствии растворителя. Содержание кислорода лежит практически в пределах 0,05—0,1%, считая на этилен. Время пребывания этилена в установке составляет 2—6 мин. при 10—15%-ном превращении этилена за один проход через печь. Схема работы при получении полиэтилена представлена на рис. 137. [c.222]

    В работе [35] на примере разработки оптимальной схемы деметанизацни газов пиро пиза описано применение этого метода. В табл. П.З приведены исходные данные по процессу состав сырья, получаемых продуктов, температуры и давления. На рис. П-25 показаны принципиальные технологические схемы процесса, иллюстрирующие последовательность синтеза в качестве первоначального варианта (схема а) была принята обычная схема полной колонны с парциальным конденсатором при температуре хладоагента (этилена) минус 100 °С. Далее для конденсации и охлаждения верхнего продукта наряду с хладоагентом был использован дроссельэффект сухого газа (схема б). Затем исходное сырье охлаждали до температуры минус 62 С (схема в) н подвергали последовательной сепарации с подачей в колонну нескольких сырьевых потоков (схемы гид). Затем организовали промежуточное циркуляционное орошение в верхней частн колонны (схема е) и, наконец, — рецикл пропана с подачей его в промежуточный сырьевой конденсатор (схема ж). Соответствующие изменения температурного режима и стоимостные показатели процесса приведены в табл. П.4. Как видно, наибольшие затраты в простейшей схеме падают на потери этилена с сухим газом и на хладоагент, а по мере усовершенствования схемы эти статьи затрат существенно уменьшаются и становятся соизмеримыми с остальными элементами затрат для оптимальной схемы ж. [c.129]


    В работе [21] рассмотрен синтез оптимальной схемы устано вки газоразделения предельных газов для НПЗ п,роиз водительностью 12 млн. т нефти в год. Синтез проводили методом динам(Ического программирования с выбором оптимального давления ректификации в каждой ступени. Для каждой колонны принималось условие четкого деления, когда целевой компонент содержит в качестве цримесей только смежные по летучести компоненты. Оптимальное давление в каждой колонне оетределяли из условия полной конденсации верхнего продукта воздухом или водой при температуре дистиллята на выходе из конденсатора-холодильника, равной 50 °С. [c.291]

    На рис. Vni.19 даны зависимости веса каждого слоя катализатора и полной массы всего катализатора от стоимости предварительного подогрева. Линию для Wg в этом масштабе нельзя начертить действительно, в предельном случае х = О оптимальные массы находятся в отношении И д = 1 9 ООО 130000, что заставляет задуматься над тем, стоит ли делать реактор многостадийным. Для двухстадийного реактора, как следует из рис. VIII.19 (для N = 2), пропорции более разумны (самое большее 1 20). Рис. VIII.20 показывает, что уменьшение числа стадий очень слабо влияет на максимальное значение критерия оптимальности Р. Десятикратное увеличение стоимости катализатора v приводит к почти десятикратному уменьшению его оптимальной массы и небольшому комненсируюш ему увеличению температуры, однако максимальное значение критерия оптимальности Р уменьшается при этом только на 10%. Такого рода расчеты оптимальных режимов на вычислительных машинах позволяют понять обш,ую структуру оптимальных решений даже в том случае, когда не представляется возможным точно оценить величины (х и v. Например, тот факт, что общая масса катализатора уменьшается почти в том же отношении, в каком увеличивается его стоимость, свидетельствует о том, что общие расходы на катализатор всегда остаются почти постоянными. Непропорционально малая масса катализатора в одном из адиабатических слоев, вычисленная при оптимальном расчете, сразу заставляет сделать вывод, что рационально проектировать реактор с меньшим числом стадий. [c.246]

    СОСТОИТ в том, чтобы получить наибольший выход промежуточного вещества А , то в случае, когда энергия активации второй реакции больше, чем первой, оптимальным является падающий температурный профиль по длине реактора. Здесь снова при исходной смеси, состоящей из чистого вещества А , оптимальная температура на входе бесконечна, так что необходимо ограничить температуру верхним пределом Т. Нижний температурный предел в этой задаче также существен. Действительно, увеличение температуры способствует протеканию реакции с большей энергией активации А А ) за счет другой реакции (Л1 -> 2). и потому мы могли бы добиться практически полного превращения А ь А 2, проводя процесс в бесконечно длинном реакторе при бесконечно малой температуре, что, разумеется, бессмысленно. Нри > О существует оптимальная длина реактора, с превышением которой выход вещества А, уменьшается. Некоторые оптимальные профили показаны на рис. IX.6, из которого следует, что по мере увеличения длпны реактора максимальная температура Т поддерживается на все более коротком отрезке и падение температуры от Т до Т . становится все круче. Для большей ясности деталей кривые на рис. IX.6 проведены с общей абсциссой 2 = при этом точки А, В,. . Е обозначают вход в слой соответствующей длины. Точка Е отмечает вход в слой наибольшей длины, который выгодно использовать при данной минимальной температуре [c.269]

    Мы сформулируем основные уравнения процесса, а затем обсудим некоторые его экономические характеристики. Результаты, касающиеся оптимального управления периодическим реактором, являются просто интерпретацией решения задачи оптимального проектирования трубчатых реакторов. Мы не будем давать полного вывода этих результатов, но ограничимся качественным их описанием. Изотермические процессы в периодическом реакторе полностью описаны в главе V, где проводилось интегрирование кинетических уравнений при постоянной температуре. Простейшим типом неизотермического процесса является адиабатическое проведение реакции в теплоизолировапном реакторе такой процесс описан в главе УП1. [c.306]

    Полное исследование поставленной задачи требует применения довольно сложного математического аппарата, но мы можем дать качественное описание результатов, придав им интуитивно ясный смысл. Предположим, что реактор не снабжен нагревательными устройствами, а может работать только в адиабатическом режиме (q (г) = 0) или в режиме полного охлаждения q (t) = q ). Строго говоря, мы могли бы сделать величину q функцией Г, но при этом более реалистическом предположении результаты будут иметь тот же качественный вид. Так как касательная к кривой в точке L имеет наклон, соответствующий q = q, то имеется решение уравнений (Х.15) и (Х.16) с q = q, касающееся кривой в точке L. Это решение начинается прп температуре Т , соответствующей точке М, и можно подумать, что путь реакции MLA является оптимальным. Такое решение действительно было дано в работе Ариса и Блейкмора, однако, как было показано в последующей работе Ариса и Зибепталя, оно ошибочно и должно быть исправлено путем более тщательного анализа задачи (см. библиографию на стр. 316). [c.313]

    SLA, называемая кривой переключения режимов, слева от которой оптимальным является адиабатический режим процесса, а справа — режим полного охлаждения. Так, начав ироцесс из точки О, следует проводить его адиабатически, пока пе будет достигнута точка Р на кривой иереключения. Начиная с этой точки, можно оставаться на оптимальном пути реакции РА, поскольку необходимая для этого скорость теплоотвода будет ниже предельной q. Напротив, при высокой начальной температуре Тсоответствующей точке С, необходимо сразу вести процесс в режиме полного охлаждения в этом случае реакция идет по пути СВ до точки пересечения с кривой переключения режимов, где снова можно продолжать вести реакцию по оптимальной кривой до точки А. При промежуточной начальной температуре, соответствующей точке Z), адиабатический путь пересекается с кривой переключения в точке Е, где скорость теплоотвода, необходимая для того, чтобы оставаться на этой кривой, превышает q. Поэтому здесь надо переключить реактор на режим полного охлаждения, и путь реакции будет изображаться кривой EF. Когда путь реакции вновь пересечет кривую переключения режимов в точке F, уже можно будет оставаться на пути FA при физически реализуемой скорости теплоотвода q q. Единственный оптимальный путь приближения к критической точке L — это адиабатический путь [c.313]

    Полная математическая модель процесса включает основные переменные процесса, связи между основными переменными в статике, ограничения на процесс, критерий оптимальности, функции оптимальности, связи между основными переменными в данамике. Эта модель предназначена для прогнозирования оптимальных режимов процесса и получения информации, необходимой при разработке автоматизированной системы управления объектами нефтепереработки и нефтехимии. [c.9]

    Температура, объемная скорость сырья и давление оказывают влияние на скорость и глубину гидрогенолиза гетеропримесей в газофазных процессах гидроочистки топливных фракций в полном соот ветствии с химической кинетикой. Как видно из рис. 10.И,а,б, требуемая применительно к дизельным топливам глубина обессе — рив.шия 90 —93 % достигается при объемной скорости 4 ч , давлении 4 МПа и температурах 350 — 380 °С. При температурах свыше 420 С из-за более быстрого ускорения реакций гидрокрекинга воз )астает выход газов и легких углеводородов, увеличиваются кок ообразование и расход водорода. Для каждого вида сырья и катализатора существует свой оптимальный интервал режимных параметров (см. табл. 10.15). [c.213]

    Спускаясь по высоте укрепляющей колонны и последовательно определяя массы, составы и температуры паровых и жидких потоков на ее тарелках, можно получить полное представдение о режиме работы колонны, отвечающем назначенным условиям существования (р, tu, у о) равновесной системы в парциальном конденсаторе и принятому значению у , фиксирующему режим разделения. Понятно, что эти четыре величины теоретически могут изменяться в весьма широких пределах, поэтому оптимальный режим колонны должен определяться на основе технико-экономического сравнения ряда вариантов. [c.240]

    Здесь уместно обратить внимание на одно чнсто практическое наблюдение, имеющее, впрочем, приближеппый характер. Соио-ставлевие результатов расчета режимов полного орошения с результатами расчета разделения той же системы в условиях оптимального режима рабочего орошения с получением продуктов [c.316]

    Оптимальными условиями обработки сточных вод с целью отделения взвешенных частиц являются время обработки 10 мин, частота ультразвуковых колебаний 0,4—1 МГц при интенсивности 1—2 Вт/см2. При частотах 100—450 КГц происходит полное разложение ксантагенатов и до 40 % таких соединений, как фенол, цианиды и др. Скорость распада органических соединений зависит от интенсивности ультразвука, концентрации соединений и, в основном, от присутствия в воде окислителей. Так, при ультразвуковой обработке скорость окисления цианидов хлорной известью увеличивается в 1,5—2 раза. [c.484]

    Следует отметить, что когда оптимальные управления находятся на границе области У, замена уравнения (VI,227) системой уранне-ний (У[,229) и (VI,230) не позволяет исиользоиать ее для опред,еле-ИИЯ оптимального решеиия задачи. При этом система ( / 1,230) ие ввл-полняется пи ири каких значениях уиравляклцих воздействий [c.314]

    Рассмотренные в настоящей главе примеры использования метода динамического программирования для решения оптимальных задач затрагивают лишь относительно небольп1ую область возможного применения этого метода. Более полные сведения об его использовании для решения задач оптимизации могут быть найдены в литера-туре . [c.319]

    Пслученные условия (VII,Ш2) называ-, ются обычно условиями трансверсальности и дают недостающие соотношения для полного набора граничных условий систем уравнений (VII,1) и (VII,48). В дополнение к т начальным условиям типа (VII,97), в данном случа( , соотношение (VI 1,102) приводит к еще т условиям для конечной точки оптимальной траектории  [c.341]

    Схема решен н я. Здесь имеется только одно управля[0И1,ее воздействие и, которое к тому же входит только в одно уравнение (VI 1,278) полной системы уравнений математического опнсанпя процесса. С подобными случаями можно встретиться при решении оптимальных задач, когда управление не оказывает прямого во здей-ствия на все параметры, а только приводит к изменению одного из инх, через который и осуществляется управление процессом. [c.364]

    Дизельные топлива должны обладать оптимальной испаряемостью и, следовательно, иметь оптимальный фракционный состав. Большое содержание в топливе высококипящих углеводородов затрудняет пуск двигателя, снижает его экономичность и увеличивает дымность отработавших газов. Топлива облегченного состава, приближающиеся к бензинам, быстро и полно испаряются в камере сгорания, но обладают плохой самовос-пламеняемостью. Испаряемость дизельных топлив обычно нормируют по трем или четырем точкам (/ ю, /50, (дв и 1кк)- [c.102]

    Применение рассмотренных выше методов полного и дробного факторного эксперимента может помочь только при исследовании системы в области, удаленной от экстремума. Использование же их для оптимальной области при принятых интервалах варьирования определенных параметров вообще может привести к тому, что точка экстремума не будет найдена. Такие методы планирования ЭДсперимента позволяют представить зависимость в виде прямой линии или плоскости в области же оптимума нельзя аппроксимировать кривую прямой линией или поверхность высшего порядка плоскостью (рис. П-6). [c.31]

    Влияние рабочих условий. Исследования Гроссе и Ипатьева [22] показали важность подбора оптимальных рабочих условий для процесса дегидрирования парафиновых углеводородов до моноолефинов. Как указывают авторы, в оптимальных условиях при наиболее полной рециркуляции врлходы олефинов достигали 90%, нри этом образовавшийся газ содержал 90% водорода. Однако при каждой заданной температуре требовался для достшкення максимальной избирательности тщательный выбор скорости подачи сырья. Зависимость между выходом олефинов и скоростью подачи сырья для катализатора состава 97% AlgOg — 3% rgOg представлена в табл. 7. [c.196]

    Успешная эксплуатация дизельных двигателей в немалой степени зависит и от характера распыла и распределения топлива перед вспышкой. Задача усложняется тем, что необходимой гомогенизации воздушно-топливной смеси надо добиться за очень короткое время. В бензиновых двигателях образование такой смеси происходит за время, пока кривошип совершит оборот в 360°, причем используется высоколетучее топливо в дизелях же, применяющих почти нелетучее сырье, эту же задачу надо выполнить, пока кривошип повернется всего на 30°. Кроме того, следует jnin-тывать, что дизельные двигатели успешно эксплуатируются при условии введения определенных, оптимальных количеств воздуха избыток воздуха увеличивает расход энергии на сжатие, вызывает снижение к. п. д. поэтому очень важную роль играет достаточно полное распыление топлива. [c.437]

    С экономической точки зрения очень важно оптимально использовать агент сульфирования — Н.2504. В самом деле, вследствие нестабильности продуктов в присутствии Н2304 невозможно сдвинуть, равновесие сульфирования в сторону образования сульфокислот посредством непрерывного удаления образующейся воды (например, азеотропной перегонкой). Поэтому сульфирование проводят олеумом (20% 50з) при температуре около 25—30 °С, газообразным 50з, разбавленным инертными газами, или в растворе жидкой ЗОз. При этом достигают практически полного, а следовательно, экономичного-использования агента сульфирования кроме того, вторичных продуктов образуется немного. [c.341]


Смотреть страницы где упоминается термин оптимальные полные: [c.31]    [c.279]    [c.95]    [c.191]    [c.196]    [c.100]    [c.221]    [c.344]    [c.115]    [c.458]    [c.122]   
Теория технологических процессов основного органического и нефтехимического синтеза (1975) -- [ c.432 ]




ПОИСК







© 2025 chem21.info Реклама на сайте