Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диаграмма азеотропной ректификации

    Схема расчета установки азеотропной ректификации, приведенной на рис. VII.9, но треугольной диаграмме представлена на рис. VII.10. Пунктиром изображена ректификационная кривая режима полного орошения второй колонны. [c.335]

    Рассмотрение поведения систем, относящихся к различным группам, позволяет установить некоторые общие положения, имеющие значение для практического применения метода азеотропной ректификации. Из приведенных ректификационных диаграмм следует, что разделение положительных азеотропов более просто, чем отрицательных. Наиболее желательными разделяющими агентами являются вещества, образующие только бинарные азеотропы с одним или обоими компонентами заданной смеси. В последнем случае азеотропы должны иметь достаточную разницу температур кипения. В качестве агентов для разделения отрицательного азеотропа на компоненты наиболее целесообразно применять вещество с температурой кипения ниже температуры кипения этих компонентов, образующее только положительный азеотроп с одним из них или положительный азеотроп с одним и отрицательный с другим. Применение в качестве разделяющих агентов веществ, дающих с компонентами заданной смеси тройные азеотропы (положительные, отрицательные и седловидные), менее целесообразно, хотя в ряде случаев и позволяет осуществить выделение одного из компонентов. [c.142]


    J Перегонку в токе носителя, главным образом перегонку с водяным паром, и азеотропную ректификацию применяют также для разделения смесей совершенно нерастворимых или частично растворимых компонентов. К перегонке в токе пара-носителя прибегают для снижения температуры процесса. При азеотропной же ректификации специальной добавкой определенного вещества вызывают образование азеотропа между этим веществом и одним из компонентов разделяемой смеси, отделяя его таким образом от остальных компонентов получаемый при этом азео-тропный дистиллят должен легко поддаваться разделению на составные части (см. разд. 6.2.1). Следовательно, в таких случаях необходимо знать диаграмму растворимости для азеотропной [c.51]

    Извлеченный растворитель возвращается в колонну азеотропной ректификации в качестве флегмы. Для получения очень низких концентраций парафинового углеводорода в кубовом продукте (остатке) растворитель подается с некоторым избытком, что обеспечивает движение линии ректификации в сторону растворителя (к вершине Т на треугольной диаграмме). Метанол затем отделяется от толуола в колонне бинарной ректификации, дистиллятом которой является азеотроп метанол — толуол. Небольшое количество этого дистиллята добавляется в питание до его подачи в основную азеотропную колонну. [c.227]

    При перегонке с паром-носителем, главным образом с водяным паром, и при азеотропной ректификации подвергают перегонке также и смеси, совершенно не обладающие или обладающие ограниченной взаимной растворимостью. Перегонку с паром-носителем применяют для снижения температуры процесса, при азеотропной же ректификации специальной добавкой определенного вещества образуют азеотроп между этим веществом и одним из компонентов разделяемой смеси, таким путем отделяя его от остальных компонентов получаемый при этом дистиллат должен легко поддаваться разделению на составные части (см. главу 6.21). Следовательно, в таких случаях очень важно знать диаграмму растворимости азеотропной смеси, чтобы путем соответствующего охлаждения получить желаемое разделение фаз. Из рис. 28 можно, наиример, видеть, что при температуре выше 68,8° имеется ири всех концентрациях [c.52]

    На основе ТТА структур диаграмм исходной смеси и ряда ее составляющих проведен синтез возможных вариантов разделения реакционных смесей. Для выделения бутилцеллозольва предложены четыре альтернативные схемы. Все они предусматривают выделение бутанола и отличаются способами получения бутилцеллозольва и бутилкарбитола. В двух схемах предложено применение азеотропной ректификации [б]. Для разделения смеси бензойная кислота - дифенил предложено использование ректификации -азеотропной и с вариацией давления. [c.39]


    Составы A. . изменяются с т-рой (давлением). Эта зависимость образует на диаграмме равновесия линию азеотропов (линия LK на рис. 1), к-рая может проходить через всю область равновесия жидкость-пар для данной системы вплоть до критич. кривой, отграничивающей область существования равновесия жидкость-пар в двойной системе, но может заканчиваться и ранее. Вдали от критич, кривой, т.е, при поведении паровой фазы, близком к поведению идеального газа, изменение состава A. . с т-рой определяется соотношением теплот испарения компонентов (см. Вревского законы). Изменение состава А. с, с т-рой (давлением) используют для их разделения методом азеотропной ректификации, [c.45]

    При переходе к азеотропным смесям диаграмма траекторий ректификации при бесконечном флегмовом числе распадается, как правило, на несколько пучков и имеет более двух узловых точек. [c.149]

    Подводя некоторый итог, можно заметить, что при известной структуре диаграммы фазового равновесия удается выяснить характер протекания процессов ректификации и при необходимости спланировать соответствующим образом пробные ректификационные опыты. При отсутствии достаточной информации о фазовом равновесии с помощью ректификационных опытов можно выяснить тип диаграммы фазового равновесия и в соответствии с этим интерпретировать результаты пробных ректификаций, которые в ряде случаев могут быть довольно запутанными. В целом явление азеотропии, как видно, осложняет ректификационные процессы и делает их характер более разнообразным. Однако, когда имеющиеся закономерности выяснены, они сами могут найти полезное применение для поиска оптимальных путей разделения веществ. Хороший пример этому дает метод азеотропной ректификации, позволяющий осуществлять разделение азеотропных смесей. [c.175]

    Методы, применение которых предусматривает введение в исходную смесь различных разделяющих агентов и, следовательно, переход от диаграммы исходной смеси к диаграмме более высокой размерности с иным характером расположения областей ректификации или с большей разницей в летучести компонентов. К таким методам относятся экстрактивная и азеотропная ректификация. Наибольшую сложность в этих случаях представляют вопросы выбора разделяющих агентов. [c.184]

    Однако ряд структурных особенностей диаграмм азеотропных смесей приводит к существенным отличиям в их поведении при ректификации в режиме бесконечной разделительной способности. Разные аспекты этих структурных особенностей и их влияние на ход процесса ректификации в режиме бесконечного орошения и бесконечной эффективности колонны рассмотрены в работах 54—57, 59—61. [c.99]

    Первый треугольник показывает характер расположения изотерм-изобар, зависящий от соотношения температур кипения компонентов и азеотропов. Второй треугольник представляет собой диаграмму, иллюстрирующую ход процесса ректификации в системе. Строится он следующим образом. На треугольнике отмечается положение всех бинарных и тройной азеотропных смесей, а также примерный ход хребтовой линии. Затем проводится секущая, соединяющая азеотропную точку (или другую точку) системы, подлежащей разделению, с вершиной, соответствующей разделяющему агенту. Эта секущая является геометрическим местом точек состава смесей, получающихся при прибавлении разделяющего агента к заданной смеси. Количество разделяющего агента, которое нужно добавить для проведения процесса азеотропной ректификации, определяется точкой пересечения этой секущей с соответствующей разделяющей линией ректификации. Рассмотрим применение принципов ректификационного анализа к разным системам. [c.188]

    Кроме описанного аналитического метода в практике используют различные графические методы расчета от тарелки к тарелке . Эти методы основаны на использовании графического представления данных о фазовом равновесии. Для трехкомпонентных систем условия равновесия между жидкостью и паром изображаются в виде треугольной диаграммы, использование которой для расчета процесса азеотропной ректификации показано на рис. 100. [c.282]

Рис. VI. 39. Диаграмма к расчету колонны азеотропной ректификации. Рис. VI. 39. Диаграмма к <a href="/info/28322">расчету колонны</a> азеотропной ректификации.
    Представляют большой интерес методы разделения бинарных гомогенных в жидкой фазе азеотронных систем, которые при заданном внешнем давлении имеют либо максимальную, либо минимальную точку кипения на диаграмме t — х, у. Процесс выкипания жидкого гомогенного азеотропного раствора протекает при постоянной температуре и одинаковых составах жидкой и паровой фаз, что исключает использование обычных способов ректификации для получения обоих практически чистых компонентов смеси. [c.323]


    Неидеальные смеси, не образующие азеотропа, характеризуются тем, что их кривая равновесия асимптотически приближается к диагонали в верхнем или нижнем углу диаграммы (например, см. рис. 29, е и з). Разделение подобных смесей требует значительного числа теоретических ступеней разделения даже при сравнительно большой разнице в температурах кипения. компонентов. Неидеальные смеси с одной азеотропной точкой (их кратко называют азеотропными) при ректификации образуют (см. разд. 4.6.2), либо азеотроп с минимальной температурой кипения (положительный азеотроп), либо азеотроп с максимальной температурой кипения (отрицательный азеотроп). [c.299]

    На приведенных диаграммах имеются точки пересечения равновесной линии с диагональю, в которых состав пара равен составу жидкости. Это так называемые точки азеотропных составов, которые определяют возможные границы разделения жидких смесей методом ректификации. [c.294]

    При ректификации растворов с положительным отклонением от закона Рауля состав дистиллята стремится к составу азеотропной смеси, а кубовый остаток обогащается тем компонентом, которого в исходном растворе содержится больше, чем в азеотропной смеси. Так, для системы, свойства которой описаны диаграммами на рис. IV. 12, а, ректификация раствора состава х дает в дистилляте азеотропную смесь а, а в кубовом остатке — компонент 1. А при ректификации раствора состава х в дистилляте опять будет азеотропная смесь а, но в кубовом остатке уже будет компонент 2, которого в исходном растворе содержится, больше, чем в азеотропной смеси. [c.222]

    Если на кривой (— N или Р — N имеется максимум или минимум, то независимо от исходного состава жидкости последняя нацело не разгоняется могут быть получены лишь чистый компонент и постоянно кипящая (азеотропная) смесь. Прекращение процесса ректификации (или простой перегонки) в точках экстремума объясняется совпадением состава жидкости с составом пара, вследствие чего движущая сила разгонки — различие в составе фаз — становится равной нулю. Поэтому при равновесии азеотропная смесь испаряется как чистое вещество. В этом смысле можно представить рис. 101, IV и V как бы состоящим из двух диаграмм, подобных рис. 101,1—111 компонент 1 — азеотропная смесь и азеотропная смесь — компонент 2 . [c.295]

    На почти 500 страницах [43] проанализирована информация, относящаяся к процессам ректификации. На примере четырехкомпонентной смеси показан простой способ расчета диаграмм равновесия системы жидкость - пар. Показана возможность использования сложных диаграмм ректификации смеси из четырех компонентов для предсказывания состава конечных продуктов. Достаточно много внимания уделено процессам кипения азеотропных и обычных смесей при ректификации. Обобщены данные и показаны основные пути усовершенствования ректификации совмещенной с химической реакцией. [c.105]

    Для процессов ректификации чрезвычайно существенны азеотропные характеристики разделяемых смесей. В связи с этим важен расчет состава азеотропа при заданных давлении или температуре. Расчеты азеотропов необходимы для проверки адекватности описания топологической структуры фазовых диаграмм, для предсказания азеотропных свойств неисследованных систем на основе групповых моделей или данных по бинарным системам, для предсказания смещения азеотропного состава при изменении внешних условий. [c.168]

    Применяемые в промышленности традиционные процессы разделения смесей (ректификация,экстракция, абсорбция, кристаллизация и др.), как известно, не универсальны. Каждый имеет ограниченные области технически возможного и экономически целесообразного применения. Большей частью эти ограничения связаны с наличием на диаграммах фазового равновесия особых точек (азеотропных, эвтектических, перитектических и т. п.), а также особых областей (ограниченной растворимости, термического разложения, химического взаимодействия и др.). [c.291]

    Настоящая глава посвящена обсуждению нелокальных закономерностей диаграмм равновесия жидкость — пар и дистилляционных линий. Изучение нелокальных закономерностей позволяет исследовать термодинамически возможные типы диаграмм состояния, создает основу для классификации и дает возможность определять азеотропные свойства п-компонентных систем по данным для систем с меньшим числом компонентов. В практическом отношении перечисленные вопросы имеют значение, например, при разработке технологических схем ректификации, поскольку результаты ректификации определяются не только кон- [c.64]

    При исследовании равновесия жидкость — пар одним из основных вопросов является вопрос об азеотропных свойствах системы, поскольку этими свойствами определяется тип диаграммы фазового равновесия, а также характер протекания процессов дистилляции и ректификации многокомпонентных смесей. В связи с этим рассмотрим азеотропные свойства многокомпонентных систем на основе нелокальных, структурных закономерностей диаграмм состояния. Остановимся сначала на случае 4-компонентных систем, а далее в более краткой форме проведем обсуждение для 5- и га-компонентных систем. Такое изложение позволяет познакомиться со спецификой систем с четным или нечетным числом компонентов и дает иллюстрацию для общего случая. Подробное обсуждение аналогичных вопросов для тройных систем можно найти в монографии [3]. [c.75]

    Исследование характера движения мнимых азеотропных точек имеет значение при выборе рабочего давления процесса ректификации. С другой стороны, этот прием используется [81] с целью выяснения степени вероятности той или иной структуры диаграмм равновесного испарения для трехкомпонентных смесей. [c.128]

    Термодинамическая теория равновесия между жидкостью и паром позволяет вскрыть основные закономерности фазового равновесия и исследовать типы диаграмм состояния. Фактически каждый тип отражает физико-химическую природу многокомпонентной смеси, которая непосредственно сказывается на характере протекания фазовых процессов между жидкостью и паром. В основе процесса ректификации, который широко используется в химической технологии, лежат фазовые превращения жидкость—пар, однако этот процесс многосторонний, и связь отдельных сторон, особенно в случае азеотропных смесей, довольно сложна и пока относительно мало изучена. [c.130]

    С практической точки зрения наибольший интерес представляют тройные системы, которые могут встречаться при разделении методом азеотропной ректификации бинарных смесей с положительным или отрицательным азеотропом. Рассмотрим различные системы, придерживаясь классификации Молоденко и Бушмакина [80], предложивших различать пять групп систем соответственно типу и числу азеотропов в них. Поведение систем различных групп может быть выявлено с помощью диаграмм, приводимых на рис. 49—53. Система, подвергаемая разделению, на этих диаграммах изображается стороной АВ. [c.134]

    Азеотропная ректификация относится к тем процессам, в которых добавленный компонент образует азеотрор, причем один из ключевых компонентов и этот азеотроп в процессе ра гонки становятся либо дистиллятом, либо кубовым продуктом (в зависимости от температуры кипения азеотропа). Часто образовавшийся азеотроп не является бинарным, поскольку он содержит некоторое количество обоих компонентов (точка, соответствующая этому азеотропу, находится внутри треугольной диаграммы). Такой азеотроп называется тройным. Если соотношение двух начальных компонентов в тройном азеотропе отличается от соот- [c.202]

    В книге рассмотрены основные положения строгой термодинамической теории фазового равновесия между жидкостью и паром, дана теория процессов открытого испарения и дистилляции. Большое внимание уделено термодинамико-топологическим структурным закономерностям диаграмм азеотропных смесей, описаны явления азеотропи и правила преобразования фазовых диаграмм. На основе различных моделей массообмена проанализированы процессы непрерывной и периодической ректификации, освещены специальные приемы ректификации, описаны типовые комплексы ректификационных колонн, принципы и методика составления технологических схем ректификации. [c.2]

    Если обратиться к экспериментальным данным по фазовым равновесиям, то можно убедиться, что по большей части типы диаграмм табл. IV, 1 уже обнаружены в настояшее время. Не все типы диаграмм встречаются одинаково часто, однако при имеющемся количестве изученных систем обоснованные статистические выводы, по-видимому, преждевременны из-за некоторых субъек тивных факторов. В частности, многие исследования связаны с по исками азеотропообразующих разделяющих агентов со специаль ными свойствами, необходимыми для азеотропной ректификации Кроме того, после открытия тройных седловых азеотропов пред приняты исследования для серий тройных систем именно этого типа. Есть также типы, пока не обнаруженные экспериментально, например, тип ООО класс 1.1 (см. рис. IV, 17). Однако не имеется общетермодинамических принципиальных оснований исключать подобные случаи из рассмотрения. Здесь уместно отметить, что сравнительно недавно не было хорошо известных теперь примеров систем с тройным седловым азеотропом. [c.99]

    Кроме перечисленных основных требований к разделяющим агентам и экстрагентам, весьма существенна степень чистоты конечных продуктов, получаемых по проектируемой технологической схеме. Чистота является одним из основных требований, предъявляемых к мономерам и другим полупродуктам, причем важен не только количественный, но и качественный состав примесей. Ряд примесей, содержащихся в полупродуктах в ничтожных долях, могут, например, оказаться сильнейшими ядами для последующих каталитических процессов или резко ухудшать качество полимера, получаемого в процессе полимеризации. Может случиться, что введенный на определенной стадии технологического процесса разделяющий агент или экстрагент окажет, даже в виде незначительных примесей, нежелательное действие на последующих стадиях. Сказанное выше нельзя понимать таким образом, что применения экстрактивной и азеотропной ректификации и экстракции следует по возможности избегать. Эти методы в настоящее время интенсивно развиваются и весьма перспективны. Они имеют бо.льшое практическое значение и с успехом используются в промышленности, однако все же являются не единственно возможными методами разделения азеотропных смесей. Добавление в разделяемую смесь нового вещества в жидком или твердом состоянии является лишь средством, в результате которого достигаются желательные изменения диаграммы фазового равновесия. И если изменение равновесных соотношений является обязательным условием разделения азеотропных смесей, то средства осуществления такого изменения не исчерпываются только введением в исходный раствор новых веществ. [c.187]

    Система дихлорметан — ацетон — метиловый спирт представляет практический интерес с точки зрения изучения условий разделения смесей ацетона и метилового спирта с помощью азеотропной ректификации. В этой системе имеется два бинарных положительных азеотропа ацетон — метиловый спирт (т. кип. 54,6°С 86,5 мол.% ацетона) и дихлорметан — метиловый спирт (т. кип. 39,2°С 94 мол.%-дихлорметана). Система дихлорметан — ацетон неазеотропна. Температуры кипения азеотропов и компонентов показаны на треугольной диаграмме (рис. 63). Точки 1 и 2 на треугольной диаграмме изображают составы смесей, изучавшихся путем ректификационного анализа. Кривые ректификации этих двух смесей приведены на рис. 63, под треугольной диаграммой. Эти кривые свидетельствуют об отсутствии тройного азеотропа в рассматриваемой системе. Из рис. 63 следует, что ход ректификации в этой системе относительно прост. Разгонка смесей, состав которых изображается точками в треугольнике Лт1 П2 дает следующие фракции 1) азеотроп дихлорметан — метиловый спирт 2) азеотроп ацетон — метиловый спирт 3) метиловый спирт 3) метиловый спирт (рис. 63,1). При ректификации смесей, состав которых изображается точками в треугольниках Шхт В и гпхВС, получаются фракции, отвечающие вершинам соответствующих треугольников. Таким образом, наличие двух положительных бинарных азеотропов в тройной системе порождает появление трех ректификационных областей в концентрационном треугольнике. Разделяющие линии ректификации между всеми тремя областями — прямые. Это подтверждается тем, что при [c.176]

    Теоретической базой синтеза технологических схем разделения служит термодинамико-топологический анализ диаграмм фазового равновесия жидкость-пар [46, 368]. Из всех разновидностей технологических схем процессов азеотропного разделения смесей можно вьщелить типовые схемы установок азеотропной ректификации в зависимости от образования гомо- или гетероазеотропов. [c.140]

    Регенерация растворителя при экстрактивной ректификации — более простой процесс, чем при азеотропной. Растворитель пе образует азеотропа с извлеченным компонентом, поэтому его можно выделить простой ректификацией. Приблпжет1].ш расчет колонны для ректификации растворителя возможен даже при помощи бииарпой диаграммы. Режимы работы и конструкция колонн экстрактивной дистилляции, а также опыт эксплуатации этих установок описаны в литературе.  [c.229]

    Равновесие в трехкомпонентной системе можно представить на треугольной диаграмме, дающей проекции изотерм жидкости и пара (для Р = сопз1). На рис. У1-47 (один азеотроп) сплощные линии обозначают изотермы жидкости, а пунктирные — изотермы пара. На каждой стороне треугольника можно построить диаграмму изобар системы из двух компонентов. Изотермы пара соединены с изотермами жидкости рядом отрезков, указывающих, какие фазы находятся в равновесии друг с другом. В случае периодической ректификации трехкомпонентного раствора с одной азеотропной смесью из двух компонентов состава 5 (рис. У1-47), происходят хара терные изменения температуры дистиллята. Сначала отгоняется летучая азеотропная смесь при температуре /а- После ее отгонки в кубе по правилу прямой линии остается смесь состава В. Теперь будет отгоняться более летучий компонент, например С, при температуре с- Затем отгоняется почти чистый компонент О при температуре перегонки tD. [c.507]

    Очевидно, что каждая ступень построенной ломаной заключена между кривой равновесия и рабочей линией одной теоретической тарелки колонны. Аналогично поступают и при расчете насадочных ректификационных колонн. В этом случае вводится понятие эквивалентной высоты теоретической тарелки — высота насадки, которая имеет тот же коэффициент разделения, что и одна теоретическая тарелка, т. е. участок наса-дочной колонны, на котором происходит изменение состава, соответствующее одной ступени диаграммы Мак-Кэба — Тиле, Как следует из изложенного выше, при увеличении числа тарелок концентрация низкокипящей фракции в жидкости приближается к 1007о. но некоторые бинарные смеси отличаются тем, что содержание дистиллата достигает заданной величины меньше 100%, которая не может быть превышена при ректификации даже в случае бесконечно большого числа тарелок. Такие смеси называются азеотропными. Они отличаются тем, что кривая Х = Х ) пересекает диагональ диаграммы равновесия, где кривая равновесия проходит через точку [c.456]

    Анализ экспериментальных данных по фазовому равновесию в бинарных системах метаиола с углеводородами показал, что смеси метаиола с углеводородами от пропана до н-декана являются азеотропными растворами. В качестве примера иа рис. 3.2 приведеиа фазовая диаграмма для системы метапол -н-пеитаи. Из рисунка следует, что разделение смесей углеводородов с метанолом простой ректификацией осуществить невозможно. [c.110]

    В практике встречаются многочисленные бинарные смеси, кривые равновесия которых при определенных условиях пересекают диагональ х— /-диаграммы. В точке пересечения, носящей название азеотропной, составы жидкой смеси и образующегося из нее пара одинаковы (у = х). Такая жидкая смесь отличается наибольшим отклонением от закона Рауля она называется азеотропной, или нераздельнокипящей, и характеризуется постоянством температуры выкипания. Совершенно очевидно, что равенство составов жидкости и пара исключает возможность разделения азеотропных смесей на практически чистые компонентыобычными методами ректификации. Из исходной смеси, состав которой отличается от азеотропного, можно предельно извлечь лишь фракцию, обогащенную одним из компонентов остаток же будет азеотропной смесью. [c.529]

    На рис. 8.11, г представлен один из вариантов схемы разделения бинарной азеотропной смеси, образующей при кристаллизации непрерывный ряд твердых растворов. В данном варианте однократную кристаллизацию используют в основном для перехода через азеотропную точку, окончательно же смесь разделяют ректификацией. На рис. 8.11, (Э разделение той же смеси осуществляют сочетанием ректификации с противоточной кристаллизацией. В рассматриваемом случае можно использовать и другие варианты разделения, например получение одного компонента кристаллизацией, а второго — ректификацией. На рис. 8.11, ж показан один из возможных вариантов разделения азеотропной смеси, имеющей эвтектическую точку на диаграмме фазового равновесия жидкость — кристаллическая фаза. Соче- [c.293]


Смотреть страницы где упоминается термин Диаграмма азеотропной ректификации: [c.136]    [c.189]    [c.135]    [c.204]    [c.302]   
Оборудование производств Издание 2 (1974) -- [ c.41 ]




ПОИСК





Смотрите так же термины и статьи:

Ректификация азеотропная



© 2025 chem21.info Реклама на сайте