Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волновая теория электронов

    Волновая теория электронов была разработана независимо [c.15]

    Луи де Бройль (род, в 1892 г,) — французский физик, автор гипотезы о волновых свойствах материи, которая легла в основу квантовой механики, Работал также в области теории электронов, строения атомного ядра, теории распространения электромагнитных волн, В 1929 г. награжден Нобелевской премией, с 1958 г. — иностранный член Академии наук СССР. [c.70]


    Фотоэффектом называется испускание электронов металлами и полупроводниками при их освещении. Согласно волновой теории света энергия Е вылетающих электронов должна быть пропорциональна освещенности. Однако опыт показывает, что Е от освещен  [c.16]

    В. Гейзенберг) изучает движение и энергетическое состояние микрочастиц. Она позволила по-новому взглянуть на строение атома. Согласно квантовомеханической теории электрон в атоме обладает двойственной природой ему приписываются свойства как частиц, так и волны. Волновое же движение электрона в атоме может быть выражено волновым уравнением, выведенным Э. Шредингером (1926)  [c.12]

    Феноменологические представления о различии показателей преломления для лучей с правой и левой круговой поляризацией не дают возможности установления более глубоких связей явления оптического вращения и молекулярных свойств. К сожалению, в теории оптической активности, как и в теориях ряда других методов, не достаточно полно решена прямая задача и поэтому ограничено решение обратной задачи метода. Прямая задача состоит в определении экспериментально измеряемого угла вращения а на основе молекулярных свойств. Взаимодействие света с веществом связано с характером волновых функций электронного состояния и их изменениями в электромагнитном поле волны. Однако волновые функции для электронных состояний многоатомной молекулы из-за [c.174]

    Теория валентных связей. Теория ВС, созданная в основном трудами В. Гейтлера и Ф. Лондона, исходит из того, что единичную химическую связь образуют два электрона с противоположными спинами, принадлежащие двум атомам. При этом происходит перекрывание волновых функций электронов, между атомами возникает зона со значительной электронной плотностью, что приводит к уменьшению потенциальной энергии системы, т. е. к образованию связи. Образованная химическая связь двухцентровая, двухэлектронная, обозначается в структурных формулах соединений черточкой и называется ковалентной. [c.230]

    Если многие свойства атома водорода теория Бора объясняла достаточно хорошо, то в случае более сложных атомов применимость ее была весьма ограниченной, так как оказалось, что одного квантового числа п недостаточно для полной характеристики движения электрона в атоме. Кроме того, модель атома Бора не учитывала волновых свойств электрона. [c.47]


    Необходимо подчеркнуть, что проявление волновых свойств электроном не является следствием перерождения его в волну. Речь идет только о том, что движение электрона описывается такими же математическими выражениями, как и распространение волны. Например, у электронов можно наблюдать характерное для волн явление дифракции. Это свойство электронов проявляется в том, что, проходя через узкое отверстие экрана, электроны рассеиваются, образуя за экраном дифракционную картину. С учетом волновых свойств электрона нельзя представлять себе, что электрон в атоме движется вокруг ядра по орбитам со строго определенными радиусами, как это вытекает из теории Бора. [c.47]

    В теории ГЛ волновая функция электронов для устойчивого состояния молекулы На будет [c.188]

    В теории Гейтлера и Лондона (стр. 152) волновая функция электронов в молекуле На, будучи записана в самом общем виде, состоит из двух членов и содержит два коэффициента. К ней применима рассмотренная здесь математическая процедура и получаются те же выражения (III.73) — (III.74), однако входящие в них интегралы имеют иной смысл и численные значения. [c.197]

    Планком проблемы излучения абсолютно черного тела все экспериментальные работы подтверждали волновую теорию излуче- ния. Однако с 1900 г. накопившееся очень большое число экспериментальных фактов несомненно указывало на корпускулярную природу электромагнитного излучения, что не ограничивалось рассмотренными конкретными примерами. Так, Эйнштейн, а позднее Дебай разрешили проблему удельной теплоемкости твердых тел на основе квантовых положений, а Комптон так объяснил рассеяние Х-лучей электронами при их взаимодействии, как если бы оно произошло между релятивистскими бильярдными шарами. Имея в виду обилие доказательств в пользу квантовой теории, можно было бы склониться к мнению, что цикл замкнулся, и ученые опять вернутся к основным взглядам Ньютона. Но это абсолютно не так. Конечно, нельзя отрицать, что электромагнитное излучение, как уже было показано, имеет как волновой, так и корпускулярный характер. Это ставит перед нами дилемму фотон — волна или частица Эта проблема не относится к числу легко разрешимых решение ее не может быть получено при просто химическом или физическом подходе. Здесь приоткрывается новая страница естествознания. Эта проблема имеет и определенный философский характер. [c.38]

    В то время как теория валентных связей сохраняет за атомами, входящими в состав молекулы, их индивидуальность, теория молекулярных орбиталей рассматривает молекулу как единую частицу с помощью основных идей строения атома. Так же как в атоме есть атомные орбитали, так и в молекуле есть молекулярные орбитали различие в том, что молекулярные орбитали многоцентровые. Тем не менее теория молекулярных орбиталей предлагает для электрона в молекуле волновую функцию, подобную волновой функции электрона в атоме. Так, вероятность нахождения электрона в определенной части объема будет пропорциональна и так же, как в атоме, каждая молекулярная орбиталь будет зависеть от ряда квантовых чисел, которые определяют ее энергию и пространственное расположение. Допускается также, что принцип заполнения орбиталей в молекуле такой же, как в атоме, т. е. на каждой молекулярной орбитали могут располагаться два электрона с противоположными спинами, и, начиная с орбиталей самого низкого уровня энергии, электроны один за другим заполняют следующие орбитали. [c.144]

    Согласно теории молекулярных орбиталей, волновая функция электрона (1) образуется как линейная комбинация 15-орбиталей водорода, точно так же, как и в случае его молекулярного иона  [c.158]

    Зонная теория кристаллов. В модели свободного электрона волновое движение электрона может осуществляться по любому направлению и будет ограничиваться лишь размерами кристалла. Для простоты ограничимся одномерной задачей, рассматривая движение электрона лишь вдоль одной оси (одномерный ящик). Решение уравнения Шредингера для такого свободного электрона дает следующее выражение для его энергии  [c.82]

    Решительные сдвиги в изучении природы бертоллидов появились только в связи с электронной интерпретацией кристаллофизических и кристаллохимических проблем на основе квантовой теории. Оказалось, что прежний дальтоновский тезис, согласно которому атомная дискретность химических соединений обусловливает также и дискретность химических отношений в этих соединениях, т. е. всеобщую эквивалентность сил химической связи, не может быть обоснован квантовой химией. Было показано, что физическая сущность химического взаимодействия, а следовательно, и химической связи в молекулах сводится к проявлению волновых свойств электронов. А это означает, что о всеобщей эквивалентности попарных химических связей не может быть и речи. Более того, речь может идти лишь о многоцентровых связях и молекулярных электронных орбиталях, которые и обусловливают как непрерывность химических отношений, так и переменный состав химических соединений бертоллидного типа. [c.69]


    Теория абсолютных скоростей реакций позволила установить новые факторы, обусловливающие специфику механизма, а следовательно, и всего хода химического процесса. Наиболее важным из этих факторов является волновая природа электронов связей, определяющая как особенности месторасположения реакционных центров в молекуле реагента, так и характер взаимодействия данного реагента с сореагентом, в том числе конфигурацию активированного комплекса. Вместе с тем нельзя не признать, что теория [c.115]

    В последующие годы некоторые положения теории Бора были переосмыслены, видоизменены, дополнены. Наиболее существенным нововведением явилось понятие об электронном облаке, которое пришло на смену понятия об электроне только как частице (см." 3). На смену теории Бора пришла квантовая теория строения атома, которая учитывает волновые свойства электрона. [c.40]

    По волновой теории с увеличением амплитуды электромагнитных колебаний интенсивность светового пучка растет. Поэтому при работе с более интенсивными пучками света энергия, переданная каждому электрону, возрастает. Кинетическая энергия вылетевших электронов должна увеличиваться. [c.21]

    Зонная теория кристаллов. В модели свободного электрона волновое движение электрона может осуществляться по любому направлению и будет ограничиваться лишь размерами кристалла. Для простоты ограничимся одномерной задачей, рассматривая движение электрона лишь вдоль одной оси (одномерный [c.72]

    Диэлектрики и полупроводники. Рассмотрим применение зонной теории к кристаллам с ковалентными связями. При формировании подобных кристаллов наружные электронные орбитали их атомов, взаимодействуя, также образуют энергетические зоны. Однако направленный характер ковалентных связей приводит к тому, что симметрия кристалла полностью изменяет характер волновых функций электронов взаимодействующих атомов. [c.76]

    Согласно волновой теории концентрация электронного облака в атоме не постоянна и зависит от расстояния между ядром и данной точкой пространства. В среднем, однако, можно считать, что концентрация электронного облака определяется объемом шара, обладающего радиусом орбиты Бора. Такой объем мы будем называть элементарным и считать, что он совпадает с объемом данного атома. [c.61]

    Выражение (2.1) применяется в теории химической связи при использовании двух основных приемов вычисления энергии — метода валентных связей (ВС) и метода молекулярных орбиталей (МО). Различия этих методов сводятся к способам конструирования волновых функций электрона, участвующего в связи. Рассмотрим ход рассуждений, относящихся к случаю, когда зависимость волновой функции от ее слагаемых представлена линейным выражением  [c.96]

    Современная теория строения атома прежде всего исходит из представлений о корпускулярно-волновом дуализме электрона и описывает его состояние четырьмя параметрами — квантовыми числами. Предельное число электронов, которое может заселять одну орбиталь, равно двум, что соответствует принципу Паули. Электроны располагаются на одинаковых орбиталях так, чтобы суммарный спин был максимален. [c.60]

    Квантово-механические методы исследования строения молекул показали, что из всех существующих в природе сил для образования химической связи имеют значения силы взаимодействия электрических зарядов электронов и ядер атомов и волновые свойства электронов. Основные положения квантово-механической теории химической связи хорошо иллюстрируются на примере образования молекулы водорода из атомов  [c.11]

    Одноэлектронная волновая функция атома обладает важным свойством она может быть представлена в виде произведения двух функций, одна из которых зависит от радиального расстояния электрона от ядра атома, другая — только от угловых координат электрона. Угловая зависимость волновых функций -электронов оказывается наиболее существенной при решении задачи, поставленной в теории кристаллического поля. [c.156]

    Зонная теория наиболее полно раскрывает различные свойства металлических и полупроводниковых кристаллов и хорошо описывает электрическую проводимость металлов. Учет волновой природы электрона приводит к выводу о том, что всякое нарушение симметрии расположения атомов в металлическом кристалле должно привести к понижению электрической проводимости. Такое нарушение симметрии, искажение периодичности кристаллической решетки может достигаться увеличением температуры (из-за усиления колебательного движения атомов), добавками легирующих элементов, механической обработкой металла (ковка, протяжка и т. д.). [c.340]

    Известно, что второй и третий законы фотоэффекта не могли быть объяснены на основе классической волновой теории света и привели к очередной катастрофе классической физики. Эйнштейну (1905 г.) первому удалось дать теоретическое объяснение этих законов, применив для этой цели планковское представление о квантах света. Он предположил, что энергия светового кванта йсо, падаюш,его на металл, целиком расходуется на работу вырывания (выхода) электрона из металла и на сообщение ему кинетической энергии [c.413]

    Атомные орбитали. Чтобы обойти эти трудности, Шредингер, Гейзенберг и Дирак разработали волновую теорию атома. Лучше всего известен подход Шредингера, который предложил волновое Волновое ч равнение уравнение для атома (1925 г.) . Решения волнового Шредингера.. уравнения Шредингера могут быть получены только при определенных условиях. Если электрон рассматривается как волна, то на орбите, по которой движется электрон, должно укладываться целое число длин волн (рис. 2.8). [c.43]

    До 1924 г. ученые считали, что наблюдаемые свойства электрона вполне соответствуют представлениям о нем как об очень небольшой электрически заряженной частице, во всем похожей, кроме размера, на шарик подшипника, несущий электрический заряд. Но в 1924 г. французский физик Луи де Бройль (род. в 1892 г.) установил волновой характер электрона. Исследуя квантовую теорию при подготовке докторской диссертации в Парижском университете, он установил, что выявляется поразительная аналогия между свойствами электронов и свойствами фотонов, если движущемуся электрону приписать некоторую длину волны. Такая длина волны электрона называется сейчас длиной волны де Бройля. [c.70]

    В теорию Бора принцип квантования был введен произвольно. В ней в основном использовались законы классической механики. Открытие волновых свойств электрона, фотоэффект, опыты с абсолютно черным телом привели к созданию нового раздела физики- квантовой механики. Большую роль в ее создании сыграли Э. Шредингер и В. Гейзенберг. [c.26]

    Большим успехом волновой теории электронов является то, что она оказалась в состоянии дать объяснение существованию стационарных энергетических состояний в атомах и что во многих случаях она сделала возможньш расчет соответствующих величин энергии. Для выполнения расчета необходимо наложить известные ограничения на волновую функцию электрона <Ь. Обычно в дополнение к тому, что функция ф является решением некоторого дифференциального уравнения, предполагается, что она должна быть непрерывной и однозначной функцией координат X, у и 2 электрона, который она представляет, и должна быть конечной при всех значениях независимых переменных. Эти ограничения должны быть приняты в качестве дополнительных гипотез, правильность которых, как и правильность всей волновой теории в целом, основывается на том, что с их помощью оказывается возможным объяснить экспериментальные факты. Следует отметить, что такая теория имеет значение не потому, что она считается более важной или более основательной, чем экспериментальные данные, а потому, что она способна объяснить многие факты и установить соотношение между явлениями, которые на первый взгляд кажутся не связанными между собой. [c.46]

    На базе представлений о волновой природе электрона была развита волновая механика. Наибольшие заслуги в разработке этой теории принадлежат физикам-теоретикам Вернеру Гейзенбергу, Эрвину ГЦредингеру и Полю Дираку. [c.56]

    Фотоэффектом называется испускание электронов металлами и полупроводниками под действием света. Согласно волновой теории света энергия Е вылетающих электронов (фотоэлектронов) должна быть пропорциональна освещенности. Одиако опыт показывает, что энергия Е от освещенности не зависит. Оказалось, что максимальная энергия < ютоэлектронов Емлкс выражается следующим уравнением (соотношение Эйнштейна).  [c.18]

    Явление фотоэффекта, открытое в 1887 г. Герцем и детально исследованное А. Г. Столетовым, состоит в том, что металлы (или полупроводники) при действии на них света испускают электроны. Объяснить фотоэффект исходя из волновой теории света невозможно. Расчет показывает, что ввиду незначительных размеров электрона количество энергии, сообщаемое падающими на него электромагнитными волнами, так мало, что при освещении солнечным светом потребовалось бы облучение по крайней мере в течение нескольких часов для того, чтобы электроны накопили энергию, достаточную для выхода из металла (и то при отсутствии передачи поглощенной электронами энергии атомам). Однако вылет электронов наблюдается сразу же после освещения металла. Кроме того, согласно волновой теории, энергия 3 электронов, испускаемых металлом, должна быть пропорциональна интенсивности падающего света. Однако было установлено, что 3 от интенсивности света не зависит, а зависит от его частоты, увеличиваясь с ростом V возрастание интенсивности приводит лишь к увеличению числа вылетающих из ieтaллa электронов. [c.20]

    Разумеется, метод наложения валентных схем, использующий различные варианты представления волновой функции электронов в молекуле, например, для СвНв — менее точный (1П.66) и более точный (111.67), является лишь математическим приемом. Истинное распределение электронной плотности в молекуле, находящейся в данном энергетическом состоянии, вполне определенное и единственное, никаких изменений в нем не происходит. Поэтому неправильно было бы считать, что бензол содержит смесь молекул, находящихся в пяти различных состояниях, или что структура молекул, определяющая свойства этого соединения, является наложением (резонансом) пяти реально существующих структур. Наложение валентных схем нельзя считать физическим явлением. Это способ квантовомеханического рассмотрения состояния электронов, движение которых не локализовано около определенной пары атомов. Данный прием используется только в методе валентных связей и не фигурирует в другой квантовохимической теории — методе молекулярных орбиталей, хоторыи мы рассмотрим в дальнейшем. [c.177]

    Принятие илн непринятие основных постулатов квантовой механики зависит от всей совокупности опытных данных, относящихся к микромиру, и, хотя дифракция электронов весьма убедительно свидетельствует в пользу представлений де Бройля, все же остается несомненным, что волномеханический аспект должен привести и к прогнозам, имеющим более прямое и непосредственное отношение к вопросам химии. Одним из таких открытий является туннельный эффект, значение которого мы еще подчеркнем в дальнейшем. Другое важное явление, имеющее квантовую природу и совершенно неожиданное с точки зрения теории Бора, — это сверхтонкое взаимодействие. Волновая природа электрона проявляется в том, что электрон некоторое время проводит около ядра это влечет за собой различные последствия расщепление спектральных линий или даже полный захват электрона ядром, а также проявление магнитных взаимодействий на малых расстояниях. [c.76]

    Вычисление вероятности нахождения электрона в данной точке и его энергии — сложная математическая проблема. Оно предполагает решение дифференциального уравнения — уравнения Шредин-гера, в котором используются в качестве параметров масса и потенциальная энергия электрона. Решение уравнения Шредингера дает функцию координат электрона х, у, г ж времени известную как волновая функция электрона г з = / (ж, у, г, 1). Эта волновая функция полностью описывает электрон. Ее называют орбиталью. Единственной физической интерпретацией волновой функции является, как это будет видно из дальнейшего, соответствие квадрата модуля этой функции вероятности нахождения электрона в точке с координатами X. у, 2 в момент времени 1. Функции г — решения уравнения Шредингера — необходимо дополнить некоторыми математическими условиями, чтобы они имели физический смысл. Из этого следует, что уравнение Шредингера имеет решения, удовлетворяющие этим условиям только для некоторых значений полной энергии электрона Е. Это — разрешенные или собственные значения энергии (соответствующие волновые функции называются собственными волновыми функциями). Фактически эти разрешенные значения энергии показывают, что в квантовой механике принцип квантования уровней энергии вытекает из математической формы уравнений, а не вводится произвольно, как в квантовой теории. [c.26]

    После ряда открытий, в частности после обнаружения волновых свойств электронов и других микрочастиц, стало ясно, что теория Бора недостаточная. Она потерпела неудачу даже в попытке построения второго по сложности атома — атома гелия, состоящего из ядра и двух электронов. Она не смогла объяснить обнаруженной мульти-плетности (множественности) спектральных линий в атомных спектрах элементов. Например, спектральные линии щелочных металлов оказались дублетами с очень малым отличием длин воли линий, составляющих эти дублеты. Также линии серии Бальмера в спектре водорода не являются единичными и каждая расщеплена на две очень близко расположенные линии. Это объяснили Уленбек и Гоудсмит в 1925 г. допущением у электронов вращательного (веретенообразного)-движения, что обусловливает появление у них, кроме орбитального, еще спинового вращательного момента, а также спинового магнитного момента (спин — от английского to spin — вращаться). Ориентация спинового момента электрона в дйух противоположных [c.62]

    С точки зрения волновой теории свста, чем большей сило 1 обладает источник, тем больше должна быть амплитуда излучаемой световой волны и, следовательно, тем больше и энергия, которую может получить вылетающий электрон. Опытные же данные говорят [c.51]

    После ряда открытий, в частности после обнаружения волновых свойств электронов и других микрочастиц, стало ясно, что теория Бора недостаточна. Она потерпела неудачу даже в попытке построения второго по сложности атома — атома гелия, состоящего из ядра и двух электронов, и не смогла объяснить обнаруженной мульти-плетности (множественности) спектральных линий в атомных спектрах элементов. Например, спектральные линии щелочных металлов оказались дублетами с очень малым отличием длин, волн линий, составляющих эти дублеты. Также линии серии Бальмера в спектре водорода не являются единичными и каждая расщеплена на две очень близко расположенные линии. Это объяснили Уленбек и Гоудсмит в 1925 г. допущением у электронов [c.76]

    Дифракция электронов. Как фотоэлектрический эффект, так и эффект Комптона говорят о корпускулярной природе света. Потоб-Hoii точки зрения придерживались ранее, хотя она противоречила давно установленной волновой теории света, но нозжс от нее от- [c.430]

    Только в 1913 г. Бор предложил динамическую модель электронов в атоме, давшую удовлетворительное объяснение многим особенностям атомных спектральных линий. Эта модель была основана на законах классической ньютоновской динамики, однако Бор ввел новый принцип, согласно которому разрешались лишь определенные орбиты для движения электронов вокруг ядра. Несмотря на то что было сформулировано правило для определения этих стабильных орбит, с более общих позиций бо-оовскую теорию следует считать неудовлетворительной, поскольку отсутствовало какое-либо объяснение стабильности орбит в рамках классической динамики . Тем не менее работа Бора показала, что объяснение химической связи может быть найдено в пределах динамической теории электрона, хотя никаких удовлетворительных в количественном отношении результатов получено не было. Как будет видно из дальнейшего, количественные результаты удалось получить лишь после открытия новых принципов волновой механики. [c.12]

    Эти результаты нельзя объяснить на основе волнового описания света, согласно которому увеличение интенсивности должно было бы привести к увеличению амплитуды электрического поля и, следовательно, к увеличению энергии испускаемых электронов. Кроме того, необъясненным остается низкочастотный порог для испускания электронов. С точки зрения волновой теории скорее следовало бы ожидать порогового поведения при малых интенсивностях. Но, как будет показано ниже, корпускулярная модель света дает естественное объясненне этих результатов, [c.17]

    Не существует точной связи между полной /г-частичпой волновой функцией и волновыми функциями для каждой частицы, но существует, как будет видно далее, приближенная связь. На этой приближенной связи основана теория электронного распределения и энергий атомов и молекул. В данной книге не придется выходить за рамки подобного приближения. Другими словами, будут рассмотрены прежде всего одночастичные волновые функции и метод построения из них приближенных многочастичных волновых функций. [c.27]

    Ядро занимает лишь незначительную часть обш его объема атома, хотя концентрирует почти всю массу атома. Вокруг ядра группируются электроны. Оин вносят очень небольшой вклад в обшую массу атома, но зато занимают большой объем и обусловливают размеры атома. Главная концепция современной теории микромира состоит в том, что в атомной шкале частицы и волны незаметно переходят друг в друга, т.е. частицы имеют свойства воли, а волны - свойства частиц. Несмотря на то, что волновая природа фотонов (то есть света) была установлена давно, почти инкто до 1925 г. не принимал всерьез точку зрения, согласно которой вещество (например, электроны, атомы) подобно волне, а не корпускулярно. Но в 1925 г. Дэвиссон и Джермер открьпш дифракцию (т.е. волновые свойства) электронов на кристаллической решетке. Опыт по дифракции, позднее проведенный с другими частицами, включая молекулярный водород, четко показал, что частицы имеют волновые свойства. [c.5]

    Модели частицы в потенциальном ящике применяются не только для предсказания спектральных свойств Например, радиоактивный распад удается описать с использованием модели частицы в потенциальном ящике со стенками конечной толщины При этом процесс распада рассматривается как проявление квантово-механического эффекта туннельного или подбарьерного прохождения Туннельный эффект является специфическим лишь для волновой теории и не имеет аналога в классической механике На основе туннельного эффекта можно объяснить холодную эмиссию, т е вырывание электронов из металла под действием электрического поля, а также возникновение контактной разности потенциалов — явления, открытого еще Вольтом [c.24]


Смотреть страницы где упоминается термин Волновая теория электронов: [c.349]    [c.338]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.40 , c.44 ]




ПОИСК





Смотрите так же термины и статьи:

Волновая теория

Волновое электронов

Теория электронная

Теория электронов



© 2025 chem21.info Реклама на сайте