Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

технологические схемы для получения жидкого кислорода

    Технологические схемы газификационных установок. Автомобильная газификационная установка АГУ-2М предназначена для транспортирования, хранения и газификации жидкого кислорода, азота, аргона на месте потребления. Обеспечивает получение абсолютно сухого газа. Автоматически поддерживает температуру газа в пределах (293 + 10) К. Безопасна в работе, обслуживается одним человеком. Наличие насоса погружного типа обеспечивает постоянную готовность установки к работе. Газификация жидкости осуществляется непрерывно. Оборудование установки смонтировано на платформе автомобиля и защищено фургоном. [c.208]


Фиг. 8. Упрощенная технологическая схема установки для получения жидкого кислорода с возможными линиями автоматики Фиг. 8. Упрощенная <a href="/info/1456642">технологическая схема установки</a> для <a href="/info/17642">получения жидкого кислорода</a> с возможными линиями автоматики
    Воздухоразделительные установки высокого давления с детандером предназначены для получения жидкого кислорода и азота. В схемах современны.х установок этого типа предусмотрено получение сырого аргона, а в некоторы.ч случаях и неоно-гелиевой смеси. Установки высокого давления с детандеро.м более экономичны по сравнению с установками для получения жидкого кислорода, работающими по циклу низкого давления, т. е. удельный расход энергии на получение 1 кг жидкого кислорода значительно ниже. Применение поршневых детандеров н компрессоров в установках высокого давления может привести к попаданию масла, применяющегося для смазывания цилиндров этих машин, в воздухоразделительный аппарат. Этот недостаток можно устранить заменой поршневого детандера турбодетандером и включением в схему установки блоков адсорбционной осушки или комплексной очистки воздуха. Наличие в этих установках машин, аппаратов и трубопроводов высокого давления усложняет обслуживание и ре.монт оборудования. Принципиальная технологическая схема установки высокого давления с детаиде-ро.м приведена на рис. 36. [c.112]

    Технологическая схема получения жидкого азота предусматривает сжижение газообразного азота, предварительно сжатого в турбокомпрессоре низкого давления 14 до 0,6 МПа, в результате испарения жидкого кислорода. [c.133]

    Способы решения уравнения (124) зависят как от назначения установки (для получения газообразного кислорода, для получения жидкого кислорода и т. п.), так и от построения технологической схемы (с двумя детандерами, с одним детандером и т. п.) [55]. В ряде случаев целесообразно уравнения теплового баланса решать лишь для теплой части теплообменных аппаратов, ограниченной сечением, где разность температур между потоками минимальна. При давлениях воздуха ниже критического АГт.п наблюдается обычно в сечении начала конденсации воздуха. Такой способ расчета исключает необходимость применения итерационных методов [14], связанных с определением температуры обратных потоков в сечении отбора воздуха на детандер среднего давления. [c.172]


    По технологической схеме установка К-12Ж (БР-1Ж) идентична установке Кт-12 (БР-1), но имеет дополнительно блок циркуляционных теплообменников, выполненных из оребренных медных трубок два азотных турбокомпрессора (используются серийные турбокомпрессоры КТК-12,5/35 для кислорода) два двухступенчатых азотных турбодетандера ТДР-29/30 цеолитовый блок осушки. Установка может работать как в газожидкостном, так и в газовом режиме. При газовом режиме она выдает те же продукты разделения, что и установка Кт-12 (БР-1). При получении жидкого кислорода криптоновая колонна не работает, так как весь криптон отводится с жидким кислородом. Давление азота в циркуляционном цикле до и после турбодетандеров составляет соответственно 30 и 1,25 кгс/см -, количество азота, отбираемого из середины регенераторов в циркуляционный цикл, равно 1000— [c.233]

    Вариант схемы подобной установки низкого давления типа Кт-12 (БР-1) с детандерным циклом высокого давления для получения жидкого кислорода и сырого аргона представлен на рис. 31. Поскольку в разделительной части схемы сохранены все элементы установки низкого давления для получения технологического кислорода, описание этой части схемы не приводится. Вместе с тем следует отметить, что петлевой поток в азотных регенераторах является сквозным. [c.84]

    Цикл низкого давления с расширением воздуха в турбодетандере был впервые разработан в 1939 г. академиком П. Л. Капицей. Установки низкого давления для получения жидкого кислорода были внедрены в нашу промышленность в 1943—1945 гг. Основным преимуществом установок низкого давления является отсутствие аппаратуры и арматуры высокого давления, простота технологической схемы и отсутствие в [c.12]

    На фиг. 8 показана упрощенная технологическая схема установки для получения жидкого кислорода с возможными линиями автоматического регулирования. [c.367]

    Разделение воздуха является достаточно сложной технической задачей, особенно если он находится в газообразном состоянии. Этот процесс облегчается, если предварительно перевести воздух в жидкое состояние сжатием, расширением и охлаждением, а затем осуществить его разделение на составные части, используя разность температур кипения кислорода и азота. Под атмосферным давлением жидкий азот кипит при —195,8 °С, жидкий кислород при —182,97 °С. Если жидкий воздух постепенно испарять, то сначала будет испаряться преимущественно азот, обладающий более низкой температурой кипения по мере улетучивания азота жидкость будет обогащаться кислородом. Повторяя процесс испарения и конденсации многократно, можно достичь желаемой степени разделения воздуха на азот и кислород требуемых концентраций. Такой процесс многократного испарения и конденсации жидкости и ее паров для разделения их на составные части называется ректификацией. Поскольку данный способ основан на охлаждении воздуха до очень низких температур, он называется способом глубокого охлаждения. Получение кислорода из воздуха глубоким охлаждением — наиболее экономично, вследствие чего этот метод нашел широкое применение в промышленности. Глубоким охлаждением и ректификацией воздуха можно получать практически любые количества дешевого кислорода или азота. Расход энергии на производство 1 кислорода составляет от 0,4 до 1,6 квт-ч (1,44-10 —5,76-10 дж) в зависимости от производительности и технологической схемы установки. [c.15]

    Технологическая схема с использованием в качестве сырья дихлорэтана, клора и кислорода представлена на рис. 12.16. Пары дихлорэтана смешивают с хлором, кислородом и рециркулируемым продуктом. Смесь подают в трубчатый реактор 1, в котором поддерживают температуру 320—480 °С и умеренное давление. Тепло реакции отводят путем испарения жидкого теплоносителя в межтрубном пространстве реактора и используют для получения технологического пара. [c.414]

    Использование для сжатия и расширения воздуха турбомашин (турбокомпрессора и турбодетандера) с высоким к. п. д. дает возможность создавать на основе этого цикла установки для получения больших количеств жидкого воздуха, жидкого азота или жидкого кислорода значительно большей производительности, чем при использовании поршневых машин. В цикле низкого давления существенно упрощается технологическая схема, [c.84]

    Основные преимущества установок низкого давления—отсутствие аппаратуры и арматуры высокого давления, простота технологической схемы и невозможность загрязнения жидкого кислорода продуктами разлои ения смазочного масла. Недостатком их является относительно больший удельный расход электроэнергии на получение 1 кг жидкого кислорода по сравнению с установками высокого давления. [c.255]


    Показателем нормальной работы узла ректификации является получение максимального количества кислорода заданной концентрации при минимальном содержании кислорода в азоте, отходящим из верхней колонны. Улучшению процесса ректификации способствует понижение давления в верхней и нижней колонне. Давление в верхней колонне определяется в основном сопротивлением на линии выхода отбросного азота, а в нижней колонне — давлением в верхней колонне, уровнем жидкого кислорода в конденсаторах и концентрацией продукционного кислорода и азотной флегмы (способы регулирования отдельных параметров нормального режима приведены ниже, в табл. П-8 и П-9. Указанные в этих таблицах обозначения арматуры даны по чертежу технологической схемы блока разделения воздуха завода-изготовителя). [c.119]

    Использование для сжатия и расширения воздуха турбомашин (турбокомпрессора и турбодетандера) с высоким к. п. д. дает возможность создавать на основе этого цикла установки для получения больших количеств жидкого воздуха, жидкого азота или жидкого кислорода значительно большей производительности, чем при использовании поршневых машин. В цикле низкого давления существенно упрощается технологическая схема, облегчается обслуживание, повышаются надежность работы и взрывобезопасность установки.  [c.82]

    Технологическая схема включает следующие основные операции подготовку жидких питательных растворов, подачу в ферментатор газообразного источника углерода и кислорода, выращивание микроорганизма — продуцента белка, отделение и промывку полученной биомассы от культуральной жидкости, концентрирование биомассы и ее сушку. [c.270]

    Существует большое количество технологических схем кислородных установок для получения газообразного и жидкого кислорода. В настоящей главе рассмотрены некоторые нашедшие широкое применение в промышленности технологические схемы установок, оборудованных регенераторами. [c.36]

    Агрегат КАр-30 предназначен для получения технического кислорода, криптоно-ксеноновой смеси, чистого аргона и неоногелиевой смеси. Технический кислород выдается из блока свободным от влаги и двуокиси углерода. Чистый аргон получают в жидком виде или в виде газа под избыточным давлением до 200 кГ/см . Технологическая схема агрегата (рис. 1-17) основана на холодильном цикле низкого давления с турбодетандером. Основной разделительный аппарат работает по схеме двукратной ректификации. Перерабатываемый воздух очищается от влаги и двуокиси углерода в регенераторах с каменной насадкой и со встроенными змеевиками. [c.47]

    Этим давлением, которое в дальнейшем будем называть технологическим, и ограничивается состояние воздуха после детандера. В принципе же схема в части холодильного цикла будет аналогична показанной на фиг. 23. Применительно к воздухоразделительной установке, предназначенной для получения технического газообразного кислорода, схема в упрощенном виде дана на фиг. 27. Здесь давление после детандера ограничивается давлением в нижней колонне. Внутренний теплообмен в колонне, организованный аналогично рассмотренному ранее (фиг. 10 и 11) для получения жидких фракций, с холодильным циклом связан только ограничением давления после детандера. На рекуперацию холода подаются продукты разделения. Схематично в 5 — Г-диаграмме характер протекания цикла иллюстрируется фиг. 28, на которой для упрощения, как и раньше, цикл рассматривается как воздушный холодильный цикл, но с внутренним теплообменом в области пара, по Характеру аналогичным происходящему в колонне,— линия 3—4 соответствует охлаждению в ожижителе и испарителе колонны, линия 5—6—7 — конденсации в колонне. [c.58]

    Этим давлением (в дальнейшем его будем называть технологическим) и ограничивается состояние воздуха после детандера. В принципе же схема в отношении холодильного цикла будет аналогична показанной на рис. 23. В воздухоразделительной установке, предназначенной для получения технического газообразного кислорода (рис. 27), давление после детандера ограничивается давлением в нижней колонне. Внутренний теплообмен в колонне,, организованный аналогично рассмотренному выше (см. рис. 10 и И), для получения жидких фракций, — с холодильным циклом связан только ограничением давления воздуха после детандера. На рекуперацию холода [c.56]

    Анализ технологических схем воздухоразделительных установок показал, что при существующих типах и номенклатуре установок турбодетандеры целесообразно использовать прежде всего в установках, предназначенных для получения технического газообразного кислорода, азота или обоих продуктов разделения воздуха, работающих по циклу среднего давления с детандером. На характерные для установок среднего давления с насосом жидкого кислорода параметры воздуха рабочее давление 4—6 Мн/м , давление после детандера около 0,6 Мн/м и температура воздуха перед машиной около 160—170° К создан ряд промышленных турбодетандеров, основные характеристики которых приведены в приложении 8. Адиабатический к. п. д. этих малых турбодетандеров составляет 68- 72%. [c.254]

    Данный способ требует охлаждения газов до очень низкой температуры, при которой воздух переходит в жидкое состояние. Поэтому такой способ получения кислорода часто называют способом глубокого охлаждения . В настоящее время получение кислорода из атмосферного воздуха способом глубокого охлаждения является наиболее экономичным, вследствие чего имеет широкое промышленное применение. Этот способ позволяет получать кислород (или азот) в любых количествах и по очень низкой цене, затрачивая при этом электроэнергии всего 0,5—1,6 квт-ч на 1 кислорода, в зависимости от размеров и технологической схемы установки. Описанию этого способа и посвящена настоящая книга. [c.13]

    Классификация способов получения простых веществ. Если подразделить способы производства простых веществ в соответ < твии с состояниями, в которых существуют элементы, и с их химическими свойствами, то получится схема, представленная в табл. 3.14. Замечательным примером технологического про цесса, не сопровождающегося химическими превращениями является способ разделения жидкого воздуха на азот, кислород и инертные газы путем перегонки. Процессы, включающие химические реакции, согласно общей классификации, учитывающей характер этих реакций, можно разбить на три класса восстановление, окисление и пиролитическое разложение (пи ролиз). Большую часть простых веществ получают с помощьк> реакций восстановления. Дальнейшая более детальная класси фикация позволяет распределить эти процессы по подклассам 2.1—2.5. Обычно большинство металлов встречается в виде ка тионов, да и многие неметаллы (за исключением галогенов) имеют положительные степени окисления, поэтому в результате передачи им электронов в процессе восстановления достигается нулевая степень окисления. [c.138]

    Предварительный подогрев сырья, используемого в процессе неполного окисления жидких углеводородов, является важной и существенной технологической операцией, обусловливающей качественные и количественные показатели процесса. Газификацию жидких углеводородов условно можно представить как процесс, состоящий из двух последовательно протекающих стадий. Вначале за счет тепла экзотермической реакции полного окисления некоторой части углеводородов идет интенсивный нагрев исходного сырья и промежуточных продуктов реакции до температуры, при которой начинается вторая основная стадия — пиролиз. В соответствии с такой схемой процесса целесообразно предварительно подогревать исходное сырье (паро-кислородо-мазутную смесь) с целью сокращения непроизводительного расхода сырья на первой стадии процесса. При этом с увеличением предварительного подогрева сырья, осуществляемого вне реакционного пространства, степень полезного использования сырья для получения смеси (СО -f Нг) возрастает. [c.96]

    Установка КТ-1000, работающая по схеме двух давлений, предназначена для получения технологического кислорода концентрации 98—98,5% и кислорода для автогенной сварки концентрации 99,2%. Резерв в холодопроизводительности создает возможность выдавать в случае необходимости часть кис-лорода также в жидком виде. [c.318]

    Технологическая схема установки дана на рис. 4.12. Атмосферный воздух засасывается через фильтр /9 в I ступень компрессора 18 и сжимается последовательно в пяти ступенях, проходя по-<У10 каждой из них холодильники и масло-влагоотделители. Сжатый до давления 200 кгс/см (при пуске или получении жидкого кислорода и азота) или 100—ПО кгс/см (при получении газообразного кислорода или азота) воздух направляется в ожижитель 13, установленный в блоке разделения, где охлаждается отходящим -отбросным азотом до плюс 5 — плюс 10 °С. При этом содержащиеся в воздухе водяные пары конденсируются и собираются во влагоотделителе, установленном перед блоком очистки, а затем удаляются продувкой. Далее воздух поступает в один из адсорберов 21 блока очистки и осушки, где двуокись углерода, влага и ацетилен поглощаются цеолитом. Очищенный от этих примесей воздух затем вновь направляется в блок разделения. При получении жидких кислорода или азота поток воздуха разделяется на два один из них-(до 56%) направляется в поршневой детан- [c.168]

    Схема технологической машины показана на рис. 41. Сжатый в компрессорной машине воздух поступает в ожижитель влаги 6 и охлаждается до температуры 278—280° К- При получении жидких кислорода и азота давление воздуха составляет 18—-20 Мн1м , при получении газообразного кислорода 13—14 Мн1м , при получении газообразного азота 15,5—18 Мн м . Охлаждение воздуха в ожижителе производится газообразными продуктами разделения. Из ожижителя воздух направляется в отделитель влаги 4, затем в один из баллонов, заполненных синтетическим цеолитом МаХ, который обеспечивает осушку воздуха до точки росы 203° К, очистку от двуокиси углерода до остаточного содержания не более 2 см м и практически полное удаление ацетилена при концентрациях, обычно наблюдаемых в воздухе. В режиме очистки один баллон работает 10 ч. Затем поток воздуха переключается на другой баллон, а первый подвергается регенерации адсорбента азотом в количестве 0,022—0,036 м сек, нагретым в электронагревателе 3 до температуры 653—673° К. Регенерация протекает примерно в течение 3 ч и заканчивается по достижении температуры регенерирующего газа на выходе из осушительного баллона не ниже 473° К. После регенерации адсорбент охлаждается в течение 6 ч тем же потоком азота при выключенном электроподогревателе. [c.56]

    Стабилизацию режима работы теплообменников можно осуществить, применяя байпасирование азота. На рис. 7 показана упрощенная технологическая схема устанрвки для получения жидкого кислорода с возможными линиями автоматического регулирования [c.383]

    На рис. 3. 9 приведена технологическая схема получения бедного концентрата. Воздух, охлажденный в регенераторах, поступает в колонну 1 высокого давления воздухоразделительного аппарата, где происходит предварительное разделение с получением азота и жидкости, обогащенной кислородом. Окончательное разделение воздуха на азот и кислород осуществляется в верхней колонне 2 низкого давления жидкий кислород, в котором концентрируются криптон и ксенон, стекает в нижнюю часть колонны 2, откуда выводится в основной 3 и выносной 4 конденсаторы. В конденсаторе 3 происходит полное испарение кислорода, который возвращается в колонну 2] в конденсаторе 4, куда направляется около половины произведенного кислорода, небольшое количество кислорода остается жидким, причем в жидкости концентрируются углеводороды. Поток из конденсатора 4 проходит через сепаратор 5, где отделяется жидкость, которая непрерывно выводится из установки через продувочную линию таким способом обеспечивается дополнительная очистка газа от примесей углеводородов. Газообразный кислород, содержащий криптон и ксенон, из колонны 2 и сепаратора 5 вводится в криптоновую колонну 6, где происходит ректификация смеси с получением в качестве нижнего продукта бедного криптонового концентрата, содержащего0,1—0,2% криптона и ксенона, и газообразного кислорода, который, направляется в регенераторы. Рабочее флегмовое чирло (т. е. отношение количеств стекающей жидкости и поднимающегося пара) в верхней части криптоновой колонны составляет 0,11—0,12. Флегма получается в конденсаторе, расположенном наверху криптоновой колонны 6 в межтрубное пространство конденсатора направляется жидкость из куба нижней колонны J, прошедшая адсорберы 7 и переохладители 8, образующиеся в конденсаторе пары возвращаются в верхнюю колонну 2 воздухоразделительного аппарата. [c.126]

    Получение концентрированной азотной кислоты методом прямого синтеэа основано на взаимодействии жидких оксидов азота с водой и кислородом под давлением и прн повышенной температуре. Технологическая схема производства азотной кнслоты из нитрозных газов, полученных окислением NHi кислородом воздуха, включает следующие стадии  [c.100]

    К числу последних зарубежных разработок по высокотемпературному пиролизу тяжелых фракций нефти следует отнести процесс японской фирмы Mitsubishi [Пат. 4520224, 1985 4527002, 1985 4527003, 1985, США]. Технологическая схема процесса включает следующие зоны получения теплоносителя, реакционную, закалки продуктов пиролиза, сепарации газообразных продуктов от жидких продуктов пиролиза, а также конверсии метана в водород и узел пиролиза этана и пропана. Теплоноситель получают путем сжигания жидкого топлива в среде чистого кислорода с разбавлением продуктов горения водяным паром. Перед входом в реакционную зону в теплоноситель вводится смесь метана с водородом при молярном отношении 0,05—4,00. Температура сложного теплоносителя на входе в реактор около 1200 °С, в реакционной зоне — 800—1200°С, парциальное давление водорода не более 0,5 МПа, время контакта — 5—300 мс, общее давление в системе около 2 МПа. В качестве сырья пиролиза используют тяжелые сернистые нефтяные остатки. [c.25]

    На рис. 3.10 представлена технологическая схема производства ацетопропилаиетата. АПА получают в барботажном реакторе змеевикового типа 7 путем контакта кислорода воздух/) с рециркулирующей через реактор смесью аллилацетата, ацетальдегида (АсН) и раствора катализатора. Жидкие продукты реакции после отделения от газовой фазы в сепараторе 2 проходят ионообменный фильтр 4, на котором происходит адсорбция катализатора на катионите, и поступают на разделение. В ректификационной колонне 5 при атмосферном давлении выделяют АсН, из кубового остатка колонны 5 в вакуумной ко лонне 7 извлекают смесь аллилацетата, уксусной кислоты и воды в виде дистиллята, а кубовый продукт направляют в колонну 8 для получения концентрированного АПА. Кубовый остаток из колонны 8 сжигают. [c.193]

    Стационарные кислородоазотные установки СКАДС-17 предназначены для производства небольших количеств газообразного кислорода и жидкого азота производительность их 17 м ,ч газообразного кислорода или 15 дм /ч жидкого азота. Наполнение баллонов кислородом под высоким давлением производится кислородным насосом. Технологическая схема установки СКАДС-17 приведена на рис. 48. Установка вырабатывает газообразный кислород по циклу высокого давления с дросселированием. На период пуска и получения жидкого азота включается поршневой детандер, и тогда установка работает по циклу высокого давления [c.160]

    Начиная с 1962 г. Свердловский кислородный завод Средне-уральского совнархоза выпускает унифицированную установку УКА-0,11 (АжК-0,02), заменяющую ранее выпускавшиеся установки ЖАК-80, ГЖАК-20, ЖА-20 и СКАДС-17. Азото-кислородная установка УКА-0,11 предназначена для получения газообразного кислорода, газообразного азота или жидкого азота (одновременно можно получить только один из указанных продуктов). Установка работает по циклу высокого давления с поршневым детандером. Технологическая схема установки показана на рис. 50. На режиме получения газообразного кислорода установка работает так же, как и описанная выше установка СКАДС-17. [c.164]

    Установка (рис. 4.30) снабжена системой иредварительногс азотно-водяного охлаждения турбокомпрессорного воздуха и предназначена для одновременного получения технологического кислорода, технического кислорода, чистого азота, криптоно-ксеноново-го концентрата и неоно-гелиевой смеси. В данной установке для повышения взрывобезопасности увеличена проточность аппаратов,, в которых возможно накапливание взрывоопасных примесей при выпаривании кислорода. Схема получения криптоно-ксенонового концентрата изменена так, чтобы увеличить проточность конденсатора 10 в результате отмывки криптоно-ксенона из жидкого кислорода в колонне 17. Увеличена также проточность нижнего конденсатора 18 путем включения в схему витого конденсатора-испарителя 19. Повышена степень циркуляции кислорода в конденсаторах 8, 9 и 10, а также возможность ее регулирования за счет изменения высоты расположения конденсаторов относительно верхней ректификационной колонны. Благодаря. этому относительный кажущийся уровень жидкого кислорода в конденсаторах может быть увеличен до 0,6—0,7 высоты трубок. [c.199]

    Кислородная установка типа КТ-1000, технологическая схема которой представлена на рис. 14, предназначена для получения технологического кислорода чистотой 98—98,5, а также для получения технического кислорода чистотой не ниже 99%. Однако производительность разделительного аппарата в этом случае на 10—15% меньше. Так как эта установка имеет резерв по холодопроизводительности, можно часть кислорода (около 150— 170 кг1час) отбирать в жидком виде. [c.39]

    Рассмотренные кислородные установки высокого давления являются громоздкими и в зиачительной степени устарели. В настоящее время установки технического кислорода модернизованы как в части технологической схемы, так и в части конструктивного оформления машин, теплообменников и блока разделения. Вместо осущительных баллонов с каустиком стали широко применять адсорберы, заполненные активным глиноземом. Освоено производство устан0 В0к газообразного кислорода производительностью 30 Ог в час с насосом жидкого кислорода, установок производительностью 100, 300 и 1000 Ог в час и жидкого кислорода для получения до 1 600 кг Ог в час. [c.266]

    Полученные на установке жидкие криопродукты сливают в стационарные емкости, имеющие массу хранимого продукта, т кислорода — 2000, азота — 900, аргона — две емкости по 15 т каждая. Основной режим работы установки предусматривает получение в качестве главного продукта жидкого О2 и побочного жидкого N2. При необходимости соотношение между получаемыми жидкими О2 и N2 может быть изменено в сторону увеличения производства жидкого N2 при уменьшении доли жидкого О2. В [10, 19, 20] произведено сравнение ВРУ, использующей холод регазифицируемого СПГ, и обычной ВРУ, схемы которых базируются на использовании циклов низкого давления с применением циркуляционного азотного цикла среднего давления. Основные данные этих установок и характеристики технологических потоков представлены в табл. 5.32. [c.391]

    Поршневыми компрессорами комплектуются стационарные и транспортные воздухоразделительные установки, построенные по схемам высокого, среднего и двух давлений для получения газообразных и жидких продуктов. Для указанных установок применяются воздушные поршневые компрессоры производительностью от 65 до 7500 мУч на давление от 6 до 220 кПсм . Сжатие технического кислорода и подача его в баллоны производится кислородными компрессорами высокого давления 150— 220 кГ/см . В некоторых случаях требуется давление 350 кПсм и выше. Производительность компрессоров высокого давления обычно не превышает 500—600 м ч. Компремирование технологического кислорода производится кислородными компрессорами низкого и реже среднего давления. [c.104]


Смотреть страницы где упоминается термин технологические схемы для получения жидкого кислорода: [c.160]    [c.50]    [c.16]   
Разделение воздуха методом глубокого охлаждения Том 1 Издание 2 (1973) -- [ c.199 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород жидкий, получение

Кислород получение

Кислород технологический

Технологическая схема получения



© 2025 chem21.info Реклама на сайте