Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворители требования к качеству

    Требования к растворителям. В качестве избирательных растворителей предложено большое количество различных органических и неорганических соединений, однако сложный комплекс требований, предъявляемых к экстрагентам, ограничивает возможность использования многих из них для промышленных экстракционных процессов. [c.211]

    Необратимые реакции между веществом жидкой фазы и анализируемыми веществами, а также твердым носителем и газом-носителем должны быть исключены. Иногда это требование значительно ограничивает возможность применения некоторых превосходных растворителей в качестве неподвижных фаз. [c.60]


    Требования к растворителям. В качестве избирательных растворителей предложено большое количество различных органических [c.256]

    Большое значение для успешной работы имеет выбор подходящего растворителя. В качестве растворителей при перекристаллизации наиболее часто применяется вода, этиловый спирт, метиловый спирт, ацетон, нефтяной (петролейный) эфир, бензин, лигроин, хлороформ, ледяная уксусная кислота, уксусноэтиловый эфир, бензол, толуол, ксилол. Растворитель, применяемый для очистки твердого вещества перекристаллизацией, должен удовлетворять следующим основным требованиям. [c.40]

    Органические растворители широко применяются в лабораториях органической химии при проведении синтезов, при очистке продуктов реакции и при изучении физических свойств веществ. В зависимости от назначения растворителя требования к его чистоте различны. В качестве растворителей могут быть использованы индивидуальные вещества или смесь веществ (бензин, петролейный эфир и др.). Растворители без примеси воды, как было указано выше, называются абсолютными (абсолютный спирт, абсолютный эфир). Ниже рассмотрены свойства, способы очистки и абсолютирования некоторых растворителей. [c.69]

    Коэффициент распределения не является единственным показателем для определения практической приемлемости того или иного растворителя в качестве экстрагента фенолов. Растворитель должен одновременно отвечать следующим требованиям. [c.415]

    Выбор растворителя. В качестве растворителей при кристаллизации применяется вода, этиловый спирт, метиловый спирт, бензин, нефтяной эфир, бензол, эфир, ацетон, ледяная уксусная кислота, хлороформ, уксусноэтиловый эфир и другие. Выбор подходящего растворителя имеет большое значение для успеха работы. Растворитель должен удовлетворять следующим требованиям  [c.31]

    Характер матированной поверхности непосредственно зависит от количества образующихся зародышей кристаллов. Число этих зародышей определяется, в свою очередь, степенью пересыщения раствора кристаллизующегося материала в непосредственной близости от поверхности стекла. Такое пересыщение зависит от растворимости солей, температуры и природы растворителя. В качестве растворителя всегда применяют воду, которая хорошо удовлетворяет технологическим требованиям матирования стекла. [c.38]


    Кратность растворителя. Количество растворителя подбирается в зависимости от качества сырья и требуемого качества рафината. Чем выше содержание низкоиндексных компонентов в сырье, тем выше должна быть кратность растворителя к сырью. Аналогично, ужесточение требований к качеству рафината требует увеличения расхода растворителя. При прочих равных условиях деароматизация дистиллятного сырья широкого фракционного со — става, по сравнению с сырьем более узкого фракционного состава, требует большей крат ности растворителя. При селективной очистке деасфальтизатов требуемая кратность растворителя симбатно возрастает с повышением их коксуемости  [c.240]

    Установки по очистке нефтепродуктов. Основная масса нефтепродуктов — дистиллятов, получаемых при перегонке нефти и мазута, а также при деструктивных процессах, содержит примеси, ухудшающие свойства продуктов, применяемых в качестве моторных топлив, смазочных масел, а также для других целей (осветленные керосины, растворители и пр.). Для удаления примесей дистиллятные продукты подвергают очистке. Выбор способа очистки зависит от качества подлежащего очистке дистиллята, от назначения целевого продукта и предъявляемых к нему требований. [c.91]

    В промышленности получили распространение процессы, основанные на фильтровании растворов через полупроницаемые перегородки (мембраны). Ультрафильтрование при давлении 0,1— 0,5 МПа обеспечивает отделение частиц размером до 0,5 мкм, а использование обратного осмоса при давлении 3—10 МПа позволяет производить очистку растворителя от частиц, равных диаметру молекул или гидратированных ионов. Качество разделения зависит от природы и концентрации соединений в сточных водах, от температуры, давления и конструкции аппарата, В результате очистки воды получается 5—20 % раствор солей и вода, которая по своим свойствам чаще всего удовлетворяет санитарным и технологическим требованиям [5,22, 5.24, 5.55, 5.64]. [c.475]

    Применяемый растворитель. При процессах депарафинизации данной группы в качестве растворителя используют сжиженный технический пропан. В отношении углеводородного состава к техническому пропану, применяемому при депарафинизации, предъявляются менее жесткие требования, чем к пропану, употребляемому при деасфальтизации. Технический пропан, применяемый для депарафинизации, может содержать без ущерба для показателей процесса до 25—30% бутанов. Присутствие нентанов и высших нежелательно, в частности, из-за более затруднительной их отгонки при регенерации растворителя. [c.178]

    Процесс депарафинизации можно осуществлять также и с применением в качестве растворителя технического бутана. Требования к его качеству аналогичны указанным для технического пропана. [c.178]

    В качестве растворителей в этих процессах можно применять довольно разнообразные вещества, в большей или меньшей степени отвечающие требованиям, которые были рассмотрены в предыдущей главе для данных растворителей. В промышленных процессах депарафинизации применяют главным образом следующие растворители смеси кетонов с бензолом и толуолом, смеси [c.181]

    Процесс деасфальтизации остаточного сырья техническим пропаном — жидкофазный процесс, осуществляемый во избежание испарения растворителя при давлении около 4 МПа. Выход деасфальтизата соответствующего качества в значительной мере определяется характером сырья и колеблется в широком диапазоне — от 26 до 90 % (масс.). С ужесточением требований к качеству деасфальтизата и увеличением коксуемости сырья выход деасфальтизата уменьшается. Для одноступенчатых установок наиболее типичными являются деасфальтизаты вязкостью от 18 до 26 мм /с при температуре [c.64]

    Однако в связи с тем, что требования к качеству дифенилолпропана возрастали, начали появляться патенты на методы очистки дифенилолпропана перекристаллизацией из органических растворителей, не смешивающихся с водой тогда стадия нейтрализации совмещалась со стадией очистки " . В этих способах полное удаление кислоты достигается благодаря тому, что остатки кислоты нейтрализуются после растворения дифенилолпропана в органическом растворителе, т. е. в гомогенной системе. Описано несколько вариантов процесса. [c.112]

    Цеолиты эффективно очищают от серы не только углеводородные газы, но и жидкие фракции — на газобензиновых заводах, газофракционирующих установках и т. д. Примером широкого применения цеолитов для очистки от серы углеводородов в жидкой фазе может служить очистка пропана. Особенно высокие требования по содержанию серы предъявляются к углеводородам, подвергаемым каталитической переработке, полимеризации и т. п. Применение цеолитов позволяет вдвое снизить содержание сернистых соединений в циклогексане, используемом в качестве растворителя при полимеризации. Не меньшее значение имеет обессеривание и для углеводородов, входящих в состав бензинов. [c.112]


    Качество применяемого растворителя должно полностью удовлетворять требованиям ГОСТа или технических условий, что должно быть подтверждено сертификатом завода-изготовителя. [c.204]

    Н2С(00Я )—НС(ООН")—Н2С(ООК"0- в этой формуле символами R Я" и К " обозначаются углеродные цепи из 8—22 атомов насыщенного или ненасыщенного характера. В сырых продуктах находятся еще и другие соединения, но в небольших количествах, как-то свободные жирные кислоты, фосфатиды, стиролы, протеины, витамины, токоферол и др. В зависимости от назначения жиры и масла подвергаются соответствующей обработке, цель которой—разделение сырой смеси на разные группы соединений (насыщенных и ненасыщенных глицеридов), отвечающие по своим свойствам требованиям потребителей особенно ценной является фракция витаминов. Экстракция является одним из методов разделения, обеспечивающих наибольший выход и высшее качество продуктов по сравнению с другими методами, например химическими, что объясняет ее широкое применение. Растворителями служат преимущественно жидкости полярного строения нитропарафины, ЗОз, сульфоналы, фурфурол [139, 151, 153, 157], метанол с этанолом [144], пропан [148], ацетон [156], изопропанол с этанолом [141] идр. [154]. В промышленных установках применяются пропан и фур- [c.406]

    Большой объем отечественного производства нефтяных масел и растущие требования к их качеству обусловливают необходимость повышения эффективности всех процессов их производства, одним из основных звеньев которого является очистка избирательными растворителями. Повышение технико-экономических показателей селективной очистки идет по пути совершенствования технологии действующих процессов, создания комбинированных процессов, укрупнения технологических установок и др. [c.100]

    Путем многоступенчатой обработки кристаллическим карбамидом с использованием в качестве растворителя бензола, а в качестве активатора—метанола было проведено [74, с. 225] фракционирование парафинового гача (табл. 41). В результате из этого сырья, содержащего всего 0,55% (масс.) масла, выделено 15 фракций твердых углеводородов. Это дает возможность, с одной стороны, увеличить отбор комплексообразующих углеводородов, а с другой—получить твердые парафины различных состава и свойств, которые можно использовать в разных отраслях промышленности в зависимости от требований к их качеству, целей и условий их применения. [c.239]

    Основная сложность в использовании абсорбционных холодильных машин - подбор соответствующей пары хладагент -растворитель, к которым предъявляются весьма жесткие требования нетоксичность, низкая коррозионная активность, высокая взаимная растворимость и др. Первым из хладагентов в абсорбционных холодильных машинах начали использовать аммиак, который обладает хорошими холодильными свойствами и хорошо растворим в воде, которая в этом случае может использоваться в качестве абсорбента. [c.126]

    Основной объем масел вырабатывают с применением экстракционных процессов разделения сырья (дистиллятов и гудронов) селективной очистки растворителем (фенолом, фурфуролом или Ы-метил-пирролидоном), деасфальтизации гудронов пропаном и сольвентной депарафинизации рафинатов селективной очистки в кетонсодержа-щем растворителе (последний процесс представляет собой одну из разновидностей процесса экстракции — экстрактивную кристаллизацию). Постоянно снижается производство масел с использованием процесса сернокислотной очистки, что обусловлено снижением добьии пригодных для этого процесса нефтей, образованием больших количеств экологически вредных трудноутилизуемых отходов (кислый гудрон) и в большинстве случаев недостаточно высоким для современных требований качеством получаемых масел. В относительно небольших количествах вырабатываются масла с использованием процессов гидрокрекинга и гидрокаталитической депарафинизации, хотя гидрокаталитические процессы весьма перспективны в производстве масел и их, безусловно, ожидает дальнейшее качественное и количественное развитие. [c.429]

    Лаблюдаемый в последнее время быстрый научный и техниче- ский прогресс в области химии м химической технологии органических и неорганических веществ вызывает острую необходимость дальнейшего развития аналитической химии и разработки новых более эффективных химических, физических и физико-химических методов анализа, соответствующих современным требованиям науки и производства. Одним из перспективных путей развития аналитической химии является направление, которое связано с разработкой теории и практики методов анализа, основанных па использовании реакций, протекающих в неводных растворах [1—26]. Основное преимущество использования неводных растворителей в качестве сред для определения различных веществ состоит в том, что в среде неводных растворителей можно дифференцированно (раздельно) титровать смеси электролитов, которые в водном растворе характеризуются близкими значениями р/С, например смеои изомеров, смеси соединений одного гомологического ряда, смеси кислот, оснований и т. д. [c.5]

    Необычные химические и электрохимические свойства пары ферроцен — феррициний побудили испробовать ее в качестве стандарта для сопоставления потенциалов, полученных в разных растворителях. Требования к такому стандарту обосновали Стрелов и сотр. [48]. Оба компонента пары должны быть растворимы. Они должны иметь большие ионные радиусы, малый заряд и сферическую структуру. Реакция должна быть быстрой и обратимой. Окисляющая или восстанавливающая способность пары не должна быть слишком большой. Пара должна быть достаточно растворима в используемых растворителях и не должна изменять химические свойства или структуру при переносе заряда. [c.388]

    Отношение растворитель сырье может изменяться в сравнительно широких пределах обычно оно определяется характеристиками исходного сырья и требованиями к конечным продуктам. Чаще всего это отношение изменяется от 2 1 до 6 1. Для каждого вида сырья существует минимальное допускаемое с точки зрения эксплуатацип отношение растворитель сырье, которое имеет наименьшее значение для тяжелых остатков из смолисто-асфальтовых или нафтеновых нефтей и наибольшее для легких остатков нефтей парафинового основания, высокосмолистых остатков и остатков, получаемых при неудовлетворительной работе вакуумной колонны. При увеличении отношения растворитель сырье сверх минимального уровня, доиускаемого требованиями эксплуатации, избирательность растворителя (повышение качества прн неизменном выходе вследствие большей четкости разделе-т1я) повышается. Оптимальное отношение растворитель сырье должно опреде. 1яться на основании детального экономического анализа, так как с увеличением этого отношения соответственно растут розмеры капиталовложений и эксплуатационные расходы. [c.216]

    Качественная характеристика каменноугольного сольвента не всегда соответствует предъявляемым требованиям, Дальнейшее развитие техники и задача повышения качества продукции настоятельно требуют организации производства растворителей ловышенного качества, например типа тетралина и декалина, которым присуща более высокая растворяющая способность по отношению к маслам, смолам, каучукам и другим высокомолекулярным соединениям. Это позволяет использовать их в различных отраслях химической промышленности, в частности в производстве авиационных лаков, экстрагентов и эмульгаторов. На одном из коксохимических отечественных заводов в настоящее время намечается строительство установки для получения тетралина и декалина из прессованного нафталина. Однако с народнохозяйственной точки зрения выбор нафталина в качестве сырья для получения растворителей не вполне удачен вследствие ограниченности его ресурсов для этих целей и относительно высокой его стоимости. Поэтому актуальной является задача замены нафталина в производстве растворителей более дешевыми техническими фракциями смолы коксохимических заводов [9, 10]. [c.39]

    Из анализа вышеприведенных требований к качеству экстра — 1ентов можно констатировать, что практически невозможно реко — иендовать универсальный растворитель для всех видов сырья и для нсех экстракционных процессов. В этой связи приходится довольствоваться узким ассортиментом растворителей для отдельных экстракционных процессов. Так, в процессах деасфальтизации гудро — нов широко применялись и применяются низкомолекулярные ал — каны, такие, как этан, пропан, бутан, пентан и легкий бензин, являющиеся слабыми растворителями, плохо растворяющими смолисто—асфальтеновые соединения нефтяных остатков. В процессах селективной очистки масляных дистиллятов и деасфальтизатов применялись сернистый ангидрид, анилин, нитробензол, хлорекс, фенол, фурфурол, крезол и N — метилпирролидон. В процессах депарафинизации кристаллизацией наибольшее применение нашли ацетон, бензол, толуол, метилэтилкетон, метилизобутилкетон, дихлорэтан, метиленхлорид. [c.212]

    При малой кратности растворителя к сырью вязкость раствора снижается недостаточно, что ведет к образованию дополнительных центров кристаллизации и, следовательно, образованию мелких груднофильтруемых кристаллов. С другой стороны, чрезмерное разбавление сырья растворителем снижает концентрацию твердых углеводородов в растворе. В результате этого средняя длина диф — фузионного пути кристаллизующихся молекул увеличивается настолько, что даже при медленном охлаждении они не успевают достигнуть поверхности первичных зародышей, что вызывает возникновение большого количества мелкодисперсных кристаллов па — рафинов. Оптимальная величина кратности растворителя зависит от фракционного и химического состава сырья, его вязкости, химической природы растворителя и требований к качеству депарафи — низатов. При этом следует учесть то обстоятельство, что с увеличением кратности растворителя повышаются эксплуатационные. затраты. Очевидно, что с повышением вязкости сырья и глубины депарафинизации требуемая кратность растворителя будет возрастать. [c.258]

    По способу выделения из нефтей различают дистиллятные, остаточные и смешанные нефтяные масла. По методу обработки сырья масла делятся на выщелоченные, кислотно-щелочной очистки, кис-лотно-контактной очистки (серной кислотой и отбеливающей глиной), селективной очистки (избирательными растворителями), адсорбционной очистки и гидроочистки (на катализаторе в присутствии водорода). Выбор метода очистки сырья определяется его химическим составом, требованиями к качеству масла и экономической целесообразностью. [c.136]

    Из сказанного выше видно, что изготовление ТФЗ методом предварительного формования трубчатых полупроницаемых мембран с последующей установкой на опорную поверхность пористых каркасов — достаточно сложный и трудоемкий процесс, требующий значительных затрат ручного труда, несмотря на ряд приспособлений, предложенных для его механизации. Поэтому перспективно изготовление ТФЭ формованием трубчатой мембраны непосредственно на опорной поверхности пористого каркаса. В этом случае формование мембран может производиться любым из перечисленных выше способов с небольшими дополнениями и изменениями. Так, при нанесепип формовочного раствора требования к подложке повышаются не только по точности изготовления опорной поверхности и размеру пор, но и по обеспечению ее прочного соединения с мембраной. Кроме того, для получения мембран заданного качества перед нанесением формовочного раствора подложку и опору пропитывают твердеющим водорастворимым составом или растворителями (типа формамид, вода и др.), не растворяющими мембрану в процессе ее формования. Повышаются также требования к стабильности качества мембран, так как регенерация каркасов затруднена. [c.132]

    На современных отечественных и зарубежных нефтеперерабатывающих заводах широко применяют в основном фенол и фурфурол. Выбор растворителя для селективной очистки обусловлен его природой, качеством исходного сырья и требованиями к качеству получаемого масла. Растворитель должен сочетать хорошую растворяющую способность с высокой избирательностью по отношению к компонентам (Масляных фракций, что обусловлено структурой его молекул, полярными и дисперсионными свойствами. Несмотря на меньшее значение дипольного момента фенолапо срашению с фурфуролом его ра1створяющая способность в силу больших дисперсионных свойств выше, на что указывает меньшая КТР сырья в феноле. [c.92]

    Фенол, обладая большими дисперсионными свойствами, растворяет больше парафино-нафтеновых и моноциклических аромати-чеЬких углеводородов, переводя их в. экстракт Наряду с этим экстракты фенольной очистки отличаются и большим содержанием смолистых веществ, что приводит к получению рафината с более высоким индексом вязкости при меньшем его выходе. В связи с этим при выборе растворителя большое значение имеют качество сырья и получаемого продукта. Так, при переработке масляных фракций с большим содержанием парафино-нафтеновых углеводородов целесообразно при селективной очистке использовать фенол, а в случае высокоароматизированного сырья — фурфурол. В то же время рафинаты фурфурольной очистки содержат больше сернистых соединений, особенно сульфидов, которые являются естественными антиокислителями [43, 44]. Поэтому при производстве масел, к которым предъявляются специальные требования в отношении стабильности против окисления, например энергетических масел из сернистых нефтей, более эффективна фурфурольная очистка. [c.94]

    Качество получаемого продукта считается удовлетворительным, если содержание остаточных углеводородов в биомассе менее 0,05%, Для определения составов растворителя, обесиечивающ 1х это требование, по уравнению (VI. 155) построены линии равных значений у (рис. 62). Составы растворителя, удовлетворяющие требованию //<0,05%, находятся в заштрихованной области симплекса. [c.289]

    В аппарате описанной конструкции стадии набухания и сульфирования осуществляются последовательно и непрерывно друг за другом. Требование к качеству продукта обусловливает такой технологический режим, при котором достигается заданная степень набухания и заданная степень превращения сополимера в ионит. Требуемая степень набухания и требуемая степень превращения сополимера в ионит достигаются соответствующим временем пребывания сополимера в зоне набухания и зоне сульфирования. Как следует из анализа, проведенного в главах 4 и 5, время, необходимое для полного набухания гранул сополимера в рабочем диапазоне температур, не превосходит время необходимое для превращения этого сополимера в ионит. Например, для полного набухания сополимера стирола с 5% парадивинилбензола необходимо 0,3 часа контакта сополимера с тионилхлоридом при 20 С, а для сульфирования этого сополимера после набухания до степени превращения 90% необходимо 4 часа контакта сополимера с серной кислотой при 20 С. Поэтому при конструировании аппарата необходимо учитывать, что протяженность зоны набухания не должна превосходить протяженность зоны сульфирования. Для заданной степени превращения (или соответствующей величине времени пребывания) при определенных диаметре аппарата и расходах по сополимеру и растворителю нетрудно рассчитать протяженность зоны сульфирования, а следовательно, и зоны набухания. Данная методика расчета предполагает, что все гранулы сополимера находятся в одинаковых условиях как в зоне набухания, так и в зоне сульфирования. Это действительно так потому, что в зоне набухания концентрация растворителя, а в зоне сульфирования концентрация серной кислоты вокруг гранул сополимера не меняются. Кроме того, в зоне набухания всплывание гранул исключается благодаря наличию шнека. В зоне сульфирования при всплывании гранулы [c.391]

    Типичные характеристики различных марок СНГ, применяемых, например, в качестве промышленного и автомобильного топлива, бытового газа в баллонах, растворителей и т. п., даны в табл. 18. В большинстве экономически развитых стран разработаны технические требования к качеству промышленных марок СНГ. Недавно был опубликован их критический анализ [1]. Можно отметить один общий для всех технических условий недостаток, важный при производстве ЗПГ, — в них часто не приводится различие между насыщенным пропаном и ненасыщенным пропиленом. Во многих сферах применения СНГ, в частности, для приготовления пищи, отопления и т. п. это различие несущественно. Но оно играет важную роль при определении характеристик СНГ как сырья для производства ЗПГ. В связи с тем, что в прошлом СНГ применялся для производства бедных газов, содержание ненасыщенных составляющих в нем было ограничено (5—20 об. %). Это ограничение особенно касалось СНГ с нефтеперерабатывающих заводов, где в него могли попасть газообразные олефины, побочные продукты крекинга дистиллятов. В СНГ из природного газа содержание ненасыщенных углеводородов минимально. Другой проблемой, которая может возникнуть при использовании товарных сортов СНГ в производстве ЗПГ, является наличие в нем одорантов, часто добавляемых в баллонный газ в целях безопасности. Поэ1тому с самого начала следует избегать добавок в газ одорантов. При невозможности соблюдения [c.74]

    Нйжие парафины, полученные в процессах депарафи-аизации дизельнызС и керосино-газойлевых фракций карбамидом, адсорбцией молекулярными ситами и вымораживанием в избирательных растворителях, содержат, кан правило, около 0,5/8 (масс.) ароматических углеводородов, О,2-0,8% (масс.) непредельных углеводородов (В жидких парафинах, полученных адсорбцией на цеолитах) и небольшое количество нафтеновых углеводородов, а также сернистых и азотистых соединений. Как уже. упоминалось, большинство потребителей, использующих парафины в качестве исходного продукта, требуют, чтобы они содержали не более 0,5 (масс.) ароматических углеводородов, а в перспективных требованиях (после 1976 г.) указывается 0,3-0,015 (масс.). Особенно высокое качество жидких парафинов необходимо для микробиологической промышленности. [c.208]

    Таким образом, первый реактор в каскаде должен работать при максимально возможной температуре. Реакторы интенсивного перемешивания позволяют достичь больших коэффициентов теплопередачи, однако и в них трудно развить большую поверхность теплопередачи на единицу объема. Увеличение же температуры теплоносителя связано с большими издержками, особенно при использовании в качестве теплоносителя водяного пара. Поэтому существует противоречие между требованием минимального объема для первого реактора для прямого гидрогеиолиза глюкозы и максимальной температуры в этом реакторе. Выход может быть найден в раздельном (предварительном) подогреве водорода и большей части растворителя перед подачей их в первый реактор в этом случае концентрированная суспензия катализатора в растворе углеводов должна подаваться в головной реактор отдельным дозировочным насосом без подогрева. К аналогичному выводу о необходимости раздельного ввода глюкозы в реактор гидрогено-лиза пришли Н. А. Васюнина и Ю. М. Ковкин [82], а также Э. М. Сульман [27] необходима проверка этого предложения в проточных условиях. [c.141]


Смотреть страницы где упоминается термин Растворители требования к качеству: [c.108]    [c.61]    [c.198]    [c.241]    [c.70]    [c.142]    [c.381]    [c.217]   
Очистка технических газов (1969) -- [ c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбенты также Растворители требования к качеству



© 2025 chem21.info Реклама на сайте