Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферменты, биологическая активност белка

    При изучении химической структуры биологически активных белков, например ферментов, важное значение имеет определение различных функциональных групп белковой молекулы 5Н-групп, ОН-групп серина и треонина, е-ННз-группы лизина, имидазольного цикла гистидина и др. [c.123]

    Превращение сульфгидрильной группы (—SH) цистеина в дисульфид-ную группу (—SS—) цистина представляет собой окислительно-восстановительный процесс. Наличие таких сульфгидрильных группировок в белковой молекуле определяет высокую реактивность многих биологически активных белков, как, например, ферментов и некоторых гормонов (см. также стр. 262). Легкость превращения сульфгидрильной группировки цистеина в дисульфидную группировку цистина и обратимость этой реакции несомненно имеют важнейшее значение в регуляции процессов обмена, происходящих под влиянием биологически активных белковых соединений. [c.346]


    Если бы в биологической системе образовался белок неправильной конформации, он был бы в большей степени подвержен протеолизу, чем белок, имеющий правильную структуру. Продукты его разложения (которые также подверглись бы гидролизу) сыграли бы роль строительного материала при синтезе биологически активных белков. В процессе получения белка производится выделение и очистка активного материала и удаление неактивного, как это, например, имеет место при выделении фермента. Не удаляется ли при этом вместе с белком, инактивированным в процессе выделения, тот самый неактивный белок, о котором мы только что говорили Подобные спекуляции не лишены интереса. Не исключено, что возможность выделения активных белков с помощью довольно жесткой процедуры определяется тем, что хотя последний и теряет свою активность, однако она восстанавливается при помещении его в более мягкие условия, поскольку первичная структура обеспечивает возвращение к активной конформации. [c.281]

    Стабилизация активного белка, повышение его устойчивости, предохранение от денатурации на всех этапах производства сформулированы нами как один из основных принципов технологии ферментов и вообще любых белковых веществ, обладающих специфической биологической активностью белков-гормонов, антител, токсинов и др. Анализ с этой точки зрения существующих технологических схем может привести к их улучшению и во многих случаях — к коренному усовершенствованию. Несомненно, что это один из главных путей рационализации процессов производства ферментов и разнообразных процессов их применения. Нам удалось на этой основе разработать новые принципы производства пепсина, в частности использовав стабилизацию этого фермента продуктами реакции, т. е. продуктами распада белка (см. ниже). Вопрос о стабилизации ферментов будет дополнительно рассматриваться в разделе IV Будущее ферментного катализа . [c.158]

    Так как высушивание белков, в некоторых случаях даже из замороженного состояния, может вызвать денатурацию, то в качестве источника получения большинства белков, в особенности более лабильных биологически активных белков, например, ферментов и гормонов, обычно применяют свежие ткани. Белки [c.13]

    В последние десять лет метод аффинной хроматографии [23— 27] играет важную роль при выделении биологически активных белков. В этом методе колонки заполняют нерастворимым носителем, с которым ковалентно связаны лиганды, обладающие сродством к выделяемому белку (так называемые аффинные лиганды). Когда раствор смеси различных веществ проходит через такую колонку, на ней сорбируется лишь интересующий исследователя белок, а все остальные соединения вымываются. Сорбированный на колонке белок выделяют, либо нарушая взаимодействие макромолекулы с иммобилизованным лигандом, либо воздействуя на него конкурирующим лигандом, присутствующим в элюирующем буфере. Такого рода специфические взаимодействия возникают между ферментами и их ингибитора- [c.109]


    Все четыре уровня организации белковой молекулы взаимосвязаны и обеспечивают нативную (естественную) конформацию каждого белка. В проявлении биологической активности белков особое место занимает третичная и четвертичная структуры, весьма чувствительные к изменению условий среды. Поскольку многие внутриклеточные ферменты имеют четвертичную структуру, то одним из механизмов регуляции их активности является изменение конформации белков. [c.238]

    Характерной особенностью биологически активных белков является легкость, с которой они изменяются под влиянием тепла, ферментов, кислот и различных органических соединений. При этом происходит денатурация белка с полной утратой его биологической активности. Денатурация, которая, как правило, является необратимым процессом, представляет собой скорее физическую или внутримолекулярную перегруппировку, чем химическое изменение структуры нативного белка она меняет специфическую пространственную конформацию макромолекулы, но не сопровождается гидролизом ковалентных связей. В живых организмах эта конформация возника- [c.244]

    Дисульфидные мостики — это основной тип ковалентной связи в белках, соединяющей между собой отдельные участки полипептидной цепи или различные цепи. Внутрицепочечные дисульфидные связи участвуют в поддержании конформационной стабильности свернутой полипептидной цепи, способствуя тем самым правильной ориентации аминокислотных остатков, образующих активные центры или участки связывания ферментов, антител и других биологически активных белков. Межцепочечные дисульфидные связи соединяют между собой отдельные субъединицы или цепи, закрепляют правильную укладку полипептидных цепей в доменах, удерживаемую в противном случае лишь благодаря нековалентным взаимодействиям, и тем самым принимают участие в поддержании четвертичной структуры. [c.165]

    Поскольку основными компонентами метаболизма являются белки, т. е. ферменты, части мембран, транспортные белки и т. д., то именно они в первую очередь должны подвергаться модуляциям. Модуляции состоят либо в изменении количества определенных белков клетки путем регуляции скорости их синтеза или распада, либо в увеличении или снижении биологической активности белков. В этой главе будут описаны некоторые, особенно четкие примеры обоих типов модуляций. [c.43]

    В первом томе приведены данные по строению биологических макромолекул, образованию, превращению и хранению энергии в клетке, структуре и функциям ферментов и других биологически активных белков, а также по молекулярным болезням. [c.4]

    В промышленных масштабах ультрафильтрацией очищают сточные воды, отделяют культуральные жидкости от продуктов микробиологического синтеза, концентрируют биологически активные вещества белки, ферменты, антибиотики и т. д. [c.23]

    Число белков, химическое строение которых полностью рас-шифровано растет с каждым годом. При сопоставлении полученных результатов обнаружились два чрезвычайно интересных факта прежде всего оказалось, что хотя у разных представителей животного мира строение определенного гормона очень сходно, однако все же существуют четкие видовые отличия. Так, например, инсулин, выделенный из организма кита и свиньи, совершенно тождествен, в то время как в инсулине лошади одна из 51 аминокислот заменена на другую. С другой стороны выяснилось, что носителем биологической активности может быть не вся белковая молекула, а определенная часть ее. Так, в растительном ферменте — папаине, построенном из 180 аминокислотных остатков, можно [c.335]

    Важнейшее свойство белков — их способность к гидролизу. Гидролиз протекает под действием кислот или биологически активных веществ (ферментов). В результате гидролиза образуется смесь 2-аминокислот. [c.245]

    Химические свойства. Важнейшим свойством белков является способность нх к гидролизу под действием кислот или биологически активных веществ — ферментов. [c.449]

    Биологическая активность белков нередко тесно связана с высокой организацией структуры, и живые организмы синтезируют белки требуемой конформации, которая часто оказывается метастабильной (т. е. из всех возможных структур не самой устойчивой). Под влиянием нагревания, крайних значений pH или многих химических реагентов белки часто теряют свою биологически необходимую конформацию, превращаясь в случайные неорганизованные структурные единицы и утрачивая биологическую активность. Такой процесс называется денатурацией. Наиболее известный пример — изменение структуры яичного белка при нагревании и структуры мяса в процессе приготовления. В последнем случае кулинарная обработка приводит к значительному облегчению процесса переваривания мяса, поскольку при денатурации освобождаются белковые связи, которые в сыром мясе труднодоступны для протеолити-ческих ферментов пищеварительного тракта. При такой денатурации в результате развертывания белковых цепей обнажаются гидрофобные группы, в обычном состоянии направленные внутрь центральной части белковой молекулы. Взаимодействие освобожденных гидрофобных участков рядом расположенных молекул вызывает коагуляцию денатурированного белка. [c.303]


    Глобулярные белки растворимы в воде и разбавленных солевых растворах и обладают шарообразной формой молекулы (эллипсоид вращения). Компактная структура возникает прн определенном сворачивании полипептидной цепи в основе такой структуры, по существу, лежит гидрофобное взаимодействие неполярных боковых цепей аминокислот. Помимо этого во взаимодействии отдельных участков цепн играют роль водородные связи и в некоторой степени ионные связи. Хорошая растворимость глобулярных белков объясняется локализацией иа поверхностн глобулы заряженных аминокислотных остатков, которые, окружая себя гидратной оболочкой, обеспечивают хороший контакт с растворителем. К глобулярным белкам относятся все ферменты и, за исключением структурных, большинство других биологически активных белков. [c.344]

    Другой тест на чистоту вытекает из диаграммы растворимости в случае гомогенного белка вплоть до достижения точки насыщения количество добавленного и количество растворившегося белка связань линейной зависимостью. Критериями чистоты также служат аминокислотный состав, изоэлектрическая точка, а также в некоторой степеии кристаллизуемость. В случае биологически активных белков, например. ферментов, вывод о чистоте может быть сделан из критериев активности (субстратная специфичность, оптимальные pH и температура, кинетические эксперименты). [c.354]

    В своих физиологических функциях белки очень высокоспецифичны. Например, фермент может расщеплять а-глюкозиды, но не р-глюкозиды или фермент будет отщеплять лишь С-концевые аминокислотные остатки в полипептиде. Биологическая активность белка зависит не только от характера его простетической группы (если она вообще имеется) и данной последовательности аминокислот, а также от формы его молекулы. Как сказал Э. Фишер в 1894 г. ... фермент и глюкозид должны подходить друг к другу, как ключ к замку... . [c.1061]

    Существует несколько методов, с помощью которых можно обнаружить аминокислотные остатки, ответственные за биологическую активность белков. В первом методе белок необходимо подвергнуть частичной деградации, в особенности вблизи Л/- и С-кон-цов соответственно с помощью аминопептидаз и карбоксипептидаз. Например, удаление (с помощью карбоксипептидазы) трех остатков с С-конца рибонуклеазы не влияет на ее активность. Более глубокая деградация в этой части молекулы, однако, приводит к инактивации. По второму методу необходимо подвергнуть химической модификации боковые группы аминокислотных остатков белка. Естественно, что результаты такого рода экспериментов проще интерпретировать в том случае, когда эта модификация специфична. Например, легко идентифицировать область связывания кофермента пиридоксальфосфата в аминотрансферазе. Альд-имин, образующийся в результате конденсации кофермента с е-аминогруппой остатка лизина, восстанавливают борогидридом натрия и идентифицируют, так как он не затрагивается при гидролитическом распаде. Аналогично, ферменты, содержащие тиольные группы, такие как алкогольдегидрогеназа, 3-фосфоглицераль-дегиддегидрогеназа и папаин, обычно ингибируют реакцией с п-хлормеркурибензойной или иодуксусной кислотой. Специфичность модификации белков можно усилить, если структура реаген- [c.282]

    Общеизвестно, что биологически активные белки, особенно секретируемые клетками, такие как ферменты и полипептидные гормоны, синтезируются в виде молекул неактивных предшественников, активируемых посредством специфического гидролитического удаления пептидных фрагментов в результате действия протеолитических ферментов. Этот ограниченный протеолиз вызывает конформационное изменение, в результате которого важные для активности группы занимают правильное пространственное взаимное расположение. Иногда расщепление пептидной связи может высвободить существенную для активности амино- или карбоксильную группу. Одним из простейших примеров ограниченного цротеолиза является активация трипсиногена до трипсина, катализируемая энтерокиназой и автокатализируемая самим трипсином. Процесс активации заключается в отщеплении гексапептида от Л -концатрипсиногена (12). [c.551]

    Характерной особенностью биологически активных белков является лргУпгть. с которой они изменяются под влиянием тепла, ферментов, кислот и различных орГанйческих соединений.. При этом происходит денатурация белка 102 с полной утратой его, биологической активности. Денатурация, которая, как правило, является необратимым процессом, представляет собой скорее фи зическую или внутримолекулярную перегруппировку,, чем химическое изменение структуры нативного белка она меняет специфическую пространственную конформацию макромолекулы,/ но не сопровождается гидролизом ковалентных связей. В живых организмах эта конформация возникает в результате взаимодействия боковых ответвлений полипептидных цепей, являясь термодинамически неравновесной во время денатурации белок переходит в равновесную денатурированную форму. При достаточно сильном воздействии ферментов, тепла и различных химических агентов могут все же произойти более глубокие изменения вплоть до расщепления макромолекулы на отдельные аминокислоты вследствие гидролиза по пептидным связям. [c.331]

    Изучение взаимодействия углеводородов с белками (солюбилизация углеводородов в растворах белков) представляет интерес с различных точек зрения. Во-первых, солюбилизация углеводородов может служить методом обнаружения гидрофобных взаимодействий в макромолекулах белков и давать новые сведения о строении молекул белка. Во-вторых, изучение солюбилизации углеводородов в растворах биологически активных белков позволяет выяснить роль гидрофобных взаимодействий в биокаталитиче-ских процессах. Известно, что торможение активности ферментов осуществляется при взаимодействии не только с самим активным центром, но и с близлежащими участками путем электростатического, гидрофобного и водородного связывания. С этой точки [c.7]

    Ферментативный синтез глютатиона в животных тканях протекает с большой -скоростью. Биологическая функция глютатиона до сих пор недостаточно выяснена она по-видимому, в основном сводится к поддержанию на определенном уровне содержания биологически активных сульфгидрильных групп в белках клетки в зависимости от окислительно-восстановительного потенциала среды этим можно объяснить также активирование SH-глютатионом ряда протеолитических ферментов (например, катеп-сина) и других биологически активных белков (гормонов и ферментов). Глютатион является коэнзимом дегидрогеназы 3-фосфоглицериновой кислоты и глиоксалазы. [c.347]

    Описанное явление представляется нам весьма распространенным, важным изменением белков. Можно полагать, что модификации подобного рода, которые, очевидно, могут происходить при очень незначительной денатурации или совсем без нее (например, при осторожном нагреве), часто встречаются в природе и происходят с белками в обычных условиях, без специальных воздействий, при невысоких температурах, длительном хранении и т. п. Практическое значение обнаруженного эффекта может оказаться также очень большим. В частности, весьма заманчивым было бы получение биологически активных белков, в особенности ферментов, в устойчивой, трудноденатурируемой форме. [c.165]

    Необратимое свертывание белка яиц при нагревании — явление хорошо известное. Подобное изменение в состоянии указанного белка может быть вызвано и действием ряда других физических и химических агентов сильным встряхиванием, облучением ультрафиолетовыми лучами, действием ультразвуковых волн, кислот, щелочей, органических растворителей, солей тяжелых металлов, мочевины, гуанидина, салицилатов и многих других веществ. При всех этих воздействиях белок теряет свою первоначальную растворимость и в большинстве случаев становится нерастворимым при изоэлектрической точке. В отличие от других белков коллаген при нагревании в воде растворяется. Измененные под влиянием всех указанных воздействий нативные белки получили название денатурированных белков. часто сопровождается потерей биологической активности белков. Так, например, ферменты теряют свою каталитическую активность, гормоны — физиологическую функцию, антитела — способность соединяться с антигеном. Эти изменения не всегда протекают параллельно изменениям физико-химических свойств белков. Денатурация, очевидно, представляет собой комплексное явление. Вряд ли можно думать, что действие столь различных соединений, как мочевина и серная кислота, а также влияние нагревания обусловливают одно и то же изменение белков. Нельзя поэтому просто говорить о денатурации белков, например яичного альбумина необходимо всегда указывать, какой именно агент вызвал денатурацию. [c.147]

    Тропонин — Са -связующий регуляторный белок миофибрилл. Связан с актином, блокирует центры контакта актина с миозином. Убихинон (кофермент О) — небелковый компонент дыхательной цепи, который участвует в передаче электронов и протонов на цитохромы. По строению близок к витамину К. Углеводы (СдН О ) — класс органических веществ, состоящих из атомов С, Н и О. В организме выполняют энергетическую роль, обеспечивая более 50 % потребностей в энергии. Основные представители — глюкоза, фруктоза, рибоза, дизоксирибоза, гликоген. Ферменты-энзимы — биологически активные белки, синтезируемые в организме и выполняющие роль катализаторов биохимических реакций. [c.493]

    В химии белка уже достигнут ряд выдающихся результатов. Разработаны современные физико-химические методы исследования аминокислот, пептидов и белков. Установлена первичная структура некоторых белковых ферментов и гормонов, таких, как адренокортикотропный гормон, инсулин, рибонуклеаза, миоглобин, гемоглобин, цитохром с, лизоцим, химотрипсиноген, белок вируса табачной мозаики и других. Успешно развиваются методы синтеза биологически активных белков и пептидов. В 1963 г. осуществлен синтез первого высокомолекулярного белка гормональной природы — инсулина, а в 1969 г. — синтез фермента р1[бонуклеазы (124 аминокислотных остатка). Изучена пространственная структура миоглобина, гемоглобина, лизоцима, химотрипсина, карб-оксипеитидазы А, рибонуклеазы и других белков. Эти достижения помимо их высокой научной ценности имеют громадное практическое значение для медицины, сельского хозяйства и ряда отраслей промышленности. [c.18]

    Для действия очень многих ферментов и других биологически активных белков существешю наличке в них свободных 5Н-групп [c.244]

    Под действием ДСН большинство биологически активных белков инактивируется, но некоторые белки, например глюко-зооксидаза, полностью сохраняют свою активность, а папаин и пепсин инактивируются лишь частично i[91I]. Ряд катаболиче-ских ферментов также могут оставаться активными в присутствии ДСН [599, 1035], и, чтобы инактивировать эти ферменты, их образцы с ДСН следует кипятить в течение нескольких минут. [c.225]

    Клетки — носители медиаторов являются обязательными компонентами воспаления, хотя соотношение их на поле воспаления может быть разным. Структурно-функциональные особенности этих клеток определяют специфику работы каждой из них в сложном клеточном ансамбле при воспалении. Пожалуй, главенствующая роль в нем принадлежит ПЯЛ, которые способны усиливать инициальное повреждение, повышать сосудистую проницаемость, осуществлять миграцию, эмиграцию и фагоцитоз, а также контакты с плазменными системами. Особая роль в реализации главных функций принадлежит медиаторам (лейкокины), ферментам, биологически активным веществам, содержащимся в гранулах лейкоцитов. Одни гранулы (азурофильные) идентичны лизосомам, содержат кислые гидролизы. Кроме того, большое значение придают нейтральным протеазам (коллагеназа, эластаза), особенно в случаях дефицита их ингибиторов [Goldstein J. М., 1974]. Другие гранулы ПЯЛ (специфические) содержат щелочную фоефатазу и бактерицидные катионные белки, обладающие выраженным медиа-торным действием в экссудате (активация сосудистой проницаемости, выделение гистамина, стимуляция хемотаксиса и др.). [c.232]

    Следует учитывать и другой фактор, присущий исключительно биологическим системам,— оптическую чистоту. Белки состоят из L-аминокислот. Поэтому при химическом синтезе следует исходить из L-аминокислот, а в процессе синтеза рацемизация должна быть сведена к минимуму. В наибольшей степени это относится к синтезу ферментов, каталитическая активность которых зависит от оптической чистоты. Аминокислоты особенно легко подвергаются рацемизации, когда они ацилированы (т. е. когда аминогруппа блокирована ацильной группировкой) через промежуточное образование азлактона. Такое превращение может произойти, например, в процессе введения защитной группы или в процессе образования пептидной связи  [c.68]

    Фибриллярные, или волокнистые, белки (от латинского с гова ЬгШа — волокно) состоят из макромолекул в виде тонких вытянутых нитей, обычно соединенных между собой. В эту группу входят белки, являющиеся составными частями кожи и сухожилий (коллаген, желатин), волоса и рога (кератин), мышц (миозины) и др. В организме они выполняют в основном механические функция, хотя некоторые из фибриллярных белков обладают и биологической активностью. Так, названный выше миозип является ферментом он расщепляет аденазинтрифосфорную кислоту (АТФ), которая обладает большим количеством энергии, выделяемой при ее расщеплении. [c.338]

    Белки представляют собой полимеры аминокислот. Они играют роль главного структурного элемента в организмах животных. Ферменты, катализаторы биохимических реакций, по своей природе принадлежат к белкам. Все встречающиеся в природе белки образованы приблизительно 20 аминокислотами. Аминокислоты хиральны, т.е. способны существовать в виде несовместимых друг с другом изомерных форм, являющихся зеркальными отражениями друг друга,-энантиомеров. Обычно биологической активностью обладает только одна из двух энантиомерных форм. Структура белков определяется последовательностью аминокислот в полимерной цепи, скручиванием или растяжением цепи, а также общей формой молекулы. Все эти аспекты белковой структуры оказывают важное влияние на их биологическую активность. Нагревание или другие виды обработки могут инактивировать, или денатурировать, белок. [c.464]

    Интересные результаты получены при изучении ионного транспорта через подобные мембраны и электропроводности элементарных пленок обратных эмульсий, стабилизированных природными и синтетическими ПАВ различной природы. Выяснилось, в частности, что электропроводность таких мембран резко возрастает при добавлении некоторых биологически-активных ПАВ. Например, введенне во внешнюю водную среду липидной мембраны ничтожных количеств антибиотика валиномицина приводит к увеличению электропроводности мембраны на пять порядков величины вместе с тем мембрана становится проницаемой для ионов калия и водорода, но не пропускает через себя ионы натрия. Резкое понижение электрического сопротивления искусственных мембран может наблюдаться и при введении в их состав молекул белков, а та,кже ферментов с добавкой в систему соответствующего субстрата. Изучение свойств таких мембран позволяет моделировать ряд важных биологических процессов, например прохождение нервного импульса, образование фоточувствительной ячейки и др. [c.291]

    Белки в организмах являются основными материаль-иы.ми агенталш, управляющими реакциями обмена веществ. При этом каждый белок выступает в качестве биологически активного вещества, обладающего высокой степенью специфичности. Из белков состоят, в частности, все биологические катализаторы (ферменты), которые в отличие от используемых химиками обычных неорганических катализаторов характеризуются исключительной избирательностью действия. [c.438]

    Разработка теоретических положений проведения электросорбцион-ных процессов разделение, выделение, деструкция и концентрирование органических молекул (и продуктов их деструкции), включая биологически активные и высокомолекулярные органические образования (ферменты, белки). [c.4]


Смотреть страницы где упоминается термин Ферменты, биологическая активност белка: [c.344]    [c.17]    [c.174]    [c.113]    [c.78]    [c.272]    [c.23]    [c.351]   
Белки Том 1 (1956) -- [ c.287 , c.290 ]




ПОИСК





Смотрите так же термины и статьи:

Активность фермента

Активные ферментов

Белки биологическая активность



© 2024 chem21.info Реклама на сайте