Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рацематы, расщепление асимметрическое

    Асимметрический (частичный асимметрический) синтез может быть результатом разнообразных химических превращений, протекающих с участием оптически активных вспомогательных веществ это могут быть реакции замещения, отщепления, присоединения, в ходе которых образуется асимметрический центр. В определенном смысле промежуточными между расщеплением рацематов и асимметрическим синтезом являются процессы активирования рацематов путем кинетических превращений или кинетического расщепления (см. ниже). Эти процессы мы рассмотрим в следующем разделе, а затем перейдем к различным типам реакций асимметрического синтеза. [c.117]


    После того, как расщеплением рацемата или асимметрическим синтезом получено оптически активное вещество, всегда встает вопрос, является ли оно оптически чистым, т. е. состоит только из одного антипода или содержит и примесь другого. Только величины вращения оптически чистых веществ можно сравнивать друг с другом в тех случаях, когда стремятся установить связь между вращательной способностью молекулы и ее химическим строением. Изменения оптической чистоты вещества в ходе реакций могут дать важные сведения о механизме последних. Оценивая физиологическое действие антиподов, правильное соотношение их активности можно получить лишь при работе с оптически чистыми веществами. Наконец, при проведении расщепления просто [c.160]

    Развитие инструментальных методов - газо-жидкостной хроматографии и ЯМР-спектроскопии - позволило создать принципиально новый подход к определению энантиомерной чистоты, не требующий оптически активного эталона сравнения. Именно этим методам, их основам и конкретным применениям посвящена главная часть настоящей книги. Она знакомит читателей с использованием современных физико-химических методов для определения пространственного строения органических молекул, и более точно ее можно было бы назвать "Методы определения энантиомерной и диастереомерной чистоты". Впервые в одном издании обстоятельно изложены все современные методы, применяемые для этой цели, что делает эту книгу интересной и полезной не только для тех, кто работает с оптически активными соединениями, получает их выделением из природных соединений, расщеплением рацематов или асимметрическим синтезом, но и для тех, кто не имеет дела с оптической изомерией,, а работает со смесями диастереомеров. А это относится практически к любому химику-органику. [c.6]

    Таким образом, можно провести четкую грань между получением оптически активных веществ путем асимметрического синтеза и путем расщепления рацематов. Расщепление рацематов сводится к разделению антиподов, уже имеющихся в наличии асимметрический синтез заключается в создании антиподов в неравных количествах. Однако в соответствии с данным определением из области асимметрического синтеза исключаются многочисленные случаи возникновения оптической активности в результате разложения, происходящего с неодинаковой скоростью для обоих оптических антиподов, имеющихся в исходном рацемате. Такого рода процессы целесообразно называть асимметрической деструкцией. Обычно все же и эти превращения включают в понятие асимметрического синтеза. [c.429]


    К методу расщепления рацематов отбором кристаллов примыкает расщепление кристаллизацией, т. е. протекающее как бы самопроизвольно . Чаще всего такого рода самопроизвольное выделение одного из антиподов из раствора рацемата удается вызвать, внося в пересыщенный раствор рацемата затравку одного из антиподов. Затравкой может служить не только кристалл выделяемого антипода, но и изоморфный с ним кристалл постороннего вещества. Так, из пересыщенного раствора рацемического аспарагина II порошок кристаллов гликокола (вещества оптически неактивного и даже не содержащего асимметрического атома) выделяет оптически активный аспарагин. [c.91]

    Как уже указывалось, при расщеплении рацематов через диастереомеры используют вспомогательные оптически активные вещества — асимметрические реактивы, природа которых зависит от характера расщепляемого рацемата. В качестве конкретного примера рассмотрим расщепление [c.95]

    Асимметрический синтез — второй важнейший путь получения оптически активных веществ. Сущность асимметрического синтеза состоит в проведении стереоспецифичных реакций, в результате которых антиподы образуются или разрушаются в неравных количествах. Напомним, что расщепление рацематов сводится к разделению антиподов, при асимметрическом синтезе антиподы возникают так, что преобладание одного из них в продуктах реакции приводит к появлению оптической активности. [c.116]

    Разделение рацемата на два энантиомера называется расщеплением. Для этого используют три метода. Первый применим в тех случаях, когда нри кристаллизации рацемических смесей молекулы одной конфигурации выделяются в виде одного рода асимметрических кристаллов, а энантиомерные молекулы — в виде другого рода кристаллов, по форме представляющих зеркальное изображение первых. Можно рассортировать оба рода кристаллов и собрать отдельно каждый энантиомер в чистом виде или в виде обогащенной смеси. Пастер осуществил впервые расщепление этого рода в 1848 г., разделив на (- -)- и (—)-формы винограднокислый натрий-аммоний. [c.145]

    Благодаря блестящему мастерству экспериментатора Пастер выяснил интересные стереохимические отношения в ряду диоксиянтарных— винных кислот НООС—СН(ОН)—СН(ОН)—СООН, имеющих по два асимметрических углеродных атома. В настоящее время известны четыре формы винных кислот (+)-винная, встречающаяся в природе оптически неактивная виноградная, являющаяся рацематом (+)- и (—)-винных кислот (— )-винная, полученная при расщеплении виноградной кислоты на антиподы, и оптически неактивная мезовинная [c.332]

    Существует два общих способа получения оптически активных органических соединений 1) путем расщепления рацематов и 2) путем синтеза из других оптически активных соединений, а в последнее время и путем абсолютного асимметрического синтеза. [c.68]

    Раздельное получение индивидуальных стереоизомеров требует специальных приемов, т. к. обычные химич. реакции приводят, как правило, к образованию смесей пространственных изомеров. Разделение смесей геометрич. изомеров производят, используя различные физико-химич. методы, напр, перегонку, кристаллизацию, экстракцию, адсорбционные методы. Для получения индивидуальных антиподов оптических приходится прибегать к асимметрическому синтезу или расщеплению рацематов с образованием диастереоизомеров, к специальным адсорбционным или биохимич. методам. [c.527]

    Оптическая чистота (р, %), называемая также оптическим выходом, степенью асимметрического синтеза, асимметрическим выходом, определяется отношением удельного вращения полученного продукта к значению [ Id оптически чистого соединения, получаемого обычно классическим методом расщепление рацемата на антиподы или методом изотопного разбавления  [c.5]

    Эта точка зрения кажется более вероятной, чем представление Куна [75, 117] и Гаузе [73] о том, что асимметрический синтез термодинамически более вероятен, чем получение оптически активных соединений путем расщепления рацематов. В основе представлений Куна лежит точка зрения, рассматривающая оптическую активацию как обратимый процесс (что, однако, не должно исключать и необратимых процессов [118]) и не являющаяся достаточно обоснованной. [c.21]

    Для асимметрического расщепления рацемата имеем два процесса превращения эквимолекулярных количеств А1 и Ад  [c.22]

    Асимметрические органические реакции последние два десятилетия привлекают все большее внимание исследователей в различных областях химии - как теоретической, так и промышленной. Это связано с тем, что современный асимметрический синтез - еще недавно "экзотическая" область химии - дает реальные возможности получения оптически активных соединений, к которым относятся биологически активные вещества и многие лекарственные препараты. Это объясняется также теми возможностями, которые асимметрический синтез открывает при изучении механизмов реакций. Решающее значение в таких исследованиях, как и при расщеплении рацематов, имеет знание оптической (энантиомерной) чистоты изучаемых соединений, для чего необходимы надежные методы ее определения. Без этого не возможны ни корреляция величины оптической активности со структурой, ни оценка эффективности асимметрического синтеза или расщепления рацематов. [c.5]


    Ранее многие авторы пытались найти другие методы расчета удельного вращения чистого энантиомера. В данной главе обсуждаются различные методы кинетического расщепления, которые можно разделить на две группы а) методы, включающие асимметрическое разрушение рацемата, и б) методы, основанные на двух взаимных кинетических расщеплениях (метод Оро и его видоизменения). [c.44]

    Недавно Шлеик мл., а также Пауэлл описали оригинальный новый метод расщепления рацематов без применения асимметрических молекул. [c.137]

    У винной кислоты существует, однако, еще одна оптически неактивная модификация — так называемая мезо-форма, изображаемая формулой VIII. В отличие от рацемата, который может быть расщеплен на оптические антиподы, мезо-форма принципиально нерасщепляема каждая ее молекула имеет один асимметрический центр одной конфигурации, второй — [c.55]

    Во всех рассмотренных примерах в веществе имелся готовый асимметрический центр и речь по существу шла о расщеплении рацемата за счет различия в скоростях реакций антиподов. Асимметрический синтез несколько иного типа — в ходе реакции замещения у хирального центра — наблюдался при превращении ментилового эфира рацемической миндальной кислоты в фенилхлоруксусную кислоту. Оптическая чистота последней достигала 5%  [c.120]

    Спирановый диол, который в работе Герлаха являлся промежуточным продуктом синтеза оптически активного спиранового дикетона, сам по себе представляет интерес как пример замещенных спиранов с двумя асимметрическими атомами углерода. Соединения такой структуры могут иметь 4 диастереомерных формы, каждая из которых представляет собой рацемат, который в принципе может быть расщеплен на оптические антиподы. Соединением подобной структуры [c.405]

    Как появились на Земле первые оптически активные органические вещества путем асимметрического синтеза или при расщеплении первоначально образовавшихся рацематов . — Какой асимметризующий агент способствовал проведению асимметрического синтеза в природных условиях  [c.659]

    Индивцдуальные энантиоморфные формы - энантиомеры - отличаются знаком оптич. вращения. При кристаллизации они дают рацемич. соед., твердые р-ры либо рацемич. смесь - конгломерат (см. Рацематы). Т-ра плавления конгломерата ниже т-ры плавления чистых энантиомеров (на диаграмме плавления - эвтектич. минимум). Часто энантиоморфные кристаллы можно различить визуально и даже разделить их вручную. В 1848 Л. Пастер впервые вручную под микроскопом разделил энантиоморфные кристаллы тартрата натрия-аммония. Совр. пример мех. разделения энантио-морфных кристаллов - расщепление кристаллов гептагели-цена. С помощью энантиоморфных кристаллов, гл. обр. оптически активного кварца, можно осуществить абсолютный асимметрический синтез. [c.480]

    Наряду с большим практическим значением методов раз деления рацематов для получения оптически активных ве ществ (ОАВ) в последние десятилетия становится весьма перс пективным другой путь получения оптически активных соеди нений — асимметрический синтез (АС). Различие между эти ми двзшя путями получения оптически активных вещее состоит в том, что при методах расщепления рацематов ре идет о разделении уже полученных (в равном количеств энантиомеров, а при асимметрическом синтезе — о создан неравных количеств энантиомеров в процессе реакции их разования из прохиральных молекул. [c.446]

    A. A. Арест-Якубович. СТЕРЕОХИМИЯ, изучает пространств, строение молекул и его влияние на хим. и физ. св-ва в-в. Начала развиваться после открытия оптической активности орг. соед. в р-рах (Ж. Био, 1815). Л. Пастер разработал эксперим. методы расщепления рацематов на оптич. изомеры (энантиомеры) и впервые высказал мысль, что оптич. активность в-в — следствие асимметрии молекул (1860). Теория строения (А. М. Бутлеров, 1861) обосновала существование структурных изомеров орг. соед., но ве оптическую изомерию, для объяснения к-рой была вскоре создана первая стереохим. теория — ее основой явилась тетраэдрич. модель асимметрического атома углерода (Я. Вант-Гофф и Ж. Ле Бель, 1874). Аналогич. теория для С. комплексных соед. была построена на основе октаэдрич. модели атома металла (А. Вернер, 1893). Исследование С. р-ций началось с открытия (П. Вальден, 1895) обращения конфигурации атома углерода/1ри бимолекулярном нуклеоф. замещении (см. Вальденовское обращение). [c.544]

    Третий путь, наиболее широко используемый, основан на химической процедуре. В природе встречается ряд оптически активных карбоновых кислот и аминов, содержащих асимметрические центры. Если рацемат обладает кислыми свойствами, то для его расщепления применяют оптически активный амин, такой, как цинхонин, цинхонидин, хинин, бруцин, стрихнин, морфин или тебаин. Рацемат смешивают с амином и полученные оптически активные соли, находящиеся друг к другу в отношении диастереомеров, кристаллизуют. Поскольку эти две соли имеют разную растворимость, их можно подвергнуть дробной кристаллизации до получения индивидуальных веществ. Каждую из солей обрабатывают соляной кислотой и таким образом регенерируют исходную кислоту, но уже в оптически активной форме. Если разделение проведено точно, получают оптически чистые (т. е. энантиомерно индивидуальные) стереомеры. Если исходный рацемат — амин, то в качестве расщепляющего агента используют оптически активную кислоту. Часто применяют для этой цели такие соединения, как (- -)- и (—)-вин-ные кислоты, (—)-яблочную и (—)-миндальную кислоты. На рис. 6.20 показаны стадии расщепления рацемической карбоновой кислоты. [c.145]

    Эквиленин содержит два асимметрических атома углерода следовательно, существуют четыре оптических антипода этого соединения, образующие два рацемата. Для их получения предельная дикарбоно-вая кислота (обозначенная звездочкой) была расщеплена на два изомера — цис и транс. Далее, каждый из них обрабатывался отдельно. Из изомера с транс-конфигурацией был получен- ( )-эквиленин, а из ifw -изомера — ( )-изоэквилении. Каждый из этих рацематов был расщеплен этерификацией (—)-меитоксиуксусной кислотой на оптические антиподы, полученные при этом в чистом виде. Один из них — (4-)-экви-лепии — тождествен природному продукту. [c.917]

    Смесь равных частей двух энантиомеров называется рацемической см ЫО. Такую смесь невозможно разделить без использования хиральных реагентов эта операция называется расщеплением (или разделением). Рацемат может кристаллизоваться в виде смешанных кристаллов. Температу-1 ры плавления обоих антиподов совпадают, но отличаются в общем случае от температуры плавления рацемата. Обычные методы синтеза, исходя из нехи-ральных веществ, всегда приводят к рацематам. Только применением особых методов, позволяющих осуществить так называемый асимметрический синтез (гл. 10), можно получить продукт, в котором один из энантиомеров будет преобладать. Биологические синтезы, протекающие под влиянием ферментов — хиральных соединений с высокой специфичностью,— приводят к чистым оптически активным веществам. Под влиянием данного фермента образуется только один из двух возможных энантиомеров аминокислоты, сахара, алкалоида и т. п.,  [c.95]

    После опубликования рассмотренных теоретических работ Вант-Гоффа и Ле Беля большую актуальность приобрела задача синтеза оптически активных соединений. Еще Пастер предложил три способа их получения путем дерацемизации 1) механическое разделение кристаллов, отличающихся по форме 2) микробиологический способ и 3) через образование диастереомеров — химический метод, приобретший наибольшее значение. К ним присоединились различные методы осаждения оптически активной формы из растворов рецемата как в неактивном, так и в оптически активном растворителе, а также расщепления рацематов на оптически-активных адсорбентах (Вильштеттер, 1904). Однако принципиально важно было провести асимметрический синтез. Б рассматриваемый период удалось осуществить лишь частичный асимметрический синтез, т. е. получение нового асимметрического атома углерода, когда в молекуле уже имеется асимметрический центр, обусловливающий преимущественное образование диастереомеров. Впервые такой синтез удался Э. Фишеру (1894), получившему 1три синтезе гептоз из гексоз только одну из ожидавшихся стереоизомерных форм. Полный асимметрический синтез был проведен уже в XX в. [c.50]

    Аналогичная картина наблюдается и при расщеплении рацематов. Прп к " кА -а К сначала почти целиком (в пределе с концентрацией с/2) цол5гчается изомер Вь В дальнейшем Аа с малой скоростью, так как кй к, будет превращаться в Ва до тех пор, пока концентрации Ва и В1 не уравняются и не образуется рацемат. Динамика изменения а при асимметрическом синтезе характеризуется восходящей ветвью кривой до максимального значения а, когда образуется целиком В1 при соотношениях йс /с11 = к с — к с -, Лев (11 — к с — клСй -, к / = [c.23]

    Асимметрические превращения второго рода в принципе весьма привлекательны как метод получения некоторых хиральных соединений. Например, можно исходить из смеси (50 50) эттимфных солей рацемической органической кислоты и оптически активного основания точно так же, как и при классическом расщеплении. Задача состоит в том, чтобы найти условия, при которых между этими солями установится динамическое равновесие путем изменения конфигурации хирального центра в кислоте, причем это должно происходить в растворителе, в котором один эпимер будет менее растворим, чем другой. В идеальном случае можно "превратить" всю равновесную эпимерную смесь в менее растворимый эпимер соли. При обработке этой соли более сильной кислотой получится только один энантиомер органической кислоты, т. е. в принципе будет достигнуто полное превращение рацемата в один-единственный энантиомер. Хотя полные "превращения" встречаются редко, некоторые системы второго рода позволяют получить чистый энантиомер с выходом более 50%, тогда как при расщеплении максимальный теоретически возможный (но никогда практически не достигаемый) выход одного энантиомера составляет 50%. [c.13]

    Другими преимуществами этого метода является относительно невысокая стоимэсть приборов и легкость проведения измерений. Хотя цена дорогих поляриметров может достигать 10 ООО долл., а для измерения в видимой и УФ-областях спектра может потребоваться спектрополяриметр, стоимость которого ещэ выше, использование ЯМР-спектроскопии для определения энантиомерной чистоты требует более дорогого оборудования и также хиральных веществ. Метод ядерного магнитного резонанса является более информативным при изучении ахиральных систем, но он не позволяет различать энантиомеры в рацематах, если не создать хирального окружения. Если же можно создать такое окружение для энантиомеров, то метод ЯМР предпочтителен по сравнению с измерением оптического вращения для определения степени расщепления, скоростей реакций, степени асимметрической индукции и оптической чистоты. В настоящее время оптическое вращение все еще остается наиболее простым методом для сравнения полученных величин с данными для известного соединения и для отнесения конфигурации. В отличие от ЯМР-спект роскопии оптическое вращение определяют для жидкого вещества или растворов в низкокипящих растворителях, содержащих только нужное соединение. Поэтому после определения вращения вещество можно легко выделить обратно. [c.32]

    В работах [11, 12] сравнены и обсуждены ограничения методов, основанных либо на простых поляриметрических измерениях и хроматографическом анализе А и С, либо на математических моделях, требующих сложных расчетов. Другие ученые [ 13] рассчитали изменения относительных концентраций А. и А для наиболее общего случая кинетического расщепления А частично расщепленной смесью (В , В ) в зависимости от отнощения различных констант скоростей. Эти теоретические рассуждения подтверждены экспериментально [ 14]. С высокой оптической чистотой были получены аллиловые спирты при кинетическом расщеплении в процессе асимметрического эпокси-дирования соответствующих рацематов действием системы ь-диизо-пропилтартрат (ДИПТ) - изопропилат титана(1У) [(изо-РгО) Т1]-ярет-бутилгидропероксид (ТБГП) (рис, 6). [c.51]

    Расщепление через днастереомеры — практически наиболее важный путь получения оптически активных веществ в определенных случаях с ним может конкурировать биохимический метод, а в последнее время — асимметрический синтез. Суть в том, что рацемат действием оптически активного вещества (асимметрического реагента К ) переводят в пару диастереомеров. Диастереомеры, как уже неоднократно подчеркивалось, отличаются по физическим свойствам друг от Д1зуга, их можно более или менее легко разделить. В принципе можно было бы при этом воспользоваться разными физическими методами разделения, но на практике обычно применяют кристаллизацию, т. е. используют различие в растворимости. В последнее время все чаще применяют также хроматографические методы. [c.50]

    Расщепление рацематов до сих пор остается эмпирической областью, где успех в значительной мере определяется удачным выбором асимметрического реагента и растворителя. Все же появляются отдельные попытки найти и более общие подходы к этой проблеме. Так, методами математической статистики количественно изучена зависимость результатов от условий расщепления [47]. Результаты оценивались в виде произведения выхода диастереомерной соли и оптической чистоты расщепленного продукта. Условия выражались параметрами, характеризующими полярность растворителя и структуру расщепляемого соединения. Примером служили производные фенилглицина общей формулы ХСбН4—СНЫНг—У. Установлено, что решающую роль играет заместитель V (в уравнения вводилась его константа Тафта а ) полярность растворителя влияет мало. Тот же подход использован для оптимизации расщепления а-фенилэтиламина гидратроповой кислотой [48]. [c.58]


Смотреть страницы где упоминается термин Рацематы, расщепление асимметрическое: [c.405]    [c.58]    [c.544]    [c.83]    [c.83]    [c.83]    [c.309]    [c.77]    [c.80]    [c.40]   
Асимметрический синтез (1987) -- [ c.45 ]




ПОИСК





Смотрите так же термины и статьи:

Расщепление рацематов

Рацемат



© 2025 chem21.info Реклама на сайте