Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакция комплексообразования с растворителем

    Наоборот, при распаде комплекса на составные части в растворе происходит замена лигандов на молекулы растворителя. Таким образом, реакции комплексообразования и распада комплексов в растворе по сути дела являются реакциями замещения лигандов. При этом концентрация воды практически не изменяется, поэтому в выражение константы устойчивости (нестойкости) ее не включают. [c.186]


    Сырье насосом 1, активатор насосом 2 и (если необходимо понизить вязкость сырья) растворитель (бензин Бр-1) насосом 3 подаются в реактор комплексообразования 11. Туда же поступает рециркулят I из центрифуг 14 ступени III центрифугирования, представляющий собой часть бензинового раствора депарафината и 80 %-ную суспензию (пульпу) кристаллического карбамида в этом растворе. В реакторе 11 при механическом перемешивании протекает реакция комплексообразования. Теплота экзотермического процесса комплексообразования передается через рубашку холодной воде. [c.91]

    Комплексные соединения имеют сложный состав. В них выделяют центральный атом (комплексообразователь) и связанные с ним лиганды (заряженные или нейтральные неорганические или органические частицы, т. е. ионы или молекулы). Для аналитических целей в общем виде реакцию комплексообразования можно представить следующим образом. В растворе ионы металла соль-ватированы, т. е. координируют вокруг себя молекулы растворителя, образуя в случае воды аквакомплексы М(Н20) + (Ы— координационное число комплексообразователя). При введении в раствор лигандов (Ь) веществ, способных образовывать комплекс, происходит последовательное вытеснение молекул воды из внутренней координационной сферы и замещение их лигандами  [c.65]

    В точение времени (обычно ые более 5 мин), необходимого для достижения требуемой температуры комплексообразования, смесь сырья, растворителя и карбамида термостатируют при непрерывном перемешивании, после чего по каплям ( ) вводят активатор из воронки 3. Фиксируют индукционный период, равный времени, прошедшему от ввода первой капли активатора до начала реакции комплексообразования. Последнее характеризуется повышением температуры реакционной смеси (показание термометра 2, при постоянной температуре теплоносителя — термометра 6) в результате экзотермического эффекта реакции. Температурный разрыв между показаниями обоих термометров зависит от содержания комплексообразующих углеводородов в депарафинируемом сырье. [c.215]

    За последние 20 лет появилось более тысячи публикаций, посвященных кислородсодержащим макроциклическим соединениям. Макроциклические полиэфиры вызвали всеобщий интерес исследователей благодаря способности образовывать координационные соединения с катионами металлов в кристаллическом виде и в растворе. Спектр действия этих лигандов настолько широк, что вопреки принятому мнению о необходимости соответствия жесткости координирующихся частиц они вступают в реакции комплексообразования с представителями самых различных групп металлов — щелочных, щелочноземельных, -переходных, лантаноидов, актиноидов Известны также комплексные соединения краун-эфиров с некоторыми нейтральными молекулами — водой, бромом, органическими растворителями и основаниями, однако в данной книге комплексы такого типа не рассмотрены. Все аспекты возможного практического применения макроциклических полиэфиров — в экстракции, межфазном катализе, аналитической химии, в биологии и медицине, безусловно, связаны с их комплексообразующей способностью. [c.147]


    Следует заметить, что природа ионизирующего растворителя может влиять на устойчивость экстрагируемых комплексов. В большинстве случаев экстрагируемые комплексы представляют собой хелаты металлов, которые имеют достаточно высокую устойчивость в неводных средах. Поэтому равновесия реакций комплексообразования в вольтамперометрии экстрактов не являются определяющими. Более важной является информация о механизмах электродных процессов и свойствах регистрируемого тока в зависимости от природы органического растворителя. [c.458]

    Как влияют на растворение осадков сильные кислоты, реакции комплексообразования и окисления — восстановления, изменения температуры и тип растворителя  [c.29]

    Бесцветный газ. Гидролизуется во влажном воздухе и воде. Образует ад-дукты с органическими растворителями. Реагирует со щелочами. Вступает в реакции комплексообразования. Получение см. 141 , 144 , 145 , 157  [c.77]

    В процессе комплексообразования макроциклических лигандов с модельными биомолекулами значительную роль играет влияние растворителя, вклад которого отражается в наличии линейного энталь-пийно-энтропийного компенсационного эффекта [55]. В подтверждение сказанного для реакций комплексообразования АК с 18-краун-б и Р-ЦД обнаружено, что значения и Д 5 связаны регрессионным уравнением  [c.246]

    Типично органическими следует называть реакции, в которых участвует хотя бы один органический реагент, который в ходе реакции изменяет свою молекулярную структуру. Поэтому к типично органическим реакциям не будут относиться реакции комплексообразования, в которых молекула органического соединения выступает в качестве лиганда, а также те реакции, в которых единственным органическим реагентом будет выступать растворитель, не изменяющийся в ходе реакции. [c.183]

    Реакция, обратная реакции комплексообразования (диссоциация комплекса) является реакцией лигандного обмена, в которой лиганды комплексного иона замещаются молекулами растворителя  [c.111]

    В ряде работ комплексообразование исследовано методом экстракции, с использованием радиоактивных изотопов или спектрофотометрии. Работ по применению спектрофотометрического варианта сравнительно немного. Методом экстракции (экстрагент — четыреххлористый углерод или хлороформ) определены константы устойчивости комплексов ПАН-2 с ионами Со(П1), Си, Мп, 2п и Ы1 [559], ПАР с ионами Са [869]. Установлено, что скорость экстракции комплекса ПАН-2 с и(У1) четыреххлористым углеродом выше, чем при экстракции хлороформом [201]. Методом экстракции изучено комплексообразование ПАН-2 с ионами Си, Мп, N1 [678], 1п [549, 918], Ее(П1), Т1(П1) [918]. Радиоактивные изотопы приме-няли для изучения экстракции комплексов ПАН-2 с ионами Си, 2п [278, 759] Ag, Ей, Но, V [760] Со, Си, Мп, N1, 2п [5591 комплекса ПАР с Оа [869], а также для исследования влияния различных маскирующих веществ — цитрата, цианида, тиомочевины, тиосульфата, фторида на экстракцию комплексов ПАН-2 с элемента ми ГВ, ПВ и П1А—УА групп периодической системы [795]. Хорошая растворимость ПАН-2 в органических растворителях и удов летворительное состояние развития теории экстракции примени тельно к реакциям комплексообразования должны способствовать успешному применению метода ко многим системам. [c.36]

    Интенсивное развитие экстракционных методов в аналитической химии обусловлено требованиями современной техники и рядом важных преимуществ экстракции. Экстракционные методы разделения металлов основаны на том, что металл предварительно переводят в комплексное соединение, растворимое в органическом растворителе. Известно, что в реакциях комплексообразования более резко проявляется индивидуальность элементов, по сравнению, например с реакциями осаждения. Выбором реактива и условий реакции отделения часто можно выполнять очень избирательно. Кроме избирательности, экстракция характеризуется отсутствием сопряженных явлений. Соосаждение, т. е. захват посторонних веществ в твердую фазу, очень распространено. Между тем [c.44]

    Депарафинизация с использованием карбамида отличается от депарафинизации избирательными растворителями возможностью проведения процесса при положительных температурах. Здесь приводятся два варианта принципиальных схем процесса карбамидной депарафинизации, нашедших применение в отечественной нефтеперерабатывающей промышленности схема процесса, разработанного Институтом нефтехимических процессов Академии наук Азербайджанской ССР (ИНХП) и запроектированного ВНИПИнефти, и схема процесса, разработанного Грозненским нефтяным научно-исследовательским институтом (ГрозНИИ) и запроектированного Грозгипронефтехимом. Схемы различаются агрегатным состоянием карбамида, подаваемого в зону реакции комплексообразования, и, как следствие, аппаратурным оформлением реакторного блока, а также секций разделения твердой и жидкой фаз и регенерации основных реагентов. Кроме того, используются различные активаторы и растворители, хотя в обоих вариантах целевыми являются одни и те же продукты низкозастывающие дизельные топлива или легкие масла и жидкие парафины. [c.88]


    Необходимое для процесса количество активатора зависит от его природы. Так, для депарафинизации дистиллятов грозненской нефти в растворе углеводородного растворителя требуется метилового спирта 2 (масс.), этилового спирта 25% (масс.), ацетона или метилэтилкетона 40% (масс.). При использовании в качестве активатора пропилового спирта очень важно, чтобы содержание в нем воды было 8-9% (масс.).Вода увеличивает растворимость карбамида, который в безводном изопропиловом спирте, особенно в присутствии углеводородного растворителя, растворяется недостаточно. Однако при содержании воды более Э% процесс комплексообразования ухудшается. Безводные активаторы, как правило, не способствуют протеданию реакции комплексообразования. [c.75]

    Применение карбамида как вещества, образующего кристаллические комплексы с парафинами нормального строения, получило за последние годы широкое использование не только в научно-исследовательских учреждениях, но и на нефтеперерабатывающих заводах. В настоящее время уже имеется опыт практического применения этого метода в полузаводских масштабах для депарафини-зации дизельных и реактивных топлив, а также смазочных масел. Изложению этого опыта было посвящено несколько докладов на IV Международном нефтяном конгрессе в Риме в июне 1955 г. [80—82]. Применение указанного метода позволяет осуществить наиболее глубокую депарафинизацию средних и тяжелых дистиллятов нефти и получать низкозастывающие моторные топлива (реактивные и дизельные) и смазочные масла. Однако вопрос об экономической эффективности и технической целесообразности использования метода на практике будет решаться каждый раз в зависимости от конкретных условий. Применение избирательно действующих растворителей и холода для депарафинизации нефтяных дистиллятов с целью получения товарных нефтепродуктов в ряде случаев может оказаться более целесообразным, чем карбамидный метод. Для глубокой же дифференциации нефтяных углеводородов, предназначенных в качестве химического сырья, методы, основанные на реакциях комплексообразования отдельных групп углеводородов с карбамидом, тиокарбамидом и другими соединениями, несомненно, получат широкое распространение. [c.66]

    Сырье (без растворителя) с активатором по папорпой трубке 6 при открытом кране 7 и закрытом 8 поступает в зону предварительного термостатирования 11, где нагревается до температуры ВПК выделяемого парафина в многокомпонентной смеси, и, пройдя через фильтр 5. контактирует со слоем карбамида в нижней части аддуктора. Началом процесса считают повышение температуры за счет тепла реакции комплексообразования, фиксируемое термометром 1. При постепенном повышении уровня подаваемого в аддуктор сырья растет количество реагирующего с сырьем карбамида, и общий объем карбамидного слоя возрастает в 1,2—2 раза. [c.222]

    Свежеполученный комплекс (комплекс-сырец) включает в себя не только частицы собственно комплекса, но и значительное количество жидкой фазы и других посторонних примесей. Жидкая фаза, которая состоит в основном из депарафинированного продукта, может также включать в себя частицы активатора, растворителя и воды (водного раствора карбамида). В процессе отжатия и сушки комплекса удается удалить значительную часть жидкой фазы. Остающиеся же в отжатом и просушенном комплексе примеси (так называемые увлеченные углеводороды ) представляют собой как адсорбированные на поверхности комплекса молекулы ароматических углеводородов и смол, так и некоторое количество механически увлеченных (окклюдированных) частиц исходного сырья. При разрушении комплекса эти примеси загрязняют и-парафины. Наиболее эффективным методом, предупреждающим попадание указанных примесей в н-парафины, является переосаждение. Так, согласно патенту [148], получение смесн н-нарафпнов с С до С50 высокой степени чистоты осуществляется переосаждением нри смешении комплекса с водным раствором карбамида с последующим осаждением комплекса. Однако в промышленности переосаждение комплекса не нашло применения ввиду сложностей, связанных с технологическим оформлением, этого процесса. Не нашел этот метод широкого применения и в лабораторной практике. В то же время широкое распространение получила промывка комплекса, хотя при этом и разрушается некоторая часть комплекса вследствие обратимости реакции комплексообразования. [c.83]

    На установке производительностью 10 м 1сутки подвергаются депарафинизации различные фракции кувейтской нефти — от уайт-спирита до газойля с концом кипения 360° С. Для депарафинизации масел, даже типа веретенного, процесс не пригоден. Отличительными особенностями являются применение тройного растворителя для карбамида (вода, моноэтанол амин и метанол в соотношении 19 25 56) проведение реакции комплексообразования при интенсивной циркуляции (скорость движения не менее [c.147]

    Технологическая схема процесса представлена на рис. 59. В реактор первой ступени 1 поступает сырье и (из промежуточной емкости раствора 2) смесь водного раствора карбамида и растворителя (изопропанола). Смесь реагирующих веществ из реактора 1 переходит в реактор 3 для завершения реакции комплексообразования, а затем в коалесцирующий аппарат 4, куда также подаются поверхностно-активные вещества. Взвесь комплекса в водном растворе карбамида и депарафинированный прод т в смеси с растворителем из аппарата 4 поступают в сепаратор холодного разделения 5, где цроисходит разделение на ВОДШЕВ и углеводородный слои. Углеводородный слой (раствор депарафината в изопропаноле) направляется на регенерацию растворителя, а взвесь комплекса (пульпа) — в подогреватель 6 и на [c.153]

    Образование карбамидного комплекса может быть использовано для разделения оптических изомеров производных к-парафинов. Как указано выше, решетка карбамидного комплекса обладает гексагональной винтовой осью симметрии (см. рИс. 4). Поскольку такие винтовые линии могут иметь различное направление (винты с левым и правым ходом), кристаллы комплекса карбамида также могут различаться по этому признаку и давать соответствующие изомеры. Эти изомеры энергетически равноценны, и вероятность образования каждого из них определяется тем, какие зародыши образовались в начале процесса. В то же время эти изомеры отличаются друг от друга растворимостью в тех или иных растворителях, а также скоростью кристаллизации. С другой стороны, отдельные производные -парафинов (например, 2-хлороктан) могут быть представлены в виде двух оптических изомеров (правовращающего и левовращающего). Установлено, что каждый из них образует комплекс предпочтительнее с одним из изомеров гексагональной структуры. На этом и основано разделение оптических изомеров производных i-пapa-финов. Так, если реакцию комплексообразования проводить в избытке 2-хлороктана и создать условия для образования (хотя бы преимущественного) одного из изомеров гексагональной структуры (например, с правым ходом винта), то в реакцию комплексообразования вступает один из оптических изомеров 2-хлороктана, [c.185]

    Анализируя данные по термодинамическим параметрам реакций комплексообразования эфира 18-краун-б (табл. 4.8) и р-ЦД (см. ниже табл. 4.17) с аминокислотами в воде, можно сделать следующие сравнительные выводы о взаимодействии указанных макроциклов с АК в воде. Константы равновесия реакций комплексообразования 18-краун-б с АК меньше соответствующих констант для систем р-ЦД + АК, однако 18-краун-б имеет более сильную комплексообразующую способность к АК по сравнению с р-ЦД. Ассоциация 18-краун-б со всеми АК в воде происходит по единому механизму за счет образования трех водородных связей посредством КНз-группы АК и через три электростатических взаимодействия Г Г. .. О. р-ЦД селективно ассоциирует с изученными АК и образует комплексы только с ароматическими АК за счет специфических взаимодействий, а процесс комплексообразования в большей мере, чем в случае с 18-краун-б, управляется влиянием среды. Это подтверждается существованием зависимости энтальпии комплексообразования (Д(.// ) 18-краун-б и р-ЦД от энтальпии гидратации (Д ,у ,Л) аминокислот (рис. 4.14), из которой выпадают только значения для комплексов Ь-Шз-р-ЦД, Ь-01п-18Кб, Ь-Р11е-18К6, что свидетельствует об ином механизме молекулярного узнавания этих АК указанными макроциклами. Как видно из рис. 4.14, зависимость А,Н А,,у гН) для Р-ЦД сильнее выражена, чем для 18-краун-б, что говорит о большем влиянии растворителя на процесс ассоциации АК с р- [c.227]

    Исследование реакций комплексообразования. При комплексообразовании в растворе молекулы воды или другого растворителя замещаются на лиганд. При этом изменяются спектры ЭПР, в том числе .-факторы, параметры СТС и ДСТС. В качестве примера в табл. 6.27 приведены -факторы и константы СТС акваиона и комплексных аммиакатов u . Наличие линий, соответствующих каждому комплексу, позволяет обнаружить последовательно образующиеся комплексы [Сп(Н20)б- (NHз),F . [c.301]

    Обычно реакции комплексообразования проходят быстро. Однако в некоторых случаях достижение состояния равновесного процесса комплсксообразоЕШНИЯ проходит довольно медленно, например при образовании гетерополикнслот, прп образовании большинства комплексов с платиновыми металлами и в других случаях. Константы же, как термодинамические, так и концентрационные характеризу]от строго равновесные процессы при данной температуре. Таким образом, константы устойчивости (нестойкости) комплекса зависят только от природы вещества, от природы растворителя и всегда, для любого растворителя, от температуры. [c.246]

    Большое значение имеют стерические эффекты, обусловленные структурными особенностями молекул-доноров и молекул-акценторов (табл. 68). Оценивать —АН, относящиеся к различным акцепторам, довольно трудно, поскольку реакции комплексообразования проведены в разных растворителях и в некоторых системах теплота димеризации акцептора не учтена. Однако вполне корректно сопоставление тепловых реакций определенного акцептора с различными донорами, поскольку эти величины получены в одинаковых условиях. [c.119]

    Из сказанного следует, что для успешного осуществления синтез , макроциклического металлокомплекса экспериментатору следует обратить серьезное внимание на выбор исходной соли металла, а также растворителя, в котором должна протекать реакция комплексообразования В идеальном случае растворитель должен обладать достаточно высокой диэлектрической проницаемостью для диссоциации электролита на ионы и в то же время как можно слабее сольватировать катион и анион соли, чтобы не создавать конкуренцию краун-эфиру в процессе комплексообразования К сожалению, реально существующие растворители не полностью соответствуют этим требованиям Большинство описанных в литературе кристаллических комплексов макроциклических полиэфиров получены в спиртах — метаноле, этаноле, н-бутаноле Эффективно также использование ацетонитрила и ацетона В то же время обладающие высокой сольватчрующей способностью ДМФА, ДМСО и вода в препаративных целях практически не применяются [c.190]

    НОСТЬ сольватировать реагенты или активированные комплек сы, а также молекулы в основном и возбужденном состояниях [1, 3]. В свою очередь сольватирующая способность растворителя зависит от всех специфических и неспецифических взаимодействий между молекулами растворителя и растворенного вещества, в том числе электростатических взаимодействий между ионами, ориентационных взаимодействий между биполярными молекулами, индукционными и дисперсионными взаимодействиями, образованием водородных связей, переносом заряда, а также сольвофобными взаимодействиями (см. гл. 2). При этом не учитываются только такие взаимодействия, которые приводят к определенным химическим изменениям молекул растворенного вещества, например к протонированию, окислению, восстановлению, комплексообразованию. Очевидно, что определяе мую таким образом полярность растворителя нельзя описать каким-либо одним физическим параметром, например диэлектрической проницаемостью. Действительно, очень часто не удается обнаружить какой-либо корреляции между диэлектрической проницаемостью [или той или иной ее функцией, например 1/бг, (вг—1)/(2ег+1)] и логарифмом скорости или константой равновесия зависящей от природы растворителя химической реакции. Вероятно, вообще не существует такого макроскопического физического параметра, с помощью которого можно было бы учесть все многочисленные взаимодействия между растворителем и растворенным веществом, осуществляющиеся на молекулярном уровне. До настоящего времени сложность взаимодействий между растворителем и растворенным веществом не позволяет найти достаточно общие математические выражения, с помощью которых можно было бы вычислить скорости или константы равновесия реакций в растворителях различной полярности. [c.487]

    Реакция комплексообразования с галлием про текает очень медленно, при нагревании скорость ее заметно повышается. В зависимости от pH раствора реагент образует с галлием два соединения синего цвета, состав которых при pH 3—6 отвечает соотношению 1 1. В небольших концентрациях соединения растворяются в воде, из которой при pH 3—7 экстрагируются полярными ррганическими растворителями и не экстрагируются неполярными. [c.146]

    Начиная с концентрации 10 М НС1 и выше, характер спектра и значения молярных коэффициентов погашения практически остаются постоянными, не зависящими от концентрации кислоты. Детальные измерения спектров показали наличие пиков при 230 и 293 ммк, молярные коэффициенты погашения которых равны 10 400 и 4700 соответственно. Для идентификации нового валентного состояния технеция была использована реакция комплексообразования пятивалентного технеция с роданид-ионами. Как известно, эта реакция протекает очень быстро с образованием комплексного соединения розового цвета, которое хорошо извлекается такими органическими растворителями, какбутилацетат, эфир. Однако при экстракции новой формы технеция, проведенной сразу же после добавления роданид-ионов, извлечение этого элемента оказалось незначительным. В то же время прибавление к солянокислому раствору технеция роданид-ионов и какого-либо не очень сильного восстановителя, как например, аскорбиновой [c.327]


Смотреть страницы где упоминается термин Реакция комплексообразования с растворителем: [c.24]    [c.51]    [c.148]    [c.370]    [c.10]    [c.85]    [c.209]    [c.77]    [c.334]    [c.168]    [c.175]    [c.102]    [c.122]    [c.75]    [c.87]   
Кинетика реакций в жидкой фазе (1973) -- [ c.364 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексообразование

Комплексообразованне

Реакции комплексообразования

Роль комплексообразования реагентов с растворителем в кинетике радикальных реакций

Учет влияния растворителя на равновесие реакций комплексообразования



© 2025 chem21.info Реклама на сайте