Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись хрома анализ

    Установлено, что поверхности этих активных окисей восстанавливаются окисью углерода. Поэтому возможно, что катализ осуществляется с попеременным восстановлением и окислением поверхности. Этот механизм был предложен Бентоном [161] для окисления на двуокиси марганца. Как скорость восстановления несмешапнога катализатора, так и скорость каталитического окисления на нем пропорциональны давлению окиси углерода. С точки зрения более поздних данных этот механизм, по-видимому, маловероятен при использовании О было показано [162], что скорость восстановления поверхности в 10 раз меньше скорости каталитического окисления. Трудно понять, как добавка кислорода может изменять скорость восстановления поверхности, в особенности если было установлено, что окись углерода, содержащаяся в воздухе, извлекает с поверхности [163] относительно небольшое количество О . Другие механизмы включают реакцию между газами, хемосорбирован-ными на поверхностях окисей, или реакцию между окисью углерода из газовой фазы и кислородом, в той или иной форме хемосорбированным на поверхности. Стоун [164] подверг анализу результаты исследований, проведенных многими учеными, включая ученых бристольской школы, и показал, что имеется качественная связь между активностями различных окисей и их полупроводниковыми свойствами. Наиболее активны окиси р-тииа, дающие измеримые скорости окисления при низких температурах, в некоторых случаях ниже 50°. К их числу относятся двуокись марганца и некоторые из окисей, используемых в гопкалитах. Следующими па активности являются окиси п-типа — окись железа, окись цинка и двуокись титана, действующие в интервале 150—400°, но некоторые собственные полупроводники, вроде окисей меди и хрома, также [c.329]


    Не растворяются в царской водке хлорид, бромид, иодид и цианид серебра, сульфаты стронция, бария и свинца, фторид кальция, сплавленный хромат свинца, окись алюминия, окись хрома, двуокись олова, двуокись кремния, элементные углерод и кремний, карборунд и многие силикаты. Чтобы перевести в раствор, их разлагают. Из числа веществ, встречающихся в качественном анализе, в органических растворителях (например, в диэтиловом эфире, этиловом спирте, хлороформе, бензоле, сероуглероде, четыреххлористом углероде) растворимы элементные бром и иод. Аморфная сера не растворяется в сероуглероде. Моноклинная сера растворяется в сероуглероде, а ромбическая сера — в сероуглероде и толуоле. Желтый фосфор хорошо растворим в сероуглероде и бензоле, а красный фосфор не растворим в растворе аммиака, эфире, спирте и сероуглероде. [c.274]

    Спектральные методы. Для изготовления эталонов в спектральном анализе используют металлический хром, выплавленный из шихты с заданным количеством элементов [317], или эталоны готовят на основе окиси хрома, полученной из хромата аммония после пятикратной очистки высаливанием из раствора этанолом [222]. Пробы предварительно переводят в окись хрома в связи с неравномерностью распределения примесей в металле и трудностью приготовления эталонов [222]. Для этого навески металла растворяют в НС1, осаждают аммиаком гидроокиси, осадок высушивают, прогревают в муфельной печи при 200 — 300° С до прекращения выделения паров аммонийных солей и затем прокаливают в течение часа при 800° С. Пробы и эталоны [c.177]

    Очень широко, как уже указывалось ранее, используются в данном случае сложные катализаторы, в состав которых входит окись хрома. При этом многочисленными исследованиями, главным образом Баландина с сотрудниками, установлено, что кроме алюмо-хромовых катализаторов высокими дегидрирующими свойствами обладают также медно-хромовые контакты, предварительно восстановленные водородом. Согласно данным рентгеноструктурного анализа, медно-хромовый катализатор обладает кристаллической структурой и линии его рентгеновского спектра принадлежат решеткам металлической меди и окиси хрома при этом грань (111) решетки меди полностью укладывается на слой кислородных атомов окиси хрома [137]. Дегидрирующее влияние медно-хромового катализатора исследовалось в широком ряду алкилбензолов и алкилфенолов. Найдено, что при нормальном давлении и температуре 650° С выход стирола в присутствии медно-хромового контакта доходит до 40% на пропущенный и около 60% на разложенный этилбензол (скорость пропускания этилбензола 450 г на 1 л катализатора в час). В качестве побочных продуктов получалось 7% толуола и 4% бензола имело место также некоторое разложение на газы (метан, этан, этилен) и углеотложение [1381. При снижении парциального давления этилбензола разбавлением углекислым газом (этилбензол С02 =1 2 (мол.)) выход стирола на пропущенный этилбензол и селективность [c.166]


    Рентгеноструктурный анализ образцов катализаторов до опытов показал, что все катализаторы содержат фазы окислов цинка, хрома и меди. Во всех катализаторах после опытов обнаружена цинк-хромовая шпинель. В условиях экспериментов по термодинамическим данным медь должна присутствовать в виде металлической. Однако или в результате фона, который создает на рентгенограммах окись хрома, не связавшаяся в шпинель, или в результате очень высокой дисперсности самой меди ее фазу не удалось обнаружить. [c.91]

    В системе окись цинка — окись хрома, так же как и в системе окись цинка — кремнезем , в которой не образуется никаких промежуточных аморфных фаз, Яндер наблюдал эти различные стадии реакции. Образование виллемита, с его характерной кристаллической структурой, было установлено с помощью рентгеновского анализа. Сначала кремнезем существует в очень неупорядоченном состоянии и служит сильным катализатором реакции N2O 4-Нг = N2-1-HjO (фиг. 744), Механически от- [c.706]

    Не растворяются в царской водке хлорид, бромид, иодид и цианид серебра, сульфаты стронция, бария и свинца, фторид кальция, сплавленный хромат свинца, окись алюминия, окись хрома, двуокись олова, двуокись кремния, элементарный углерод и кремний, карборунд и многие силикаты. Для переведения в раствор этих соединений их необходимо подвергнуть разложению. Из числа веществ, встречающихся в качественном анализе, в органических растворителях, например диэтиловом эфире, этиловом спирте, хлороформе, бензоле, сероуглероде, четыреххлористом углероде, растворимы элементарные бром и иод. [c.311]

    Метод дифференциального термического анализа (д. т. а.) уже более трех десятилетий широко применяется для выяснения структуры глины и других минералов. Д. т. а. как метод систематического изучения твердых катализаторов не получил широкого распространения. Можно указать всего лишь несколько работ по данному вопросу [1—6]. В настоящей работе сообщается о результатах дифференциального термического анализа ряда твердых катализаторов, а именно окиси хрома, окиси железа и бинарной системы окись хрома — окись железа. Была сделана попытка согласовать данные д. т. а. с рентгенографическими данными и величинами удельной поверхности, а также с некоторыми литературными данными по активности изученных в этой работе катализаторов. [c.135]

    По техническим условиям содержание железа в окиси хрома и хромовом ангидриде должно быть не выше 0,15% в пересчете на закись железа. Определение небольших количеств железа в хромовых соединениях химическими методами чрезвычайно длительное и трудоемкое, Объясняется это необходимостью предварительного отделения железа от хрома, что протекает не всегда гладко, особенно в случае анализа хромового ангидрида. Кроме того, окись хрома переводится в растворимое соединение с большим трудом. [c.224]

    Для спектрального дг анализа хромового ангид-рида последний переводили в окись хрома,так как нам не удалось подобрать оптимальные условия сжигания хромового ангидрида в дуге переменного тока. [c.225]

    Изучению кислородных соединений хрома посвящена работа Т. В. Роде [25]. Автор изучи.п физико-химическую природу, свойства, а также взаимные переходы кислородных и гидроокисных соединений хрома. Окислы хрома являются чрезвычайно сложными и своеобразными соединениями. В результате применения химических, микроскопических и физико-химических методов анализа (дифференциально термического с параллельным учетом объема выделяющихся газов, термогравиметрического и рентгеновского и построения диаграмм состав — температура) был решен ряд спорных вопросов химии окислов и гидроокислов хрома. Установлено число, состав и природа индивидуальных соединений и выявлено влияние температуры, времени нагревания и давления на природу различных фаз. Впервые детально изучена система хромовый ангидрид — окись хрома, дана характеристика промежуточных соединений, образующихся при термическом разложении хромового ангидрида. Ряд авторов [26—30] нашел при термической диссоциации хромового ангидрида только два или четыре промежуточных окисла, для которых даются различные составы, без уточнения их физико-химической природы. Они полагают, что при этом не получаются соединения определенного стехиометрического состава, а образуются два ряда непрерывных твердых растворов между составами СгОз.в — СгОз.з и СгО д— СгО ,,. Уточнение физико-химиче- [c.24]

    Окись хрома, прокаленная при 430 С, имеет темно-зеленый цвет, который изменяется до светло-зеленого после прокаливания при более высоких температурах. По данным химического анализа на кислород, образец Сг/43 содержит 2,1.10 атомов Сг + на 1 см поверхности и только 5% Сг + в объеме [15]. В катализаторе Сг/60 шестивалентного хрома меньше и он совсем не обнаружен в катализаторах Сг/80 и Сг/100. [c.397]


    При анализе окись хрома можно растворить нагреванием с азотной кислотой в присутствии бертолетовой соли. Метод, по-видимому, можно использовать также и для анализа металлического хрома. [c.321]

    В. А. Климова (ИОХ АН СССР, Москва). Надо остановиться на вопросах о целесообразной величине навески, о трудности сжигания кремнеорганических соединений и об объективном методе контроля сжигания. Величину навески нужно избирать, исходя из целей анализа для производственного контроля наиболее применимы большие навески. Наиболее трудно сжигаются высокополимерные силоксаны, навеску которых необходимо смешивать с окислителем (хорошие результаты дает окись хрома). Некоторые кремнеорганические соединения в кислороде горят со взрывом. Чтобы получить хорошие результаты по углероду и водороду для таких соединений, навеску следует сжигать в атмосфере воздуха. [c.234]

    Влияние температуры на степень восстановления чистой N 0 показано на рис. 2.1. Анализ степени восстановления промотиро-ванных образцов показал, что при введении добавок восстановление затрудняется. При введении окиси алюминия степень восста--новления составляет всего 33%, при введении окиси хрома —42%. Окись циркония практически не оказывает влияния. Размер частиц никеля, рассчитанный из данных по величине поверхности и степени восстановления, увеличивается при введении добавок оки- [c.27]

    При анализе хрома высокой чистоты его предварительно переводят в окись в связи с неравномерностью распределения примесей в металле и трудностью приготовления эталонов [332]. [c.107]

    Адсорбционная хроматография. Как адсорбент применяется окись алюминия, иногда целлюлоза. Главное внимание обращалось на разработку. методов отделения кобальта от никеля, меди, железа, урана, молибдена, марганца, ванадия, хрома и некоторых других элементов. Характеристика предложенных методов приведена в табл. 17. Хроматографирование на окиси алюминия применяется для качественного анализа катионов метод основан на различной сорбируемости окисью алюминия [c.78]

    Марганец мешает определению, поскольку он осаждается с гидроокисью магния, подавляя впоследствии окраску комплекса магния с солохром цианином Н 200. При анализе проб, содержащих более 0,05% марганца, титан отделяют экстракцией купфероната титана хлороформом, затем перед осаждением гидроокиси магния отделяют марганец в виде перманганата цинка, добавляя окись цинка. Такая модификация метода дает возможность анализировать пробы, содержащие до 1 % марганца. Допускается также присутствие до 10% алюминия и 5% хрома. [c.53]

    Вольфрам и молибден. Общие требования к методам химического и спектрального анализа Ниобий. Спектральный метод определения вольфрама и молибдена Ниобий. Спектральный метод определения тантала Тантал и его окись. Спектральный метод определения алюминия, ванадия, железа, кальция, кремния, магния марганца, меди, никеля, ниобия, олова, титана, хрома и циркония [c.821]

    Анализ. Безнолная окись хрома не растворяется в кислотах и в щелочах, а также ие IIз [eняeт я при прокаливании. Эти свойства дают возможность легко распознавать ее. [c.348]

    Для определения углерода и водорода в кремнийорганических соединениях описан целый ряд методов [N52]. Из более новых работ привлекает внимание метод Гурецкого [N33, N54], в котором применяются пустые трубки , предложенные ранее Коршун и Климовой [N39, N49] для анализа чистых кремнийорганических соединений. Навеску вещества в кварцевой пробирке для взвешивания засыпают сверху окисью меди и подвергают пиролизу в кварцевой трубке, на которую надвигают две электрические печки. Продукты пиролиза увлекаются быстрым током кислорода и проходят последовательно через две электрические печки, в которых происходит сожжение. В части трубки, приходящейся на пространство между двумя печками, помещен фильтрующий слой, который удерживает аэрозоль двуокиси кремния. Климова [1251] при помощи такой установки определяла одновременно еще и кремний. Затруднения, связанные с образованием карбида кремния, устраняются применением катализатора (окись ванадия или хрома), нанесенного на асбест, который одновременно действует как фильтр для тонкодисперсной двуокиси кремния. [c.217]

    Как видно из табл. 5, в окалине обнаруживаются три окисла закись никеля, шпинель и окись хрома. Результаты послойного анализа дают важную информащ4ю о механизме окисления. Они показывают, что состав окалины неоднороден по толщине. В этой неоднородности обнаруживается закономерность, заключающаяся в том, что по мере углубления в окалину возрастает концентрация термодинамически более устойчивых окислов, в данном случае окиси хрома. Эта закономерность указывает на селективное окисление хрома, так же, по-вйдимому,, на протекание вторичных реакций окисления - восстановления во внутренних слоях окалины, причем чем ниже давление кислорода, тем более вероятно протекание этих процессов. Таким образом, термодинамические факторы оказывают существенное влияние на формирование внутренних слоев окалины. [c.42]

    При сплавлении с карбонатом натрия в платиновом тигле перхлорат разлагается до хлорида. Дрнный метод очень удобен и часто применяется для быстрого определения перхлората. Платина тигля служит катализатором реакции образовавшийся хлорид определяют по Фольгарду. Эту реакцию обычно используют при анализе перхлората аммония (подробнее см. в разделе Анализ товарных перхлоратов , стр. 128). Видоизменения метода были изучены Добросердовым и Эрдманом , которые подробно описали приемы, дающие возможность избежать потерь хлорида во время сплавления. Бибер и Барская проводили сплавление в атмосфере двуокиси углерода, добавляя окись хрома, они определяли образовавшийся бихромат тиосульфитом натрия или хлорид—по Фольгарду. Для восстановления перхлората до хлорида Джоан и Риди применяли карбонат калия и нитрат двухвалентного марганца. Они сообщили, что Мп(М0 )2 переходил в двуокись марганца, которая служила катализатором разложения. [c.107]

    Присутствие следов окиси хрома в алюмосиликатном катализаторе ускоряет эту реакцию даже спустя значительное время после того, как окись хрома становится неактивной в отношении горения углерода. Результаты анализа этих эффектов, выполненного Вейсцем [370], хорошо совпадают с экспериментальными данными. По мере приближения к завершению регенерации доля исходной окиси углерода, превращающейся в СО2, достигает 80%. Это относится к гранулам алюмосиликата обычного размера, не содержащим окиси хрома. [c.226]

    Порошкообразные окислы, фуллерова земля, животный ртоль окись хрома (не содержащая хромата, получаемая нагреванием исходных соединений в водороде, не содержащем кислорода) на процесс влияет активность хромового катализатора гидрат окиси хрома, высушенный при 105°, слабо активен, полученный при 250° имеет более высокую активность, которая достигает максимума при 450° и затем быстро падает до нуля при 200° второй небольшой максимум активны (оливково-коричневые) аморфные (показывает рентгеновский анализ) препараты сильно прокаленные зеленые препараты имеют наименьшую активность у препаратов, полученных из хромата аммония, оксалата хрома и нитрата хрома, активность понижается в приведенной после--довательности [c.177]

    В. А. Климова, М. О. Коршун и Е. Г. Березницкая -зэ. 4о использовали для одновременного определения углерода, водорода и кремния окись хрома в смеси с волокнистым асбестом Этот метод анализа применяли и другие советские исследова-тели 2- [c.263]

    Как показал рентгеноструктурный анализ, цинкхромовый катализатор представляет собой смесь хромата цинка 2пСг04 с окисью цинка пО. Окись хрома в процессе приготовления катализатора превращается в хромат цинка, который является промотором и препятствует образованию кристаллической окиси цинка. Наиболее активный цинкхромовый катализатор получается при содержании от 11 до 36 вес. % окиси хрома. [c.255]

    Анализ этих данных обнаруживает некоторые неожиданные различия по сравнению со структурой, установле11Ной для системы окись хрома — окись алюминия. Закон Кюри — Вейса описывает эти данные должным образом только примерно до 6% никеля, а выше этой концентрации отклонения столь существенны, что становится бесполезной всякая попытка рассчитать момент или константу Вейса. [c.426]

    Точный состав полученного сплава можно установить Х1имическим анализом. Состав с точностью до 1 — 2% можно рассчитать теоретически, исходя из состава взятой смеси окислов. Например, из смеси окислов, составленной из 25 г РегОз и 25 г СггОз, теоретически получится 17,49 г железа и 17,11 г хрома и сплав, следовательно, будет состоять на 50,55% из железа и на 49,45% из хрома. Практически хрома в сплаве будет примерно на 2% меньше, так как хром восстанавливается несколько труднее железа и окись хрома в небольших количествах остается в шлаке. [c.15]

    Изучение трех слоев окалины на железных сплавах оказалось весьма поучительным. Если бы окисление железа было обусловлено исключительно диффузией кислорода внутрь через слой окисла, то отношение второго элемента к железу должно было быть в окалине почти такое же, как и в первоначальном металле. Например, железо с содержанием никеля, хрома или вольфрама должно было бы показать значительные количества этих элементов в наружном и среднем слоях. Однако в действительности точные анализы Пфейля показали, что почти все добавки сплава накапливаются в самом нижнем слое, который обычно содержит даже большую концентрацию добавочных элементов сплава, чем исходная сталь. Пфейль высказал мнение о том, что соединение железа и кислорода зависит не просто от диффузии кислорода внутрь, но также и от диффузии избыточного железа наружу. В одном из опытов Пфейля кусок железа (не сплав) был до окисления окрашен зеленой окисью хрома, размешанной на воде. После удаления окалины было обнаружено, что окись хрома с поверхности перешла в средний или нижний слой. Такие опыты определенно подтвердили реальность диффузии наружу. [c.139]

    Катализаторы. Катализатор окись хрома — активированный уголь (по расчету 15% СГ2О3) приготовлен пропиткой березового активированного угля водным раствором хромата аммония. Затем катализатор восстанавливался в токе при 450°. Опыты с WS2-кaтaлизaтopoм проведены на образце промышленного катализатора № 5058. Приготовление алюмоплатинового катализатора (0,3% металла) описано в [12]. Анализ продуктов реакции проводился методом газо-жидкостной хроматографии. [c.297]

    Однако на всех известных авторам промышленных установках дегидрирования алканов применяются катализаторы типа алюмохромового. Катализаторы этого типа используются в процессах Гудри и Филлипс . В процессе И. Г. Фарбениндустри катализатор также состоит из окиси алюминия с 8% окиси хрома и 1—2% окиси калия. По литературным данным добавление таких компонентов, как окись калия, окись магния, окись бериллия, повышает стабильность в отношении сохранения большой удельной поверхности. Однако они могут изменять степень окисления, а следовательно, и активность окиси хрома [18]. При процессе дегидрирования фирмы Гудри для увеличения общей теплоемкости слоя в реакторе и, таким образом, уменьшения колебаний температуры катализатор можно использовать в сочетании с такими зернистыми материалами, как плавленый корунд (окись алюминия). Выбор твердых теплоносителей требует тщательного предварительного анализа они должны быть каталитически инертными и обладать необходимыми физическими свойствами. [c.282]

    Рентгенографическим анализом установлено, что образцы однофазны, предс,тавляют собой твердые растворы хромита магния с магнетитом и имеют структуру шпинели. Хромит магния имеет параметр кристаллической решетки а=8.317 кх, а образцы, полученные из шихт, содержащих окись железа, имели более высокие значения параметра (табл. 1). Зависимость параметра кристаллической решетки твердых растворов от содержания магнетита показывает, что в исследуемой области выполняется закон Вегарда, что согласуется с данными работы. [c.102]

    Титрованный 0,025 УИ раствор комплексона. Растворяют 9,3061 г реактива (дигидрата комплексона) в дважды дистиллированной воде, переносят раствор в мерную колбу емкостью 1 л, разбавляют такой же водой до метки и перемешивают. Титр этого раствора можно установить любым способом в зависимости от наличия в лаборатории подходящего исходного вещества. Если имеется х. ч. окись висмута или металлический висмут, можно точную навеску любого из этих веществ растворить в азотной кислоте и оттитровать устанавливаемым раствором комплексона по индикатору пирокатехиновому фиолетовому, как описано в ходе анализа. Можно навеску х. ч. карбоната кальция растворить в соляной кислоте и оттитровать раствором комплексона по му-рексиду. Наконец, можно воспользоваться для этой цели х. ч. сульфатом магния, окисью магния, металлическим магнием или металлическим цинком, растворяя навеску одного из этих веществ и титруя полученный раствор устанавливаемым раствором комплексона по кислотному хром черному специаль- [c.201]

    Исследованию подвергались различные катализаторы хромит меди, окись никеля, окись магния, окись цинка, двуокись марганца и металлический никель. Существе 1ным моментом при исследовании был контроль за содержанием добавок металлов, захваченных катализаторами при обработке их металлоорганическими соединениями. Для определения содержания добавок в различных образцах катализатора использовались специальные методы анализа полярография, спектральный анализ, колориметрия. [c.152]

    В одной из наших работ [8] было показано, что кристаллическая форма шпинели не растворяется в разбавленной (1 10) серной кислоте, в то время как аморфный хромит цинка и окись цинка полностью переходят в раствор. Поэтому для выяснения новых кристаллических фаз и определения их количества был исрользован химический анализ [9]. [c.172]

    На рис. VI. 58, а видно, что наиболее активным катализатором является окись кобальта, затем следуют окислы хрома, железа, марганца, ш ке-ля, церия, тория, алюминия и титана. Умеренно активны окислы свинца, магния, меди, цинка, кремния и циркония. Наименее активна окись ванадия. Точки расположены в области, сдвинутой в сторону оси к-пентана. Это указывает на то, что м-пентан окисляется труднее н-гексана. В работе подтверждена общая, часто наблюдаемая зависимость возрастания реакционной способности с увеличением молекулярного веса в гомологическом ряду. Из рис. VI. 58, в видно, что окись кобальта и в этом случае является наиболее автивным катализатором., Экспериментальные точки расположены ближе к оси ординат и, следовательно, бензол окисляется труднее циклогексана. Анализ данных, представленных на всех рис. VI. 58, а—ж, позволил установить, что углеводороды с зацанньш числом углеродных атомов образуют следующий ряд по возрастанию реакционной способнос- [c.352]

    Титрованный 0,025 М раствор комплексона. Растворяют 9,3062 г реактива (дигидрата комплексона) в дважды дистиллированной воде, переносят раствор в мерную колбу емкостью 1 л, разбавляют такой же водой до метки и перемешивают. Титр этого раствора можно установить любым способом в зависимости от наличия в лаборатории подходящего исходного вещества. Если имеется х. ч. окись висмута или металлический висмут, можно точную навеску любого из этих веществ растворить в азотной кислоте и оттитровать устанавливаемым раствором комплексона по индикатору пирокатехиновому фиолетовому, как описано в ходе анализа. Можно навеску х. ч. карбоната кальция растворить в соляной кислоте и оттитровать раствором комплексона по мурексиду. Наконец, можно воспользоваться для этой цели х. ч. сульфатом магния, окисью магния, металлическим магнием или металлическим цинком, растворяя навеску одного из этих веществ и титруя полученный раствор устанавливаемым раствором комплексона по кислотному хром черному специальному (эриохром черному Т). Сульфат магния MgS04 7H20 часто бывает несколько выветренным, поэтому его рекомендуется поместить на 24 ч в эксикатор, на дне которого находятся 5 частей этой же соли и 1 часть воды. [c.182]


Смотреть страницы где упоминается термин Окись хрома анализ: [c.252]    [c.252]    [c.644]    [c.84]    [c.180]    [c.75]    [c.155]    [c.150]    [c.231]   
Лакокрасочные материалы (1961) -- [ c.103 ]




ПОИСК





Смотрите так же термины и статьи:

Окись хрома

Хром, анализ



© 2024 chem21.info Реклама на сайте